
An FPTAS for the minimum total weighted tardiness problem with

a fixed number of distinct due dates

George Karakostas ∗ Stavros G. Kolliopoulos † Jing Wang ‡

February 3, 2009

Abstract

Given a sequencing of jobs on a single machine, each one with a weight, processing time, and
a due date, the tardiness of a job is the time needed for its completion beyond its due date. We
present an FPTAS for the basic scheduling problem of minimizing the total weighted tardiness
when the number of distinct due dates is fixed. Previously, an FPTAS was known only for the
case where all jobs have a common due date.

1 Introduction

The minimum total weighted tardiness problem for a single machine is defined as follows. We are
given n jobs, each with a weight wj > 0, processing time pj, and due date dj . When these jobs are
sequenced on a single machine, each job j will have a completion time Cj . The tardiness Tj of job
j is defined as max{0, Cj − dj}. If Tj = 0, the job is early, otherwise it is tardy. The objective is to
minimize the total weighted tardiness, i.e., we look for a schedule that minimizes

∑

j wjTj.
The problem is very basic in scheduling (see surveys [1, 10] and the references in [4, 5]) and is

known to be NP-hard [8] even in the case of unit weights [3]. Despite the attention it has received,
frustratingly little is known on it approximability. The best known approximation algorithm has a
performance guarantee of n−1 [2]. For the unit weight case, Lawler gave early on a fully polynomial-
time approximation scheme (FPTAS) [7], which is a modification of his pseudopolynomial dynamic
programming algorithm in [6].

For general weight values, the problem remains NP-hard even when all jobs have a common due
date [11]. Kolliopoulos and Steiner [5] gave a pseudopolynomial dynamic programming algorithm
for the case of a fixed number of distinct due dates. Using essentially Lawler’s rounding scheme
from [7], they obtained an FPTAS only for the case of polynomially bounded weights. Kellerer and
Strusevich [4] gave an FPTAS for general weights in the case where all jobs have a common due
date. The existence however of an FPTAS for the case of general weights and a fixed number of
distinct due dates has remained open. We note that for a general number of distinct due dates the
problem becomes strongly NP-hard [6].

In this work, we settle the case of a fixed number of distinct due dates by giving an FPTAS. We
design first a pseudopolynomial algorithm and then apply the rounding scheme of [4] to obtain the

∗Dept. of Computing & Software, and School of Computational Engineering & Science, McMaster University,
Hamilton, ON, Canada. E-mail: karakos@mcmaster.ca. Research supported by an NSERC Discovery grant.

†Dept. of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens 157 84,
Greece. URL: wwww.di.uoa.gr/˜sgk

‡School of Computational Engineering & Science, McMaster University, Hamilton, ON, Canada. E-mail:
wang257@mcmaster.ca. Research supported by an NSERC Discovery grant.

1

desired approximation scheme. We exploit two crucial properties of the algorithms in [4]. The first
is that the optimal choice is feasible at every job placement the FPTAS performs (cf. Lemma 10).
This step-by-step mimicking of the optimal chain of computation is crucial for bounding the ap-
proximation error. Of course, the schedule we output may be suboptimal due to our approximate
(“rounded”) estimation of tardiness. The second property is that the rounding scheme of [4] pro-
duces values which correspond to actual schedules; therefore by rounding up the processing time of
tardy jobs with due date d, one rounds down the processing time of early jobs with the same due
date by the same amount. Since the total time needed for these jobs remains the same, this means
that there is empty space that allows our algorithm to push back the extra tardy processing time
towards the past. This need for preemption, i.e., allowing the processing of a job to be interrupted
and later restarted, did not arise in [4] where the extra tardy processing time past the common due
date D could always be accommodated in the time interval [D,∞).

In addition to these basic facts, we need a number of other new ideas, some of which we outline
next. Our algorithm works in two stages. First, via dynamic programming it computes an assign-
ment of the job completion times to the time horizon, where only a subset of the jobs is explicitly
packed and the rest are left “floating” from their completion time backwards. This is what we
call an abstract schedule. In the second stage, a greedy procedure allocates the actual job lengths,
possibly also with preemption. As in previous algorithms, the jobs that straddle a due date in a
schedule, the so-called straddlers, play an important role. We observe that only the placement of
the tardy straddlers is critical. The time intervals, called superintervals, between consecutive tardy
straddlers, form the basic time unit on our time horizon. The scheduling of a job j as early can
then be localized within only one of these superintervals, depending on the actual dj value (cf. The
Bracketing Lemma 3). This helps to shrink the state space of the dynamic program.

It is well-known that the preemptive and non-preemptive optima coincide when minimizing
tardiness on a single machine [9]. This powerful fact has found only limited use in approximation
algorithms so far, for example through the preemptive scheduling of early jobs in [5]. We take
the opposite view from [5] and insist on the non-preemptive scheduling of early jobs. Moreover,
all early jobs are packed explicitly in the abstract schedule. This is necessary since early jobs are
particularly difficult to handle: enumerating their total length is prohibitive computationally and
distorting their placement even by a tiny amount might result in a severely suboptimal schedule. We
allow instead preemptive scheduling of the tardy jobs. As explained above, preemption will allow us
to flexibly push back the extra tardy processing time, introduced by the rounding, towards the past.
Following this idea to its natural conclusion, we allow even straddlers to be preempted. In the final
schedule, it could be that only the completion time of a tardy job happens in the interval in which
it was originally assigned by the dynamic program, while all the processing happens earlier. The
algebraic device we introduce that allows the abstract schedule to keep some of the jobs “floating”,
without pinning down anything but their completion time, is the potential empty space within a
prefix of a schedule (cf. Eq. (3) below). To ensure that preemptions can be implemented into
actual empty space is perhaps the largest technical difficulty in our proof.

The approximability of total weighted tardiness problem with an arbitrary number of distinct
due dates remains as the main open problem.

2 Structural properties of an optimal schedule

We are given n jobs j = 1, . . . , n, each with its own processing time pj and weight wj and a due
date from a set of K possible distinct due dates {d1, d2, . . . , dK}, where K will be assumed to be
a constant for the rest of this paper. For convenience, we are also going to define the artificial

2

due date d0 = 0. The due dates partition the time horizon into K + 1 intervals Il = [dl−1, dl) for
l = 1, . . . ,K, and IK+1 = [dK ,∞). We partition the jobs into K classes C1, C2, . . . , CK according
to their due dates.

A crucial concept for the algorithms we describe is the grouping of intervals Il in the following
manner: for any iu, iu+1, intervals Iiu+1, Iiu+2, . . . , Iiu+1 are grouped into a superinterval Giuiu+1 =
Iiu+1 ∪ Iiu+2 ∪ . . .∪ Iiu+1 = [diu , diu+1), if straddlers Siu and Siu+1 are consecutive tardy straddlers,
i.e., there is no other tardy straddler in between due dates diu , diu+1. Note that it may be the case
that iu+1 = iu + 1, i.e., Giuiu+1 ≡ Iiu+1 if both Siu, Siu+1 are tardy. Also, since straddler SK is
tardy, the last superinterval is GK,K+1 = IK+1.

In any schedule of the n jobs, a job that finishes before or on its due date will be an early job,
otherwise it will be tardy. We also call any job that starts before or on a due date but finishes after
it a straddler. It is well-known [9] that the optimal values of the preemptive and the non-preemptive
version of the problem are the same. Therefore we can assume that the optimal schedule is a non-
preemptive one. In it the straddlers will appear as contiguous blocks, crossing one or more due
dates. For easiness of exposition, we will assume that there is an optimal schedule with distinct
straddlers for every due date, i.e., there are K distinct straddlers S1, . . . , SK corresponding to due
dates d1, . . . , dK . After the description of the algorithms, it should be clear how to modify them
in order to deal with the special case of some straddlers crossing more than one due dates. For
convenience, let also S0 be an artificial tardy straddler for d0 with wS0 = pS0 = 0. In any optimal
schedule, the machine has clearly no idle time. Hence, wlog, due dates that are greater than

∑

j pj ,
can be set to ∞. Accordingly, we can assume that there is a straddler for every due date.

Tardy straddlers are going to be of particular interest to what our algorithms do. We will assume
that we have guessed the number M ≤ K of tardy straddlers and these tardy straddlers Si1 , . . . , SiM

of the optimal schedule (also Si0 = S0). By guessing, we mean the exhaustive enumeration of
all combinations of jobs with due dates (with repetition in the general case where a job can be
straddler of more than one due dates), which produces a polynomial number of possibilities, since
K is constant. Let m = n−M be the number of the remaining jobs, which are ordered according to
their weighted shortest processing times (WSPT), i.e., p1

w1
≤ p2

w2
≤ . . . ≤ pm

wm
. With some abuse of

terminology, we will call these jobs non-straddling, although some of them are the early straddlers.
We will also assume that we have guessed a bound Zub such that for the optimal value OPT we
have Zub/2 ≤ OPT ≤ Zub.1

It should be obvious that, in any interval Il, the tardy jobs in that interval are processed before the
early ones. It is also well-known (e.g., see Lemma 2.1 in [5]) that the tardy jobs must be processed
in WSPT order. With respect to a given partial schedule we define the following quantities, which
are going to be important throughout this work:

• y
(i−1)t
k , 1 ≤ t < i ≤ K + 1, 1 ≤ k ≤ m: the total processing time of those (tardy) jobs among

the first k (in WSPT order) jobs, that belong to class Ct and are in Ii. Also define y0t
k = 0

for all t.

• W
(i−1)t
k , 1 ≤ t < i ≤ K + 1, 1 ≤ k ≤ m: the total weight of the jobs in the previous item.

• At
k, 1 ≤ t ≤ K, 1 ≤ k ≤ m: the total processing time of the class Ct jobs among the first k

jobs. Notice that these quantities can be calculated in advance.

• eit
k , 1 ≤ i ≤ t ≤ K, 1 ≤ k ≤ m: the total processing time of those (early) jobs among the

first k (in WSPT order) jobs, that belong to class Ct and are in Ii.

1This can be done by running the algorithm with Zub = 2x, for all x = 0, 1, . . . , U , with U being a trivial upper
bound of OPT , e.g. U = log(n2wmaxpmax) = O(log n + log wmax + log pmax).

3

The following lemmas are important properties of an optimal schedule:

Lemma 1 In the optimal schedule and for any 1 ≤ i ≤ K, if Si is tardy, then for any 1 ≤ l ≤ i
and any i + 1 ≤ u ≤ K, we have elu

k = 0.

Lemma 2 In the optimal schedule and for any 2 ≤ i ≤ K, if Si−1 is early, then y
(i−1)u
k = 0 for

any 1 ≤ u ≤ i − 1, i.e., there are no tardy jobs in Ii.

Lemma 2 implies that the only non-zero y’s are the ones that correspond to the first interval of
each superinterval. Therefore, from now on we will use only the values yiut

k , 1 ≤ u ≤ M, 1 ≤ t ≤
iu, 1 ≤ k ≤ m. Lemmas 1 and 2 imply that for every 1 ≤ k ≤ m and for every 1 ≤ t ≤ K s.t.
is−1 < t ≤ is for some 1 ≤ s ≤ M we have

At
k =

M
∑

u=s

yiut
k +

t
∑

q=is−1+1

eqt
k (1)

A direct consequence of Lemma 1 and the definition of a superinterval is the following.

Lemma 3 (Bracketing Lemma for early jobs) Let u ≤ M. In an optimal schedule only jobs
from classes Ct, with iu−1 < t ≤ iu can be assigned as early in the superinterval Giu−1iu .

3 A dynamic programming algorithm to find an abstract schedule

An abstract schedule is an assignment of the the m non-straddling jobs to superintervals so that (i)
early jobs are feasibly and non-preemptively packed within their assigned superinterval (ii) there
is enough empty space so that tardy jobs that complete in their assigned superinterval can be
preemptively packed and (iii) there is enough empty space so that the M tardy straddlers can be
preemptively packed. An abstract k-schedule, k ≤ m, is an abstract schedule for the first k non-
straddling jobs. In this section we describe a pseudopolynomial dynamic programming algorithm
(DP) that computes a suitable abstract schedule. In the next section we show how to pin down the
actual processing of the tardy jobs and the straddlers, so that the abstract schedule is converted
to an actual schedule of the n jobs with minimum total tardiness.

The DP algorithm “guesses” the M tardy straddlers. Extending the dynamic programming
of [4], the states of DP store the following values for a (partial) schedule of the k first (in WSPT
order) of the m non-straddling jobs2:

(

k,Zk, y
i11
k ,W i11

k , yi21
k ,W i21

k , · · · , yiM 1
k ,W iM 1

k , yi12
k ,W i12

k , · · · , yiM K
k ,W iMK

k

)

, (2)

where Zk is the total weighted tardiness of the k scheduled jobs. Note that some of the yiuj
k ,W iuj

k

in (2) may not exist, if iu < j. As in [4], the weight values W iuj
k will be needed when the tardy

straddlers will be re-inserted at the end.
The initial state will be (0, 0, . . . , 0). A state-to-state transition from state (2) corresponds to the

insertion of the (k+1)-th job in a super-interval of the (partial) abstract schedule of the previous k
jobs. Such a transition corresponds to the choice of inserting this job in a superinterval, and must

2Recall that we are looking for schedules that do not include the tardy straddlers, yet they have enough empty
space to accommodate the re-insertion of these straddlers in their correct position. Moreover, in every interval Il,
the tardy jobs of that interval (if they exist) appear as a block starting at dl−1, followed immediately by the block of
early jobs in this interval.

4

be feasible. The feasibility conditions, described in detail below, require that there is enough empty
space to insert the new job in the selected superinterval, and there is still enough empty space for
the re-insertion of the straddlers. Note that the combination of the class Ct of the inserted job
and the superinterval Giu−1iu chosen for it by the transition determines whether this job is early
or tardy: if 1 ≤ t ≤ iu−1 then the job is tardy, otherwise it is early.

In order to be able to check the feasibility of the transitions, we would like to be able to calculate
the empty space in every superinterval from the information stored in states (2). Unfortunately,
this is not possible, because essentially there are many possibilities for the placement of early jobs
that yield the same state and keeping track of all these possibilities would blow up the state space.
As a result of this limited information, some of the space that looks empty will be actually needed
to accommodate preempted parts of tardy jobs from later superintervals. Nevertheless, we can
calculate the potential empty space for prefixes of the schedule that start from time t = 0. The
processing time for a tardy job is just slated for the prefix that ends at its assigned completion
time by the first (dynamic programming) stage of the algorithm, without pinning down its exact
placement. This placement is fixed only during the second stage of the algorithm. We introduce
the following set of prefix values, which can be calculated given a state (2):

• L0l
k , 1 ≤ l ≤ K, 1 ≤ k ≤ m: the total space from d0 to dl minus the space taken by the jobs

whose class indices are less than or equal to l.

Given 1 ≤ l ≤ K, let s be such that is−1 < l ≤ is. Then L0l
k can be computed from the information

at hand as follows:

L0l
k = dl − (

s−1
∑

j=1

ij
∑

q=ij−1+1

ij
∑

h=q

eqh +

l
∑

q=is−1+1

l
∑

h=q

eqh) − (

s−1
∑

j=1

ij
∑

h=1

yijh)

= dl − (
l

∑

i=1

Ai
k −

s−1
∑

j=1

ij
∑

h=1

yijh −
M
∑

j=s

l
∑

h=1

yijh) − (
s−1
∑

j=1

ij
∑

h=1

yijh) = dl −
l

∑

i=1

Ai
k +

M
∑

j=s

l
∑

h=1

yijh

(3)

Recall that there are M tardy straddlers {Siu}
M
u=1 overall. We assume that the (k+1)-th job Jk+1

belongs to class Ct, and that we want to schedule it in superinterval Giu−1iu . Note that Lemma 3
implies that, to even consider such a placement, t ≤ iu must hold. The three feasibility conditions
that must be satisfied by a DP transition from state (2) follow. From equation (3), given the state
information, all three can be effectively checked.

Condition (1): t ≤ iu−1, i.e., Jk+1 is tardy.

1a. Check whether L0l
k − L

0iu−1

k ≥ pk+1 holds ∀l s.t. iu−1 ≤ l ≤ iu.

1b. If 1a doesn’t hold, check whether L0l
k ≥ pk+1 holds ∀l s.t. iu−1 < l ≤ iu.

1c. Check whether L
0ij
k ≥ pk+1 holds ∀j s.t. u < j ≤ M .

Condition (2): iu−1 < t ≤ iu., i.e., Jk+1 is early.

2a. Check whether L0l
k − L

0iu−1

k ≥ pk+1 holds ∀l s.t. t ≤ l ≤ iu.

2b. If 2a doesn’t hold, check the following according to which case applies:

2b.1.
∑iu−1

v=1 y
iu−1v
k ≤ L

0iu−1

k : Check whether dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k) ≥ pk+1 and

L0l
k ≥ pk+1 holds ∀l s.t. t ≤ l ≤ iu;

2b.2.
∑iu−1

v=1 y
iu−1v
k > L

0iu−1

k : Check whether L0l
k ≥ pk+1 holds ∀l, s.t. t ≤ l ≤ iu.

2c. Check whether L
0ij
k ≥ pk+1 holds ∀j, s.t. u < j ≤ M .

5

Condition (3): Check whether L0j
k+1 ≥

∑u−1
h=1 pih holds ∀u s.t. 1 < u ≤ M and ∀j s.t. iu−1 <

j ≤ iu.
Condition (3) will ensure that there is always enough empty space to fit the straddlers in the

final schedule (Lemma 8). Conditions (1a) (and (2a)) are satisfied when there is enough space to
fit Jk+1 as tardy (or early) in a non-preemptive schedule. Since we will prove (Lemma 6) that
Conditions (2b), (2c) are enough to guarantee (with a some shuffling around) that early jobs can
always be inserted non-preemptively in a preemptive schedule, and Lemma 7 will show that even
if Condition (1a) is not satisfied, we are able to insert tardy jobs preemptively in a preemptive
schedule if Conditions (1b), (1c) hold, Conditions (1a),(2a) are redundant if we are looking for a
preemptive schedule. But we will use the fact that Conditions (1a),(2a),(3) are enough for the
construction of an optimal DP algorithm which produces an optimal non-preemptive schedule in
the analysis of our FPTAS (Sections 4, 5).

There is a more concise way of expressing Condition (2), as shown in the following

Lemma 4 Condition (2b) can be replaced by the following:

2b. Check whether dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k + max{
∑iu−1

v=1 y
iu−1v
k −L

0iu−1

k , 0}) ≥ pk+1 holds
∀l s.t. t ≤ l ≤ iu.

The new state (k + 1, Zk+1, . . .) after the (feasible) insertion of the (k + 1)-th job Jk+1 of class
Ct in superinterval Giu−1iu is computed as follows:

• Jk+1 is early: Set Zk+1 = Zk, yiuj
k+1 = yiuj

k , W iuj
k+1 = W iuj

k for all 1 ≤ u ≤ M, 1 ≤ j ≤ iu.

• Jk+1 is tardy: Set Zk+1 = Zk + wk+1(
∑iu−1

v=1 y
iu−1v
k + pk+1 + diu−1 − dt), y

iu−1t
k+1 = y

iu−1t
k +

pk+1, W
iu−1t
k+1 = W

iu−1t
k + wk+1. Note that we reject the insertion if Zk+1 > Zub, and if at

some point we determine that this inequality is true for all possible insertions of Jk+1 then
we reject Zub, we replace it with a new Zub := 2Zub and start the algorithm from scratch.

We need to show that the assignment of jobs to the superintervals meets the definition of the
abstract schedule. First we elucidate the relation of the L values with the actual empty space.

Lemma 5 Let u ≤ M, 1 ≤ k ≤ m. If L
0ij
k ≥ 0, ∀j s.t. 1 ≤ j ≤ u, then there is enough actual empty

space to pack preemptively the tardy jobs that have so far been assigned to the first u superintervals.

Proof: Note that these tardy jobs must each be scheduled so that they complete in their respective
superinterval. Their processing can take place anywhere before their completion time. For a

superinterval Gij−1ij , define L
i(j−1)ij
k := L

0ij
k −L

0i(j−1)

k . By Lemma 3 this quantity equals the empty
space in [dij−1 , dij) plus the space potentially needed in [dij−1 , dij) by pieces of preempted tardy

jobs with completion time after dij . Clearly L0iu
k =

∑u
j=1 L

(ij−1)ij
k . Each of the terms in the sum

can be negative or nonnegative. A negative term corresponds to a superinterval with an excess
portion of tardy jobs which needs to be moved (preempted) towards the past. A nonnegative
term corresponds to a superinterval with an excess of space which can be used to accommodate
preempted parts of jobs that complete in future superintervals. Therefore, if L0ih

k ≥ 0, ∀h s.t.

1 ≤ h ≤ j, the sum L
0ij
k ≥ 0, is the net empty space available for accommodating preemptions

from jobs that complete after dij once all tardy jobs assigned in [d0, dij) have been packed. 2

We establish that the early jobs are feasibly packed.

Lemma 6 Assume state (2) corresponds to an abstract k-schedule. Conditions (2) and (3) imply
that job Jk+1 is packed non-preemptively as early in the intervals Iiu−1+1, . . . , Iiu , so that we obtain
an abstract (k +1)-schedule. Moreover all early jobs complete as close to their due date as possible.

6

Proof: If Condition (2a) holds, there is at least pk+1 empty space in the superinterval Giu−1iu

although (i) it may not be contiguous (ii) it may not occur in its entirety before dt (iii) part of it
may be earmarked to accommodate preemptions from tardy jobs assigned after diu . If Condition
(2b) holds, one has in addition to move parts of tardy jobs from Giu−1iu towards the past in order
to create the empty space of (2a). If neither of them holds, it is impossible to pack Jk+1 as early
within this superinterval. We establish that assigning Jk+1 under Conditions (2a) or (2b) has no
ill effect on the first k jobs. Then we consider how the possibly fragmented empty space can be
used to feasibly pack Jk+1.

After assigning Jk+1 to Giu−1iu , L
0ij
k+1 = L

0ij
k+1, ∀j, s.t. 1 ≤ j ≤ iu−1. By Lemma 5, the feasible

assignment of jobs to intervals before diu−1 is not affected. Space for straddlers is preserved because
of Condition (3). Early jobs assigned after diu are not affected either. We only have to worry about
tardy jobs assigned after diu−1 and early jobs in the superinterval Giu−1iu . The former can afford
to lose some of their coveted space because of Lemma 5 and Conditions (2a) (or (2b)) and (2c).
The latter are packed according to the scheme that follows. Since our reasoning applies regardless
of whether Condition (2a) or (2b) holds let L̄

iu−1l
k denote L0l

k − L
0iu−1

k in the former case and

dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k + max{
∑iu−1

v=1 y
iu−1v
k − L

0iu−1

k , 0}) in the latter (from Lemma 4).

Recall that iu−1 < t ≤ iu. We have L̄
iu−1iu
k ≥ pk+1, and that L̄

iu−1(iu−1)
k is the space that is

either empty or contains (parts of) jobs from class Ciu (due to Lemma 1) in [diu−1 , diu−1). We
can greedily “push” all the latter jobs as close to diu as possible using the empty space closest to
diu . After we are done, the empty space between diu−1 and diu−1 must be at least pk+1: If all Ciu

jobs fit in the empty space of Iiu , then L̄
iu−1(iu−1)
k represents actual empty space and by Condition

(2) L̄
iu−1(iu−1)
k ≥ pk+1; otherwise, there must be no empty space left in Iiu , which means that the

whole empty space in Giu−1iu , which we know to be at least pk+1, is concentrated in [diu−1 , diu−1).
Continuing to successively push jobs of classes Ciu−1, Ciu−2, . . . , Ct+1 as close as possible to due
dates diu−1, diu−2, . . . , dt+1 respectively, at the end we will have at least pk+1 units of empty
space in [diu−1 , dt], and in this empty space we can insert (early) job Jk+1, without disturbing the
previous k jobs just as the statement of the lemma specifies. 2

It remains to argue about the packing of tardy jobs (proof in the appendix):

Lemma 7 Assume state (2) corresponds to an abstract k-schedule. Conditions (1) and (3) imply
that one can assign job Jk+1 to complete as tardy in the superinterval Giu−1iu , so that we obtain an
abstract (k + 1)-schedule.

4 Producing an optimal schedule

The abstract schedule produced so far by the dynamic programming algorithm has placed the early
jobs in their superintervals non-preemptively and as close to their due date as possible (as shown
by Lemma 6). It has also placed the completion times of the tardy jobs in their superintervals3.
But we have not specified how the (preempted) tardy jobs are arranged, since Condition (1) only
ensures that there is enough empty space to fit each tardy job, possibly broken in pieces. Now we
describe the procedure that allocates the tardy jobs on the time horizon:

1. The (tardy) jobs in the last interval IK,K+1 are scheduled in that interval non-preemptively
in WSPT order.

3In fact, we know the specific interval of each completion time, since only the first interval of every superinterval
can be used for the completion of tardy jobs.

7

2. For u = M,M − 1, . . . , 1 look at the tardy jobs with completion times in Giu−1iu , i.e., in
interval Iiu−1,iu−1+1 in WSPT order. While there is empty space in this interval, fit in it as
much processing time as possible of the job currently under consideration. If at some point
there is no more empty space, the rest of the processing times of these tardy jobs will become
preempted pieces to be fitted somewhere in [d0, diu−1). Then, we fill as much of the remaining
empty space in Giu−1iu as possible using preempted pieces belonging to preempted tardy jobs
in [diu , dK] in WSPT order (although the particular order doesn’t matter). When we run out
of either empty space or preempted pieces, we move to the next u := u − 1.

We note that the above process does not change the quantities L0j
m , j = 1, 2, . . . ,K, and therefore

Condition (3) continues to hold.
The placement of the tardy straddlers will complete the schedule the algorithm will output. The

following lemma shows how we will place the straddlers preemptively so that two properties are
maintained: (a) straddler Siu completes at or after diu and before diu+1 , for all u = 1, 2, . . . ,M − 1,
and (b) the prefix of the schedule that contains all straddlers’ processing time is contiguous, i.e.,
there are no ‘holes’ of empty space in it. We will need property (b) in the calculation of the total
tardiness of the final schedule below and in our FPTAS. We emphasize that (b) may force us to
preempt straddlers: for example, suppose that the empty space in [d0, d1) is much bigger than
∑M

h=1 pSih
; then our schedule will use

∑M
h=1 pSih

units at the beginning of that empty space to
process Sj1, . . . , SjM

, while setting their completion times at dj1 , . . . , diM respectively.

Lemma 8 The placement of the tardy straddlers can be done so that properties (a),(b) above are
maintained.

Given that Zub is large enough, the dynamic programming will ultimately produce a set of states
with their first coordinate equal to m, i.e., states that correspond to partial schedules of all m non-
straddling jobs. Since these states satisfy Condition (3), Lemma 8 implies that we can re-insert
the straddlers at their correct position without affecting the earliness of the early or the placement
in intervals of the tardy non-straddling jobs, thus creating a number of candidate full schedules.
Let {Tiu}

M
u=1 be the tardiness of the M tardy straddlers. Also, note that due to property (b) in

Lemma 8,

xiu := max{0,

u
∑

l=1

pSil
− L0iu

m } (4)

is the part of Siu beyond due date diu . Then, if Siu ∈ Ct (with t ≤ iu), we have Tiu = xiu + diu −
dt, u = 1, . . . ,M, and the total weighted tardiness of a candidate schedule is

Z = Zm +
M
∑

u=1

wiuTiu +
M
∑

u=1

(

iu
∑

l=1

W iul
m)xiu . (5)

The algorithm outputs a schedule with minimum Z by tracing back the feasible transitions, starting
from the state that has the Zm which produced the minimum Z. It should be obvious how to extend
the description of the algorithm above to include the case of a straddler being the same for more
than one (consecutive) due dates. The following is also fairly easy to prove (proof in the appendix):

Theorem 1 The dynamic programming algorithm above produces an optimal schedule.

Note that in the proof of Theorem 1 we didn’t need to check Conditions (1b),(2b). If, in addition,
we require that the algorithm is non-preemptive, then the proof goes through without checking
for Conditions (1c),(2c), since they are satisfied trivially by the optimal non-preemptive schedule.
Hence we have the following

8

Corollary 1 The non-preemptive DP algorithm with feasible transitions restricted to only those
that satisfy Conditions (1a), (2a) and (3) still produces an optimal (non-preemptive) schedule.

Corollary 1 will be important for the proof of the approximation ratio guarantee below, since we
will compare the solution produced by our FPTAS to the optimal schedule of the corollary.

5 The FPTAS

The transformation of the pseudopolynomial algorithm described in Sections 3, 4 into an FPTAS
follows closely the FPTAS (Algorithm Eps) in [4]. Since the running time of the dynamic pro-
gramming part dominates the total running time, in what follows we use the term DP to refer to
the entire process.

Let ε > 0. Recall that we have guessed Zub such that Zub/2 ≤ OPT ≤ Zub, and let Z lb :=
Zub/2. Define δ = εZlb

4m . Consider a state (k,Z∗
k , yi11∗

k ,W i11∗
k , yi21∗

k ,W i21∗
k , · · · , yiM K∗

k ,W iMK∗
k)

of the exact dynamic programming. From this state, we will deduce the states
(k,Zk, yi11

k ,W i11
k , yi21

k ,W i21
k , · · · , yiM K

k ,W iMK
k) used by the FPTAS dynamic programming as fol-

lows:
We round variable Z∗

k to the next multiple of δ (hence Zk takes at most Zub

δ = O(n
ε) distinct

values). For every 1 ≤ u ≤ M , we round W iuj∗
k to the nearest power of (1 + ε/2)1/m (hence

W iuj
k takes O(n log W) values, where W is the total weight of the n jobs). After ordering the

non-straddling jobs in WSPT order, let wπ(1) > wπ(2) > · · · > wπ(N) be the N ≤ m distinct weight
values of the m non-straddlers in decreasing order.

The rounding of yiuj∗
k , 1 ≤ u ≤ M is more complicated. Define a division of time in-

terval [0, Zub

wπ(N)
] into subintervals {Hi′ := [Zub

wπ(i′−1)
, Zub

wπ(i′)
]}N

i′=1. In turn, divide each Hi′ into

subintervals {Ĥi′j′(i)}
xi′

i

j′=1 of length δi = δ
iwπ(i′)

for all 1 ≤ k ≤ m and 1 ≤ i ≤ K, where

xi′
i = d

Zub

w
π(i′)

− Zub

w
π(i′−1)

δi
e is the number of such subintervals (note that the length of the last subinter-

val may be less than δi). For each state (k,Zk, y
i11
k ,W i11

k , · · · , yiM K
k ,W iM K

k), the dynamic program

applies its O(K) transitions to generate new states (k + 1, Zk+1, y
i11
k+1,W

i11
k+1, · · · , yiMK

k+1 ,W iMK
k+1).

For the set of states which have the same values of Zk+1,W
i11
k+1, · · · ,W iMK

k+1 , we round yiuj
k+1

in the following way: we group all the yiuj
k+1 values that fall into the same subinterval Ĥi′j′

together, and keep only the smallest and the largest values in this group, say yiujmax

k+1 and

yiujmin

k+1 . We emphasize that these two values correspond to the actual processing times of

two sets of tardy jobs, and therefore none of these two values is greater than Aj
k+1. Hence,

from the group of states generated by the DP transition, we produce and store states with at
most two values at position yij

k+1, i.e., (k + 1, Zk+1, y
i11
k+1,W

i11
k+1, · · · , yiujmax

k+1 , · · · yiMK
k+1 ,W iMK

k+1) and

(k + 1, Zk+1, y
i11
k+1,W

i11
k+1, · · · , yiujmin

k+1 , · · · yiMK
k+1 ,W iMK

k+1).

Lemma 9 The algorithm runs in time O((ε−1n log W log P)Θ(K2)).

We focus on states (k,Z∗
k , yi11∗

k ,W i11∗
k , · · · , yiM K∗

k ,W iM K∗
k), k = 0, 1, . . . ,m that are the sequence

of transitions in the DP of Corollary 1 that produces an optimal non-preemptive schedule. The
following lemma shows that despite the rounding used after every transition in our algorithm, there
is a sequence of states (k,Zk, y

i11
k ,W i11

k , · · · , yiM K
k ,W iM K

k), k = 0, 1, . . . ,m whose transitions from
one state to the next match exactly the job placement decisions of the optimal DP step-for-step.

9

The key idea is that when our algorithm overestimates the space needed by tardy jobs (i.e., the y’s
are rounded up), the space needed by the corresponding early jobs is decreased (rounded down),
since the total space needed remains the same, as (1) shows. The preemption of the tardy jobs
allows us to treat the total space taken by the jobs in a class Ct as a unified entity, because the
overestimated processing time of tardy jobs in this class can be placed (preempted) in the place
of early jobs, whose processing time is reduced by an equal amount. This is the basic motivation
behind our introduction of tardy job preemption.

Lemma 10 For every k = 1, 2, . . . ,m, given the identical placement of the first k − 1 jobs, if a
placement of job Jk is feasible for the optimal DP, then the same placement is feasible for our DP.

Proof: We use induction. Obviously the lemma is true for k = 1, since both DPs start from
the same initial state (0, 0, 0, . . . , 0). Assuming that it is true up to the placement of job Jk,
i.e., the optimal and our partial schedules have identical placements of jobs J1, J2, . . . , Jk in
superintervals, we look at the placement of job Jk+1. In what follows, starred quantities refer
to the optimal schedule, and non-starred ones to ours. Let Jk+1 ∈ Ct, and suppose that the
optimal placement is in superinterval Giu−1iu . Throughout the proof, we will use the fact that
L0l

k ≥ L0l∗
k ∀l, s.t. 1 ≤ l ≤ K, due to the identical placement of the first k jobs, Eq. (3), and

the fact that the y’s are always rounded up. The rest of the technical details are in the Appendix. 2

In the rest of the paper, we work with these two special sequences and their transitions. We
observe that L0j∗

m ≥
∑u−1

h=1 pSih
∀j, u s.t. 1 < u ≤ M and iu−1 < j ≤ iu from Condition (3), which

is satisfied by the optimal DP. Moreover, L0l
m ≥ L0l∗

m ∀l s.t. 1 ≤ l ≤ K (cf. Lemma 10). Hence
L0j

m ≥
∑u−1

h=1 pSih
∀j, u s.t. 1 < u ≤ M and iu−1 < j ≤ iu, i.e., Condition (3) is satisfied by the

last state produced by our algorithm in the sequence of transitions we study, and therefore we can
feasibly complete the schedule produced in this way with the insertion of the tardy straddlers.

Theorem 2 proves the approximation ratio guarantee for the schedule produced by our algorithm,
by proving this guarantee when the special transition sequence above is followed, and with the use
of Lemma 11. We emphasize that our algorithm may not output the schedule corresponding to
that sequence, since its approximate estimation of the total tardiness may lead it to picking another
one, with a smaller estimate of the total tardiness. For every 1 ≤ k ≤ m and 1 ≤ u ≤ M , let
B∗

iu(k) := max{wh | k ≤ h ≤ m, yiuj
h 6= 0, 1 ≤ j ≤ iu}, and if no job is tardy in superinterval

Giuiu+1, set B∗
iu(k) := 0.

Lemma 11 For every 1 ≤ k ≤ m, 1 ≤ u ≤ M , and 1 ≤ j ≤ iu ≤ K we have

Zk ≤ Z∗
k + 2kδ (6) 0 ≤ iuB∗

iu(k)(yiuj
k − yiuj∗

k) ≤ δ (7)

Theorem 2 If Z is the total tardiness of the schedule returned by the algorithm and Z∗ is the
optimal, we have that Z ≤ (1 + ε)Z∗.

General straddler placement: Till now we have assumed that each one of the (guessed) tardy
straddlers straddles only one due date. From the above, it is easy to see how the algorithms can
be modified to work for the general case of straddlers spanning over more than one due date.

Acknowledgment

We thank George Steiner for several enlightening discussions.

10

References

[1] T. S. Abdul-Razaq, C. N. Potts, and L. N. Van Wassenhove. A survey of algorithms for the
single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics,
Vol. 26, pp. 235–253, 1990.

[2] T. C. E. Cheng, C. T. Ng, J. J.Yuan, Z. H. Liu. Single machine scheduling to minimize total
weighted tardiness. European J. Oper. Res., Vol. 165, pp. 423–443, 2005

[3] J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is NP-hard. Mathematics
of Operations Research, Vol. 15, pp. 483–495, 1990.

[4] H. Kellerer and V. A. Strusevich. A Fully Polynomial Approximation Scheme for the Single
Machine Weighted Total Tardiness Problem With a Common Due Date. Theoretical Computer
Science, Vol. 369, pp. 230–238, 2006.

[5] S. G. Kolliopoulos and G. Steiner. Approximation Algorithms for Minimizing the Total
Weighted Tardiness on a Single Machine. Theoretical Computer Science, Vol. 355(3), pp.
261–273, 2006.

[6] E. L. Lawler. A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness.
Ann. Discrete Math., Vol. 1, pp. 331–342, 1977.

[7] E .L. Lawler. A fully polynomial approximation scheme for the total tardiness problem.
Operations Research Letters, Vol. 1, pp. 207–208, 1982.

[8] J. K. Lenstra, A. H. G. Rinnooy Kan, P.Brucker. Complexity of machine scheduling problems.
Ann. Discrete Math., Vol. 1, pp. 343–362, 1977.

[9] R. McNaughton. Scheduling with due dates and loss functions, Management Sci. Vol. 6, pp.
1–12, 1959.

[10] T. Sen, J. M. Sulek, and P. Dileepan. Static scheduling research to minimize weighted and
unweighted tardiness: a state-of-the-art survey. Int. J. Production Econom., Vol. 83, pp. 1–12,
2003.

[11] J. Yuan. The NP-hardness of the single machine common due date weighted tardiness problem.
Systems Sci. Math. Sci., Vol. 5, pp. 328–333, 1992.

Appendix

Proof of Lemma 1: Suppose that for some 1 ≤ l̂ ≤ i and K ≤ û ≤ i+1, el̂û
k > 0. This implies that

there are some Cû jobs which are early in interval Il̂. Therefore, by exchanging some of the tardy
part of Si with some part of these Cû jobs will reduce the total tardiness, since the tardiness of Si is
reduced and the Cû jobs used in the exchange are still early. This is a contradiction of optimality. 2

Proof of Lemma 2: Suppose there exists 2 ≤ i ≤ K such that Si−1 is early, while y
(i−1)u
k > 0.

Then there are some Cu jobs (1 ≤ u ≤ i − 1) which are tardy in Ii. Then exchanging part of Si−1

with some or part of these Cu jobs will reduce their total tardiness, and Si−1 is still early. This is
a contradiction of optimality. 2

11

Proof of Lemma 4: We give the proof of deriving 2b.2 (the rest of the proof is ob-

vious): if
∑iu−1

v=1 y
iu−1v
k ≥ L

0iu−1

k , then inequality dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k +

max{
∑iu−1

v=1 y
iu−1v
k − L

0iu−1

k , 0}) ≥ pk+1 is equivalent to dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k +
∑iu−1

v=1 y
iu−1v
k − L

0iu−1

k) ≥ pk+1. By exchanging the positions of the terms we have

L
0iu−1

k + dl − diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k +
∑iu−1

v=1 y
iu−1v
k) ≥ pk+1. By (3), we know that

L0l
k −L

0iu−1

k = dl−diu−1 − (
∑l

q=iu−1+1

∑l
v=q eqv

k +
∑iu−1

v=1 y
iu−1v
k) for all t ≤ l ≤ iu. An interpretation

of these inequalities is that for all the class l jobs which are early in the superinterval Giu−1iu are
still early after inserting the new early job Jk+1. 2

Proof of Lemma 7: The proof is very similar to the proof of Lemma 6. We argue first that
Conditions (1a) (or (1b)), (1c) and (3) do not affect the assignment of the first k jobs. If Condition
(1a) holds, there is at least pk+1 empty space in the superinterval Giu−1iu although (i) it may
not be contiguous (ii) part of it may be earmarked to accommodate preemptions from tardy jobs
assigned after diu . Condition (1b) corresponds to the assignment of job Jk+1 as “floating” in the
prefix [d0, diu). In both cases, we may need to shift the early jobs of the superinterval as in the
previous proof. 2

Proof of Lemma 8: First we note that the quantity L0K
m is the actual empty space in [d0, dK),

and since Condition (3) is true, for u = M, j = iM we have L0iM
m ≥

∑M−1
h=1 pSih

, i.e., we have enough
actual empty space in [d0, dK) for all tardy straddlers other than SiM .

If L0iM
m −

∑M−1
h=1 pSih

≤ pSM
, then use the extra empty space (L0iM

m −
∑M−1

h=1 pSih
) to fit (L0iM

m −
∑M−1

h=1 pSih
) units of pSM

, and fit the rest pSM
−(L0iM

m −
∑M−1

h=1 pSih
) units right after diM (shifting the

jobs in IK,K+1 towards the future by an equal amount of units). Otherwise (i.e., L0iM
m −

∑M−1
h=1 pSih

>

pSM
), set the completion time of SiM at diM , leave L0iM

m −
∑M

h=1 pSih
units of empty space closest

to diM empty, and fit SiM right before this empty space.
After the placement of SiM as described, we are left with exactly

∑M−1
h=1 pSih

units of actual
empty space before SiM , and in this space we fit exactly Si1 , . . . , SiM−1

in this order. As a result,
property (b) is fulfilled. To prove property (a), we use arguments similar to the shifting scheme
in Lemma 6. We look at each due date diu for u = M − 1,M − 2, . . . , 1: For u = M − 1, note

that L
0,iM−1+1
m still contains in it at least

∑M−1
h=1 pSih

units of empty space, because of Lemma 6,

Condition (3) that states L
0,iM−1+1
m ≥

∑M−1
h=1 pSih

, and the fact that there are no preempted pieces

counted in L
0,iM−1+1
m yet. Therefore we know that Si1 , . . . , SiM−1

will be fitted in [d0, diM−1+1),
which implies that SiM−1

is placed correctly. Now we consider two cases (as in Lemma 6):

• if interval IiM−1,iM−1+1 contains any empty space, then there are no preempted pieces of tardy
jobs completing after diM−1

in [d0, diM−1
), since these pieces could only have come from the

tardy jobs in GiM−1iM , but then it is impossible for that empty space to exist. In this case,

L
0,iM−1
m in Condition (3) inequality L

0,iM−1
m ≥

∑M−2
h=1 pSih

doesn’t contain any preempted
parts, and because of the way early jobs were pushed in Lemma 6, we can conclude that
[d0, diM−1

) contains at least
∑M−2

h=1 pSih
units of empty space.

• if interval IiM−1,iM−1+1 contains no empty space, all the empty space of L
0,iM−1+1
m (which is

at least
∑M−1

h=1 pSih
≥

∑M−2
h=1 pSih

) actually is in [d0, diM−1
).

Both cases imply that [d0, diM−1
) contains at least

∑M−2
h=1 pSih

units of empty space, and we can
continue in the same manner as before to show that SiM−2

is correctly placed, then SiM−3
, etc. 2

12

Proof of Theorem 1: Take any optimal non-preemptive schedule (which we already know that
exists) and remove the straddlers. Consider also the sequence of partial schedules that result by
removing jobs {J2, J3, . . . , Jm}, {J3, . . . , Jm}, . . . , {Jm} respectively. We will show that these partial
schedules can be produced by the algorithm, i.e., Conditions (1)-(3) hold for every placement of a
job in the superinterval prescribed by the optimal schedule.

It is clear that Condition (3) is true for the whole sequence (since the straddlers were correctly
placed in the schedule). Conditions (1a) and (2a) (depending on whether the (k+1)-th job is tardy
or early in its superinterval in the optimal schedule) also hold. For example, for Condition (2a) (the
argument is the same for Condition (1a)), assume that job Jk+1 ∈ Ct is inserted early in Giu−1iu and

is the first for which Condition (2a) is not true, i.e., it holds that L0l
k −L

0iu−1

k < pk+1 for some l s.t.

t ≤ l ≤ iu. Then we have
∑iu−1

v=1 y
iu−1v
k +

∑l
v=iu−1+1

∑v
q=iu−1+1 eqv

k + pk+1 > dl − diu−1 (recall that
jobs J1, J2, . . . , Jk have been inserted non-preemptively). This means that the space in [diu−1 , dl]
is not enough to fit all tardy jobs and early jobs with due dates v ≤ l among {J1, J2, . . . , Jk} that
have been assigned to Giu−1iu by the optimal schedule. This contradicts the fact that all these
jobs could be fitted there, as the optimal schedule shows. Similarly, we can show that Conditions
(1c),(2c) also hold.

Therefore there is a path in the DP transition diagram that corresponds to the placement of
jobs according to the given optimal non-preemptive schedule, hence the final schedule produced
by the algorithm has optimal tardiness. 2

Proof of Lemma 9: Assume the worst case M = K. For each one of the K(K + 1)/2 positions
yiuj

k+1 we have at most
Zub

wπ(1)

δi
+

N
∑

i=2

(Zub

wπ(i)
− Zub

wπ(i−1)
)

δi
= O(

n2

ε
)

distinct subintervals, or O((n2

ε)
K(K+1)

2) combinations of subintervals. When the combination of

subintervals is fixed, we have 2
K(K+1)

2 combinations of possible values for the yiuj
k+1’s, since there

are two choices for each of them. Therefore, for the same values of Zk+1,W
i11
k+1, · · · ,W iKK

k+1 ,

we have O((n2

ε)
K(K+1)

2 2
K(K+1)

2) = O(ε−
K(K+1)

2 nK(K+1)) states. Taking into account the rest of
the state values and the initial guessing part (straddlers & Zub), overall the algorithm runs in
O((ε−1n log W log P)Θ(K2)) time, where W,P are the total weight and total processing time of all
jobs. 2

Rest of the proof of Lemma 10: We distinguish two cases, according to the optimal placement
of Jk+1:

Case 1: Jk+1 is early. Since Jk+1 is early, iu−1 < t ≤ iu and L0l∗
k − L

0iu−1∗

k ≥ pk+1 holds, ∀l

s.t. t ≤ l ≤ iu. Therefore we have L0l∗
k ≥ L0l∗

k − L
0iu−1∗

k ≥ pk+1.

In our algorithm, if L0l
k − L

0iu−1

k ≥ pk+1 holds ∀l s.t. t ≤ l ≤ iu, Condition (2a) is satisfied.
Otherwise, we examine the two cases of Condition (2b):

1.
∑iu−1

v=1 y
iu−1v
k ≤ L

0iu−1

k : Since
∑l

q=iu−1+1

∑l
v=q eqv

k has always been rounded down, we have

dl − diu−1 − (
l

∑

q=iu−1+1

l
∑

v=q

eqv
k) ≥ dl − diu−1 − (

l
∑

q=iu−1+1

l
∑

v=q

eqv∗
k) ≥ L0l∗

k − L
0iu−1∗

k ≥ pk+1

13

2.
∑iu−1

v=1 y
iu−1v
k > L

0iu−1

k : Since L0l
k ≥ L0l∗

k , we have L0l
k ≥ pk+1, t ≤ l ≤ iu. Also, since

L
0ij∗
k ≥ pk+1 holds, we have L

0ij
k ≥ L

0ij∗
k ≥ pk+1, ∀j, s.t. u < j ≤ M .

Additionally, Condition (2c) is satisfied, because L
0ij
k ≥ L

0ij∗
k ≥ pk+1, ∀u < j ≤ M . Hence,

Condition (2) is satisfied by state (k,Zk, yi11
k ,W i11

k , · · · , yiMK
k ,W iMK

k), and Jk+1 can be placed
(early) in superinterval Giu−1iu by our algorithm.

Case 2: Jk+1 is tardy. Since Jk+1 is tardy, t ≤ iu−1. Also, L0l∗
k − L

0iu−1∗
k ≥ pk+1 holds, ∀l

s.t. t ≤ l ≤ iu. Therefore we have L0l∗
k ≥ L0l∗

k − L
0iu−1∗
k ≥ pk+1. If L0l

k − L
0iu−1

k ≥ pk+1 holds ∀l
s.t. t ≤ l ≤ iu, then Condition (1a) is satisfied. Otherwise, we examine Condition (1b): We have

L0l
k ≥ L0l∗

k ≥ L0l∗
k − L

0iu−1∗

k ≥ pk+1 ∀l, s.t. iu−1 < l ≤ iu. Additionally, Condition (1c) is satisfied,

because L
0ij
k ≥ L

0ij∗
k ≥ pk+1, ∀j, s.t. u < j ≤ M . Hence, Condition (1) is satisfied by state

(k,Zk, yi11
k ,W i11

k , · · · , yiMK
k ,W iMK

k), and Jk+1 can be placed (tardy) in superinterval Giu−1iu by
our algorithm. 2

Proof of Lemma 11: The proof by induction is essentially the same as the proof of Lemma 1
in [4], but we include it here for completeness. Assume that Jk+1 is from Ct where 1 ≤ t ≤ K,
and to be inserted in superinterval Giuiu+1. Then Z∗

k+1 = Z∗
k if Jk+1 is early, and Z∗

k+1 = Z∗
k +

wk+1(
∑iu

j=1 yiuj∗

k + pk+1 + diu − dt) if it is tardy. Define function φiut(y
iut
k) = yiut

k + pk+1 if Jk+1 is

tardy in Giuiu+1 and φiut(y
iut
k) = yiut

k otherwise. Denote the rounded value of φiut(y
iut
k) as yiut

k+1.
For k = 1, recall that the initial state is (0, 0, . . . , 0). It is easy to verify (6),(7) by the definition

of the rounding. Now assume that these conditions hold for k = s, where s < m. We prove the
lemma for k = s + 1.

If, in the optimal sequence, yiut∗
s+1 = yiut∗

s + ps+1 > 0, then Js+1 is tardy in Giuiu+1 and hence

B∗
iu(s+1) > 0. Assume that B∗

iu(s+1) = wv where v ≥ s+1. We have B∗
iu(s+1)yiut∗

s+1 = wvy
iut∗
s+1 ≤

wvy
iut∗
v ≤ Zub since yiut∗

k is increasing with the increase of k. Then we have yiut∗
s+1 ≤ Zub

B∗
iu

(s+1) , and

yiut∗
s+1 belongs to some subinterval of length at most δ

iuB∗
iu

(s+1) .

Now Lemma 10 implies that Js+1 is placed early or tardy by both the optimal and our sequence,
but in both cases we have 0 ≤ φiut(y

iut
s) − yiut∗

s+1 = yiut
s − yiut∗

s ≤ δ
iuB∗

iu
(s) ≤ δ

iuB∗
iu

(s+1) since

B∗
iu

(s) ≥ B∗
iu

(s + 1). Therefore φiut(y
iut
s) and yiut∗

s+1 are either in the same subinterval or in two
consecutive subintervals. If the first case is true, the largest value in that interval is picked as the
rounded value yiut

s+1; if the second is true, the smallest value in the next subinterval is picked as the
rounded value. Thus we have (7).

Now we are back to prove (6). If Js+1 is inserted early, the result is trivial. If it is tardy, we have

Zs+1 ≤ Zs + ws+1

iu
∑

j=1

yiuj
s + ps+1 + diu − dt

 + δ

(6),(7)

≤ Z∗
s + 2sδ + ws+1

iu
∑

j=1

(yiuj∗
s +

δ

iuB∗
iu

(s + 1)
) + ps+1 + diu − dt

 + δ

= Z∗
s + ws+1

iu
∑

j=1

yiuj∗
s + ps+1 + diu − dt

 + iuws+1
δ

iuB∗
iu

(s + 1)
+ δ + 2sδ

≤ Z∗
s+1 + 2(s + 1)δ

14

where the first inequality takes into account the increase of Zs+1 by at most δ due to its rounding,
and the last inequality is due to the optimal DP transition for Js+1. 2

Proof of Theorem 2: The proof is an extension of the proof of Lemma 2 in [4], and we include
it here for completeness purposes.

In exactly the same way as in the proof of Lemma 2 of [4], we can show that

W iuj∗
m ≤ W iuj

m ≤ (1 +
ε

2
)W iuj∗

m , ∀u, j s.t. 1 ≤ u ≤ M, 1 ≤ j ≤ iu. (8)

Let Zm be the total tardiness of the partial schedule computed by the algorithm before inserting
the straddlers. Recall from (4) that xiu := max{0,

∑u
l=1 pSil

− L0iu
m } (and respectively for x∗

iu).

Since L0iu∗
m is rounded up, x∗

iu
is rounded down (or becomes 0), i.e., xiu ≤ xiu∗. Then we have

Z
(5)
= Zm +

M
∑

u=1

wiuTiu +

M
∑

u=1

(

iu
∑

l=1

W iul
m)xiu

= Zm +

M
∑

u=1

wiu(xiu + diu − dt) +

M
∑

u=1

(

iu
∑

l=1

W iul
m)xiu

≤ Zm +
M
∑

u=1

wiu(x∗
iu + diu − dt) +

M
∑

u=1

(

iu
∑

l=1

W iul
m)x∗

iu

(6),(8)

≤ Z∗
m + 2mδ +

M
∑

u=1

wiu(x∗
iu + diu − dt) + (1 +

ε

2
)

M
∑

u=1

(

iu
∑

l=1

W iul∗
m)x∗

iu

≤ Z∗
m +

ε

2
Zlb +

M
∑

u=1

wiu(x∗
iu + diu − dt) +

M
∑

u=1

(

iu
∑

l=1

W iul∗
m)x∗

iu +
ε

2

M
∑

u=1

(

iu
∑

l=1

W iul∗
m)x∗

iu

(5)

≤ Z∗ +
ε

2
Z∗ +

ε

2
Z∗ = (1 + ε)Z∗

2

15

