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Abstract

A natural generalization of the selfish routing setting arises when some of the users obey
a central coordinating authority, while the rest act selfishly. Such behavior can be modeled
by dividing the users into an « fraction that are routed according to the central coordinator’s
routing strategy (Stackelberg strategy), and the remaining 1 — « that determine their strategy
selfishly, given the routing of the coordinated users. One seeks to quantify the resulting price of
anarchy, i.e., the ratio of the cost of the worst traffic equilibrium to the system optimum, as a
function of a. It is well-known that for & = 0 and linear latency functions the price of anarchy
is at most 4/3 [20]. If « tends to 1, the price of anarchy should also tend to 1 for any reasonable
algorithm used by the coordinator.

We analyze two such algorithms for Stackelberg routing, LLF and SCALE. For general
topology networks, multicommodity users, and linear latency functions, we show a price of
anarchy bound for SCALE which decreases from 4/3 to 1 as « increases from 0 to 1, and
depends only on «. Up to this work, such a tradeoff was known only for the case of two nodes
connected with parallel links [18], while for general networks it was not clear whether such a
result could be achieved, even in the single-commodity case. We show a weaker bound for LLF
and also some extensions to general latency functions.

The existence of a central coordinator is a rather strong requirement for a network. We show
that we can do away with such a coordinator, as long as we are allowed to impose taxes (tolls)
on the edges in order to steer the selfish users towards an improved system cost. As long as
there is at least a fraction « of users that pay their taxes, we show the existence of taxes that
lead to the simulation of SCALE by the tax-payers. The extension of the results mentioned
above quantifies the improvement on the system cost as the number of tax-evaders decreases.
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1 Introduction

We study the performance of a network shared by noncooperative nonatomic users. Every selfish
user needs to route an infinitesimal amount of flow from a specified origin to a specified destina-
tion node. Let f be a flow vector defined on the network paths, which describes a given traffic
pattern according to the standard multicommodity flow conventions. Every path P has a latency
function Ip(f) which expresses the disutility (delay) experienced by all users on the path due to
the aggregated flow of all users using some edge of P. Each selfish user wants to choose a minimum-
latency path from her origin to her destination node. The user interaction is modelled by studying
the system in the steady state captured by the classic traffic equilibrium concept [24]. The traffic
equilibrium is characterized by the Wardrop principle: for every origin-destination pair (s;,t;) the
disutility on every used s; — t; path is equal and less than or equal to the disutility on any unused
s; — t; path. Hence, in equilibrium no user has an incentive to unilaterally switch paths. There is
a large literature on traffic equilibria in transportation science, see [19].

Selfish behavior induces inefficiency from the system perspective. Motivated by decentralized
data networks, Koutsoupias and Papadimitriou [13] were the first to propose as a measure of this
inefficiency the worst-possible ratio between the system cost of an equilibrium and of an optimal
routing designed by a central coordinator. This ratio is called the the price of anarchy. In the
context of selfish routing, we define the system (social) cost as the total latency of the users. The
price of anarchy for selfish routing was studied in the seminal paper by Roughgarden and Tardos
[20]. They showed that for linear latency functions the price of anarchy is at most 4/3, and this is
tight. For arbitrary continuous latency functions the price of anarchy is unbounded [20]. Several
other results have pinpointed the price of anarchy p(L) for various families £ of latency functions
[17, 5, 19]. See the recent survey by Roughgarden [15] for a comprehensive overview. Parameterizing
the price of anarchy solely by the latency type is legitimate: under mild assumptions the price of
anarchy is independent of the network topology [17].

These results refer to one extreme of selfish routing, namely to the case where all users are
selfish. The other extreme is the system optimum where all users are coordinated and follow the
predetermined optimal routing. The natural question that arises then is: what happens when
only a fraction of the users are selfish, while the rest follow a predetermined policy? Are there
such policies that can always improve the price of anarchy, given that a non-zero fraction of users
can be coordinated? If so, how does the improvement depend on this fraction? For example, if
the improvement is insignificant even when almost all users are coordinated, then such a policy is
obviously of little value. Issues like these are important for real networks [12], since in general, it is
quite possible that they do not fall in one of the two extremes, but that their users are a mixture of
selfish and coordinated ones. As we shall see, surprisingly little is known for such networks. In fact,
the only case that has been thoroughly studied, even for the case of linear latency functions, is the
case of a network with two nodes connected by a number of parallel links [18]. To our knowledge,
the current work is the first that deals with the issues above for general topology networks, and
with multiple origin-destination pairs for the users (multicommodity case).

Stackelberg routing. Our main results deal with Stackelberg routing, a notion first proposed by
Korilis, Lazar and Orda [12]. An « fraction of the users are coordinated and the rest are selfish.
The coordinated users are controlled by a coordinator who assigns them to routes computed by
an algorithm of choice. This algorithm is the Stackelberg policy. Let f be the corresponding flow
vector output by the algorithm. The remaining 1 — « fraction of the users choose paths selfishly by
taking into account the specified routes of the coordinated users: if the selfish users reach a traffic



pattern x, they experience latency (p(x + f) on a path P. The concept is inspired by Stackelberg
games (see, e.g., [2]) where players are asymmetric and are divided into leaders and followers. The
followers react rationally (in our terms selfishly) to the strategies imposed on them by the leaders.
An important difference between Stackelberg games and Stackelberg routing is that in the former
setting, each leader is selfishly interested in her own individual utility. In Stackelberg routing,
coordinated users aim to improve the social cost.

A given Stackelberg policy ¢ induces an associated equilibrium in which the Wardrop principle
holds for every selfish user. This is a Stackelberg equilibrium. Given a Stackelberg policy o, the
worst-possible ratio between the cost of a Stackelberg equilibrium, and the minimum total latency
is an expression that should depend on «, and we call it the price of anarchy curve of o. For
convenience, we treat the price of anarchy curve interchangeably as a scalar (if one thinks of « as
fixed) and as a function (if one thinks of « as variable). Let £ be the family of latency functions
at hand. Clearly (i) the curve of any policy o passes through the points (0,p(L£)) and (1,1).
Conceivably, for any ‘reasonable’ Stackelberg policy (ii) the curve also has to be a continuous
nonincreasing function of a. We call a curve fulfilling Conditions (i) and (ii) normal.

Previous results on Stackelberg routing. As mentioned above, rather little is known for
Stackelberg routing. Roughgarden [18] defined two natural Stackelberg policies SCALE and Largest
Latency First (LLF). SCALE simply sets the flow on every path equal to « times the optimal
flow foP'. LLF in the context of parallel links orders the links in terms of their latency in the
optimal solution and saturates them one-by-one, from largest to smallest, until there are no centrally
controlled users remaining. Roughgarden [18] not only obtained normal curves for LLF on parallel
links but he also proved the optimality of LLF for such networks with linear latency functions. More
specifically he obtained a 4/(3 + «) price of anarchy for linear latency functions and a 1/« bound
for general latency functions. Both bounds are tight [18]. For non-linear latency functions, there
are examples of four-node networks where it is impossible to achieve the 1/a bound (Proposition
B.3.1 in [16]). On multicommodity networks the performance can be arbitrarily bad for latency
functions with negative coefficients [19], but we do not consider such functions here. Obtaining a
4/3 — € guarantee for linear latencies or a bound weaker than 1/« for general latency functions are
mentioned in [18] and [15], respectively as open problems, even for the single-commodity case.

Our results. This paper establishes for the first time the existence of a normal curve for Stack-
elberg routing with linear latency functions on general multicommodity networks. This should be
contrasted with the earlier results that applied only to the single-commodity parallel links network
[18].

More specifically, we analyze SCALE and a version of LLF which we call strong LLF (cf.

Sec. 2) for linear latency functions. For SCALE, our price of anarchy curve is % — X where
X = U= 1271)£_?;V+1;a+1). See Fig. 2 for a plot. Hence we show that a very simple policy to imple-

ment (SCALE) achieves a very significant improvement of the price of anarchy for the linear latency
case. In view of the simplicity of the policy (SCALE) that achieves such an improvement, it is rather
surprising that virtually no progress has been made since [18] appeared. One possible explanation
is the fact that our analysis examines the network as a whole, and avoids the edge-by-edge bounding
that has been the staple of classic results on the price of anarchy, e.g., [20, 17, 5]. The technical
machinery that makes our approach possible is the analysis of selfish routing by Perakis [14]. We
use the special structure of SCALE in order to relax one of the “hard” constraints that the bound
of [14] needs to satisfy. Moreover, we demonstrate that our upper bound analysis for SCALE is



nearly tight for every «, by giving a set of linear latency functions on the Braess graph for which
SCALE performs very close to our upper bound. More details appear in Section 3. Our analyses of
SCALE and strong LLF can be extended to general latency functions using the concept of Jacobian
similarity [14], a notion adapted from Hessian similarity in interior point methods [22, 14]. The
latter approach, which is outlined in Section 5, has the potential of yielding bounds that are specific
to individual families of latency functions.

For parallel links Roughgarden [18] gives an example where LLF outperforms SCALE. On the
other hand on the instance of the Braess paradox (cf. Section 4), SCALE outperforms LLF.
Finally on our hard example for SCALE (cf. Section 3) which shares the same underlying graph
with the Braess paradox, LLF outperforms SCALE. Hence the two policies are incomparable, in
the sense that no policy dominates the other on all possible inputs. The three types of instances we
described suggest that in order to achieve the best possible curve, both the network topology and
the latency functions matter. Although this appears to be in stark contrast with the independence
of the price of anarchy for selfish routing from the network topology [17], it should not come as
a surprise: Stackelberg routing has an algorithmic component which is lacking from “traditional”
selfish routing.

Selfish routing with tax evasion. The existence of a central coordinator is a rather strong
requirement for a network. A well-studied alternative for mitigating the effects of selfishness goes
back to the origins of traffic equilibria (see [3]): impose monetary taxes (tolls) per-unit-of-flow on
the edges. Selfish users are conscious both of the travel latency and the monetary cost on a path.
It is by now known that such taxes exist even when users are heterogeneous, i.e., they are divided
into classes where each class has a different sensitivity level towards paying taxes [25, 10, 8]. See
also the work in [4].

In the same way Stackelberg routing establishes partial control over the users by centrally coor-
dinating only an « fraction of them, we examine whether similar effects can be achieved when only
an « fraction of the users pay taxes. Equivalently, one can think of the remaining 1 — « fraction of
the users as tax-evaders having a zero sensitivity to taxes. In Section 6 we show that there is a set
of edge taxes so that the price of anarchy obtained is equal to the price of anarchy of the SCALE
policy. As the fraction of law-abiding citizens increases from 0 to 1, the system cost is improved
accordingly.

This work was first published as a McMaster University technical report [11]. Independently
of our work, Correa and Stier-Moses [6] and Swamy [23] have obtained results for general latency
functions. Other recent work on Stackelberg routing includes [9, 21].

2 Preliminaries

A directed network G = (V, E), with parallel edges allowed, is given on which a set of users each
want to route an infinitesimal amount of flow (traffic) from a specified origin to a destination node
in G. Users are divided into k classes (commodities). The demand of class i = 1,...,k, is d; > 0
and the corresponding origin—destination pair is (s;,t;). A feasible vector z is a valid flow vector
(defined on the path or edge space as appropriate) that satisfies the standard multicommodity flow
conventions and routes demands d; for every commodity i. We use feasible flow vectors throughout
the paper to characterize traffic patterns. We use K to denote the (convex) set of all the feasible
vectors. As in [18] we assume separable costs: each edge e is assigned a nonnegative, nondecreasing
latency function l.(f.) that gives the delay experienced by any user on e due to congestion caused



by the total flow f. that passes through e. We also assume the standard additive model: for a path
P, 1p(f) = Yoep le(fe).

Stackelberg policies can be classified as weak or strong [19]. A weak Stackelberg policy controls
demand ad; from each commodity for a parameter a € (0,1). A strong Stackelberg policy gives
more power to the coordinator: he can control as much demand from each commodity as he sees
fit under the condition that the total demand controlled equals « Zle d;. In the single-commodity
case, strong and weak policies coincide.

Let f* be the flow vector of the selfish users and f the strategic flow of the coordinated users. The
additive cost model makes it easy to view our flows sometimes as path flows and sometimes as edge
flows. The system cost of feasible flow z is defined as Y p zplp(x). Let Coy := Y. p(f5o+fr)lp(f*+f)
denote the cost at equilibrium. We denote by f°* a flow that optimizes the system cost and the
optimum itself as Copy, ie., Copt := > p fPF1p(f). The SCALE policy is a weak one defined
by setting f. := af”" for every e. Note that this equivalent to setting fp := afy’ for all paths
P. The strong LLF policy imposes a total order on the paths used by all commodities based on
nondecreasing [ p(f°P!) values and breaking ties arbitrarily. It then saturates paths one by one from
the largest latency to the smallest until the total demand of the controlled users equals « Zle d;.
By saturating a path P, we mean that fp := s " Note that the last path P, in the ordering that
is assigned positive flow may carry less than flofit. P, is assigned as much flow as needed to reach
a total of « Zle d;.

3 Linear latency functions

In this section, we examine the case of linear (or affine) latency functions. That is, for all e,
le(f.) = aefe + be, with ac,be > 0.

A first attempt. Existing upper bounds on the price of anarchy depend to a large extent on
the behavior of the latency function on individual edges. This is what we call the “edge-by-edge”
approach. The definitions of the anarchy value a(£) by Roughgarden [17] and the §(L£) parameter
by Correa et al. [5], where L is a class of latency functions, are particularly revealing in this context.
In order to gain intuition into the problem we initially try an analysis of Stackelberg routing using
similar arguments. We assume that the coordinator uses the SCALE policy. Let 8 = ((L). The
definition of @ implies that for any edge e

FPUFE A Fo) < BUE A+ Fle(f2 + Fo) + FPU(fOP). (1)

We can get a better upper bound when edge e is underutilized by the selfish users. Define an edge
e to be light if f¥ < cf. for a suitable ¢ > 0. An edge which is not light is called heavy. Define
§ € [0,1] such that 32, o fEPUFE) = (1= 6)Copr and 3=, eayy FEUSE) = 6Cipt.

Lemma 1 Let ¢,0 be defined as above. Then for a general network with linear latency functions

and a fraction o of coordinated users, SCALE achieves a price of anarchy C%:t < % [1 — %2(1 — 5)] .

Proof: Since the l.(-) functions are nondecreasing, we have that for the light edges

SR < S P+ f < S FL (R (2)

e light e light e light



under the assumption that «(1 + ¢) < 1. For heavy edges, (1) yields that

SOIPIEAF)SB Y AR T S (). ®)

e heavy e heavy e heavy

For linear latency functions it is well-known that § < 1/4 [5], hence later we will use the value
[ = 1/4. The analysis is affected by the amount of cost that f°P* pays on the light and heavy edges,
respectively. From now on, we make use of the assumption that the edge latency functions are
linear. By summing (2), (3) over all the edges we obtain that

S TFPUFE A fe) S BCeq— B D (fr+ Fle(£7 + fe) + Copt

e e light
< BCeq—Ba” Y fPUFP) + Com
e light
< BCeq + [1 = Ba2(1 = 8)]Copt (4)

where the second inequality is due to the fact that the [.’s are linear and o < 1.
Let f := f°P! — f be the flow that remains if we remove flow f from the optimal flow f°P!. Note

that f is a flow that satisfies demands ciz < d;, for all commodities i =1, ..., k. In the special case,
where f = afop, di = (1 — a)d;, for i = 1,..., k. Then from the variational inequality
Z L(ff + fo)(xe — £) > 0,V = flow that satisfies demands d;,i = 1,...,k (5)
e

that f* satisfies as a traffic equilibrium [7], we get the following for z := f:

Ceg =D (f2+ F)e(fZ + Jo) <D (fe+ FelfF + Fo) = D fPU(fF + T (6)

e

By using (6) in (4), and replacing (3 by 1/4 we get the lemma. O

If § < 1, Lemma 1 yields a normal curve. Hence we would like to have § as small as possible. The
parameter ¢ must satisfy a(c+ 1) < 1, and, by definition, the bigger ¢ is the smaller § potentially
is. Therefore we should pick ¢ := 1770‘

Note, though, that, even with this choice of ¢, it may still be the case that § = 1. In this case,
the bound we have calculated is not better than the classic 4/3 that holds when no Stackelberg
policy is used. The “edge-by-edge” approach led us to believe that, at least for SCALE, the easy
case is when f°P! pays a substantial fraction of its cost on edges that are underutilized by the selfish
users. After completing our upper and lower bound derivations we will have demonstrated instead

that a small § is the difficult case.

An improved upper bound for SCALE. In order to prove our main result for SCALE and
linear latency functions we will have to depart from the approach used above and examine the
network as a whole. If for every edge e, the latency function is of the form l.(fe) = acfe, it is well
known that the price of anarchy is 1. The inefficiency of selfish routing for general affine functions
could be attributed, in a sense, to the existence of load-independent latency terms b, > 0 in some
le() functions. Our analysis exploits the fact that the SCALE and LLF policies decrease the total
influence of these terms on the social cost at equilibrium.



Theorem 1 For general multicommodity networks with linear latency functions and a fraction «
of users coordinated by the SCALE policy, the price of anarchy is bounded as follows

Ceq S%—i where X — (1—\/1—04)(3\/1—04—1—1).

Copt 3 3 2yl —a+1
Proof: A lemma of Perakis [14] provides us with an important tool for our analysis. It was originally
derived to deal with asymmetric and non-separable cost functions. Consider the latency function
as a vector-valued function L : R — R, with L(f) = Gf +b and m = |E|. In our case, G is a
diagonal matrix containing the a.’s and b7 = [b].cp. In this notation Cey = [L(f* + F)IT (f* + f).
(From the proof of Theorem 3 in [14] we can abstract away the following fact, which isolates the
contribution of the flow-dependent part of the latency to the total cost:

Lemma 2 [14] Given the notation above, let f € K be a vector that satisfies [L(f)]T (fopt — f) > 0.

T
G

For any scalars a1,as > 0 that satisfy [ %;T ] > 0 we have that
a

2
JTGT 7 < fTGf + an(f7) TG,

In our case, G is symmetric, and G = 0 since G is a diagonal matrix with entries Gle, e¢] = a. > 0,
for all e € E. In this case, Lemma 2 can be reduced to a more malleable form, which is implicit
in [14]:

Lemma 3 [14] If for all edges e, l.(fe) = acfe + be with ae,b. > 0, then for any ai,as > 0 that
satisfy ajag > 1/4

Cog < ar Y aelfi+ 1)+ a2 > a2 + 3 b fort.

Proof: For every aj,as > 0, we show that the semidefinite constraint of Lemma 2 is equivalent
to the following holding for every 2m-dimensional vector X = [X; XQ]T, where X1, Xo are m-
dimensional vectors:

. alG }—G . X1
A ANE

} >0 aX{GX) + e X GXy — XTI GXy > 0. (7)
2

If a1ae > i, then the following holds for any two numbers x{, z5:

ac - (a1(29)* + az(2%)? — 2fa§) > ac - (Vara§ — Vapa§)® > 0. (8)

By considering the coordinates z§, x§ of X, Xo separately, applying (8) to them, and finally adding
over all edges e, we get (7).
We show that for f = f* 4+ f the second hypothesis of Lemma 2 is also satisfied. By (5)

(L A+ PV (fopt = F) = 1) 2 0 LU+ D (fope — (F* + 1)) 2 0. (9)
Inequality (9) yields that
Ceq = [LUf*+ DI (F* + ) S LU+ N fopr = (F+ T GTFP 46T fope

By using Lemma 2 to upperbound the right-hand side the proof is complete. O



Note that in order to apply Lemma 3 we are free to pick a1, as subject to the constraints of
the Lemma. This is exactly the point where the SCALE policy helps us to get a better bound for
the price of anarchy: while [14] also gets to pick aj,as subject to these constraints and the extra
constraint ao > 1, we will not have to obey the latter constraint. The details of the proof follow.

We rewrite the right-hand side of Lemma 3 in terms of paths:

Ceq<alz fo 4 Fr) Y ac(fi + fo) +CLQZ fort Opt+zfoptzb

ecP ecP eceP
= S5+ ) bt aQZ IS a0 f 4 z 7S (10)

eeP echP echP

Let
= —alz fb 4+ Fp) D b +Zf°pt2b
eeP echP
Then (10) can be written as
(1—a1)Ceq San d fFF'D acfP +A. (11)
P ecP

Since we have assumed that a; > 0 and b, > 0, for all e € E, we get that

A<—alszZb +Z Opthe. (12)

ecP ecP

By the definition of SCALE, we have that on every P, fp = af*. Therefore

A<(I—are)) Y be. (13)
P

ecP
;From Equations (11), (13), if we require that a; < 1, we have that

Ceq < max{ag, 1 — aay}
Copt - 1—ay .

To obtain the best possible price of anarchy we solve the program:

max{az, 1 — aa; }

min
1—CL1
aia >1
12_4
algl

ai,az > 0

By setting

1—+v1—« 1++v1—«

al '= ——————, a3 =
2a ’ 2

all constraints are satisfied (note that a; < %), the two expressions in the max of the objective
function become equal, and Theorem 1 follows. |



Figure 1: The Braess paradox instance.

A nearly tight example for SCALE. Consider the graph of the Braess paradox (Fig. 1). This
is a directed graph with four vertices s,¢,u,v and five edges (s,u), (u,t), (u,v), (s,v), (v,t). There
is a single commodity to be routed from s to ¢ of total demand 1. We set the latency of edge
(u,v) to be identically equal to zero. For the other edges we define a latency function /(x) which

is parameterized by a. For (s,u), (v,t) the latency is % V\I/%:c, and the remaining two edges
have latency x + 27277 V;/?Ta One can verify that in the optimal solution the upper and lower
a+6v1-a

paths carry flow 1/2 each, therefore Cyp = % + —a-2via)" In the Stackelberg equilibrium the

coordinated users push a/2 units of flow along each of the paths s —u —t and s — v — t. The

selfish users push 1 — « units of flow along the path s —u — v — t. The resulting price of anarchy is
2a—a?—2a/1—a+4/1—a
1+2v/1-a
upper bound (this maximum gap happens for & = 0.81...). See Fig. 2.
Recall the quantity § we defined earlier. In the example just produced, one can verify that the

fraction of C,, that is paid on the heavy edges (s, u), (v,t) is gjji\/— Vi:z, which for every o € [0, 1] is

, and this lower bound is at most an additive factor of 0.0323 away from our

less than 1/2. Moreover, in the case where ¢ is at least some constant fraction, one can modify the
proof of Theorem 1 to obtain an improved price of anarchy. In particular, the right-hand side of
(11) can be written as a sum of two parts, one for the heavy edges and one for the light ones. The
use of the additive model makes easy the transition from a a sum over paths to a sum over edges
and vice versa.

(1—a1)Ceg S an Y alfPP+An+as Y ac(f)?+ A, (14)
e heavy e light
where ~
Api=—a1 > (fi+fobe+ Y [P
e heavy e heavy
and

Ari=ar > (fi+fobe+ > fPbe

e light e light

For the contribution of the light edges to the right-hand side of (14) one proceeds as before by
using that f > 0, while for the contribution of the heavy edges one uses that fJ > cf.. The



max{az,1—a1 (ac+a)}d+max{az,1—aai }(1-0)
1—a1

the constraints ajas > %, a1 <1, ai,ae > 0. The quantity ¢ > 0 is the one from the definition of

the light edges.

By the preceding arguments and the plot in Fig. 2 we conclude that SCALE hits its worst-case
performance when ¢ is rather small. This occurs when the optimal solution pays most of its cost
on the light edges, i.e., edges that are underutilized by the selfish users. Natural as this insight is,
it appears to contradict the bound of Lemma 1 which was obtained by the edge-by-edge approach.
The apparent contradiction is resolved when one notices that the bound of Lemma 1 is a weak
one: even for § = 0, it is larger than the bound of Theorem 1 for all o < 0.919 and becomes only
marginally better for larger values of a.

improved upper bound is obtained by minimizing subject to

An upper bound for strong LLF. Let a path be good if it is used by the coordinated users
as dictated by strong LLF. Therefore, path P is good iff fp > 0. Paths that are not good are
called bad. There is a A € [0,1] such that 3 p pag fZ [ e p(@cf& + be)] = (1 — X)Copy and

ZP good flgpt[zeep(aefopt +be)] = ACopt-

Theorem 2 Let \ be defined as above. Then for general multicommodity networks with linear
latency functions and a fraction o of users coordinated by the strong LLF policy, the price of
anarchy is bounded as follows:

Co (b, Tl
Con = | 5ovoome WAE1

Proof: By decomposing the right hand side of (12) into two parts, one for the good and one for
the bad paths, we get

A<—ar > fpY bet D fEY be—ar D fpY bet > D be (15)

P good  e€P P good ecpP P bad e€P P bad ecpP

Under the LLF policy, all good paths P but one are saturated, meaning f&* = fp. We can
replace the offending path II (i.e., the one on which 0 < fij < i t ) by two copies of the same path
in the flow decomposition of P!, both with the same latency. One copy gets flow fi out of a total
of 77" and is included in the set of good paths, and the other copy gets the rest fi¥' — fr and is
included in the bad paths. With this new path set, all good paths are saturated, i.e., f&" = fp.
All of the above can be seen as just a change of the set of indices used in the ) notatlon for the
paths P of flow f°P!. We use this new set of indices (decomposition) of P! from now on. Then

Z f_PZbe+ Z f]gptzbe:(l_al) Z f]gptzbea
P good e€P P good ecP P good eeP
and (15) becomes

A<(T—ar) > &Y be—ar > fpd> bet Y D b (16)

P good eeP P bad e€P P bad eeP

Recall that on a bad path P, fp = 0. If in addition we require that as < 1, equations (11), (16)
yield

(1—a1 C€q<a22foptza€fopt 1—a1 Z foptzb + Z foptzbe

P ecP P good ecP P bad ecP



< DD (acfP 4 be)] + maxfas, 1 —ar} > FED (@ f + be)

P bad e€P P good ecP
which, in turn, implies that

Ceq < 1 — A+ max{az,1 — a1 }A
Copt - 1 — aq '

(17)

We will pick aq,as, subject to all the constraints on them we have assumed so far, so that we

get the smallest possible upper bound on the price of anarchy from (17 ).

(1 a2)>\

First we assume that ay > 1 — a; and therefore (17) implies that ‘Z’ <1 . Hence we

1—(1—a2)\

=
would like to minimize i subject to the constraints as > 1 — a1, ajas > i O <aj,ay <1.

For the case A € [$,1] the minimum is achieved by picking a; := 7%‘, ay = 4L while for
A€o, %) the minimum is achieved by picking a; := %, as = 1.

If we assume that as < 1 —ay, then we do not get a better upper bound. Therefore our analysis
of LLF yields the upper bounds given in the statement of Theorem 2. O

Since LLF picks the most expensive paths of fo to saturate, and f satisfies a fraction o of the
overall demand, we have that A > a (note that in the definition of \ above, each flow path in the
decomposition pays the latency of the path due to the whole flow through the edges of the path).
The upper bound for the price of anarchy computed above is a decreasing function of A\, hence we
can replace A with « in it, and still get valid upper bounds that depend only on . If A > « our
analysis yields a price of anarchy bound that is even better.

4 Plots

In this section, we provide various plots of the curves for the linear latency functions mentioned
earlier. All the plots were obtained using Gnuplot. Our hard example of Section 3 was a modifica-
tion of the Braess paradox instance. The exact Braess paradox instance (see Fig. 1) is defined on
the same underlying four-node network but with the following latency functions. On edge (u,v)
the latency is identically equal to zero; on edges (s,u), (v,t) I(z) = = and on the remaining edges
[(x) = 1. The source is s, the destination is ¢, and the demand to be routed is 1. One can easily
verify that on this instance the price of anarchy curve of SCALE is 4/3 — (1/3)(2a — o?). For LLF,
both paths used by the optimum solution have equal latency. Regardless of tie breaking, the curve
of LLF is 4/3 — (1/3)(2a — 2a?) for a < 1/2 and 4/3 — (4a/3 — 2% /3 — 1/3) for o > 1/2.

Figure 2 shows the upper and lower bounds we obtained in Section 3. Figure 3 shows our
LLF upper bound when A = 1 in Theorem 2 and the corresponding lower bound obtained from
the Braess paradox. Finally, Figure 4 compares the existing lower bounds for the two policies on
general networks, by drawing their performance on the Braess paradox defined in the previous
paragraph. For comparison reasons, in the same plot we also give the performance of SCALE in
our nearly tight example from Section 3. Note that the latter is a significantly stronger lower bound
for SCALE than the lower bound obtained by the performance of the policy on the Braess paradox
instance defined above.

It is worth remarking that there is a value of a for which our upper bound for SCALE from
Section 3 is very close to the lower bound for both policies. For a = 1/2 our upper bound is within
an additive 0.027 factor from 7/6 which is the performance of LLF on the Braess paradox instance.
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Figure 2: Our upper and lower bounds for SCALE, as obtained in Section 3 plotted as functions
of the fraction « of the users that are coordinated.
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Figure 3: Our upper bound for strong LLF, as obtained in Section 3, under the further assumption
that A = a. The lower bound is the exact performance of LLF on the instance of the Braess paradox.
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Figure 4: The performance of the SCALE policy on our hard instance from Section 3 vs. the
performance of the LLF and SCALE policies on the instance of the Braess paradox. Observe that
SCALE outperforms LLF on the latter instance.

5 General latency functions

The analysis of the linear case can be extended to general latency functions that satisfy certain
properties. Recall the vector-valued function notation L() for the latency function. According to
Perakis [14], L(z) satisfies the Jacobian similarity property if it has a positive semidefinite Jacobian
matrix (VL(z) = 0, for every z € K) and for all w € R™, for all z,z € K, there exists A > 1
satisfying
1
A
The concept of Jacobian similarity originates from the Hessian similarity notion in interior point
methods (see e.g., [22]). The value A is known to be independent of the matrix dimension, for
positive definite VL(zx). If the Jacobian matrix is strongly positive definite, i.e., it has eigenvalues
bounded away from zero, then A is upper-bounded by

w!' VL(z)w < w' VL(Z)w < Aw? VL(z)w.

maxXge k' Amaz (S())
minge g Apin(S(2))

)

where S(z) = YEEHVL@T gt [(4) = Go + b with G = 0, then A = 1 [14].

In our case, VL(z) is a diagonal matrix with the diagonal entry corresponding to edge e being
equal to %. Such a matrix is positive semidefinite if these derivatives are nonnegative for all
2 € K. This is the natural and common assumption that the latency functions are increasing.
Therefore our results below will assume only that the latency functions are increasing.

Generalizing the earlier remarks on the affine case we can abstract the following from Perakis

[14]:

12



Lemma 4 [14] If (i) for all edges e, l.(f.) is a continuously differentiable function with % >0,
and 1.(0) > 0 for all f € K and (i) the matrix VL(x) satisfies the Jacobian similarity property for
some A > 1, then

Ceg € a1 AY (fE+ Flle(f2 + Jo) = 1e(0)] + Copt + (a2 — 1) AZf‘”mt (&) = 1(0)]

for any ay,as > 0 that satisfy ajag > 1/4.
We can define Z := —a1AY",(f5 + fo)le(0) + 32, f&'1.(0), and the lemma yields that
(1= @ A)Ciq < [l = DA+ TP ~1l0) + 2 (18)

For the SCALE policy Z < (1 — aa; A) Y, f&71.(0), and therefore we can obtain that
(1 —Aa1)Ceq < [(az —1)A+1]Copr — A(var +az — 1) Z 1P, (0).

e

under the conditions ajas > 1/4, a; < 1/A, ay,a9 > 0.
We distinguish two cases:

1. «aq 4+ ao > 1: In this case, we have that
(1 — Aal)Ceq < [(CLQ — 1)14 + 1]Copt'

Hence we are looking for a1, as that solve the following minimization problem:

aal +as >1

1
ajaz > 1

1
CL1<—

D>

ai,az >0

If we set ag = 1/4a; then we must have that

gé(l_m 1+vV1-—a
a

2a ’ 2a
The objective function is increasing for

— A% +4(1 A+ A2 4+ 4(1 - A)

4(A— 1) 4A-1)
A—/A%2+4(1-A) < 1—vi—a
4(A-1) — 20

).

al €

and decreasing for the other values of a; in [0, 1) If , then we set

_ A-/AZ11(1-4A) . — 1-vi-a
= G otherwise we set ay : o

H

If we set as = 1 — @aq, then we must have

1-vVl—a 14++vV1—«
a1 € 20 ’ 20 )
If 1_2Va1_0‘ < % then we set a1 := 1_2Va1_o‘, else the problem is infeasible. So this case does

not add something new to the previous bound.
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2. aay + ap < 1: In this case, since [.(0) < I,(f&"), for all e € E, we have that
(1= Aa1)Ceq <1 — Aaai]Cop.

Hence we are looking for a1, as that solve the following minimization problem:

.1 — Aaay ¢
min ——  s.t.
1-— Aa1

aay +az <1

This case produces the same bounds as the previous one.

Hence we get the following theorem for general (increasing) latency functions and the SCALE
strategy:

Theorem 3 Let A > 1 be the Jacobian similarity property parameter for the latency functions
matriz L(x), and a the coordinated fraction of flow that follows the SCALE strategy. Then the
price of anarchy is upper-bounded as follows:

Ceq < A + 4(1 - A)a1
Copt - 4a1(1 — Aal)

where
=" \/A +4(1 D < 1Y=a e gy = AV AHOY W,
o AT A gy 1y

Note that the bound of Theorem 3 depends only on the family of latency functions (through A)
and «. Also observe that for A slightly greater than 1, part 1 of Theorem 3 holds. In that case,
the bound depends only on A. For the case A = 1, it is easy to see that the analysis coincides with
the analysis of the linear latency functions case.

6 The effect of tax evasion on networks

So far we have assumed that the network is subject to a central coordinating authority that can
decide the routing of a fraction « of the overall traffic, while allowing the rest to act selfishly. In
this section, we explore whether the same effects can be achieved when no such central authority
erists, i.e., there is no notion of leader and follower in the Stackelberg sense. Instead we wish to
use taxes (tolls) on the edges of the network assuming that all users are selfish but an « fraction
of them are still law-abiding tax-paying citizens. The remaining 1 — « fraction does not believe in
paying taxes. In this section, we show that such taxes do exist.

We assume throughout the section that the latency functions l.() are continuous, increasing and
take only nonnegative values. The flow for every origin-destination pair (commodity) i = 1,...,k
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of rate d; in the network is split into two parts: f° corresponds to the set of tax-payers with
rate ad; and f? corresponds to the set of tax-evaders with rate (1 — a)d;. The tax payers can
be heterogeneous: they attach an importance factor a(i) > 0 to their disutility due to taxation.
Let fe:=>; fife = > fi, for all e. We are looking for the existence of nonnegative edge taxes
be, for all e € E, such that for every commodity i (i) the tax-paying users f’ perceive edge costs

le(fe + feo) +a(i) - be, for all e € E, (ii) the tax-evaders f? perceive edge costs l¢(f. + fe), and (iii)
the b.’s are such that the tax-payers are forced to implement the SCALE policy. The latter means
that at the traffic equilibrium we must have

k
S Fi=af, Ve e . (19)
=1

A key observation is that if, in addition, we assume that all latency functions l.(-) are strictly
increasing, then conditions (19) are equivalent to

Z fi<afr YeeE. (20)

We prove this similarly to Claim 1 in [10]. Assume for the sake of contradiction that some inequal-
ities in (20) are strict. Define the flow f/a, by routing for each commodity i, flow equal to f/a.
Then for every edge e, f./a < f&, and l.(f./o) < L.(f&P'). By nonnegativity,

(fo/)le(fe/a) < fOPUL(fOPY),Ve € E.

If for some edge e, fo/a < f&, it follows that 0 < lo(fo/a) < Lo(f&"). Therefore for this particular
edge
(fe/a)le(fe/a) < fEPL(FE7).
It follows that 3, p(fe/@)le(fe/@) < X ocpm FEP U (F), which contradicts the optimality of foPL.
We use the framework of [1, 10] to incorporate constraints (20) into a complementarity problem
that describes the traffic equilibrium in our case. The complementarity problem (CP) is defined by
constraints (21)-(31):

O = (feJrO‘fe + ) be - Vi, VP € P; (21)
ecP ecP
f}‘:(Z le(fe + af) —u;) = 0 Vi, VP € P; (22)
ecP
opt
Z%%—Zbezui Vi, VP € P; (23)
ecP ecP
D le(fot afP) > u; Vi, VP € P; (24)
ecP
w( Y fb—oad)=0 Vi (25)
PEP;
wi( Y fp—(1—a)d;) =0 Vi (26)
PeP;
Y fezad Vi (27)
PeP;
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pr (1 —a)d; Vi (28)

PeP;
Zfz— afPt) = Vec E (29)
Zfé <af*  VeeE (30)
fﬁ?f%7b67uiaﬂi Z 0 VP, €7i (31)

To provide intuition we describe briefly the meaning of the constraints of (CP). For details the
reader is referred to [1, 10]. (CP) defines two traffic equilibria that must be reached simultaneously.
Constraints (21), (23), (25), (27), (29), (30) express the equilibrium problem for the tax-payers and
constraints (22), (24), (26), (28) the equilibrium problem for the tax-evaders. Let us take a closer
look at the equilibrium problem for the tax-payers. Constraints (21), (23) express the Wardrop
principle. The variable u; is the common disutility experienced by all tax-evaders who belong to
commodity . Constraint (27) enforces that tax-payers in user class i satisfy rate at least ad;. If they
satisfy a rate strictly greater than ad;, this comes for free since by Constraint (25) @; must be zero.
In [1] it is shown that these constraints form an exact formulation of the traffic equilibrium problem
for the tax-evaders. Constraints (30) enforce (20). The Lagrange multipliers b, for (30), appearing
n (29), will be the desired taxes. Similar considerations apply to the equilibrium problem for the
tax-evaders except of course that for them there are no “capacity” constraints like (30).

To prove the existence of the tax vector b with the properties (i)-(iii) described above, it is
enough to show that (CP) has a solution.

By using the fact that a.fe”" is a known constant for every edge e when fo is known, it follows
from [1] that the complementarity problem (CP’) below with variables f&, u; has a solution (f*,u*):

FoO le(fe+ afP) —ui) =0 Vi, VP € P;
ecP
> lo(fe + aft) > u Vi, VP € P; (CP')
ecP
wi( Y fo—(1—a)d;) =0 Vi
PeP;
Z fp (1 —a)d; Vi
PeP;
fhsu; >0 VP,e,i

In turn, by using the arguments from the proof of Theorem 2 in [10] we can show that the following
complementarity problem (CP”) with variables flij, be, u; 18 equivalent to pair of primal and dual
linear programs and also has a solution (f*,b*,a*):

* opt
oy et (f + af )4 S b — @) = Vi, VP € P;
ecP ecP
* opt
yoede e 2 (f +O‘f ) N hsa Vi, VPeEP, (CP")
ecP eeP
’L_LZ(Z f}—adi =0 V1
PeP;
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Y fb>ad; Vi

PeP;

be(D fi—afP)=0 Veek
Zfé <af'Vec E
fh be,ti; >0 VP, e,i

Now it is clear that (f*, f*,b*,u*, @*) is a solution of (CP), and we can use taxes b} on each edge e to
induce the tax-payers to follow the SCALE policy. Then all our results about the effects of SCALE
hold also for this setting. If the latency functions are non-strictly monotone, we have obtained
that there exists one tax-induced equilibrium in which the tax-paying users implement the SCALE
policy [1, 10]. If the latency functions are strictly monotone, in every tax-induced equilibrium the
tax payers implement SCALE [1, 10]. We summarize our findings in the next theorem.

Theorem 4 Let x. be the total flow through edge e for some traffic assignment. If for all e € E,
the functions l.() are strictly monotone, and l.() > 0, there is a b € R‘f‘ such that if an o fraction
of the users (called the taz-payers) experiences edge disutility

le(ze) + a(i) - be, Ve € E,

while the rest experience disutility l.(x.), for all e € E, then the tax payers induce in equilibrium
the flow vector af°P'. Here f°P' is the flow that minimizes the system cost > pxplp(z).

7 Discussion

Perakis [14] derives the price of anarchy for non-separable asymmetric latency functions. Therefore
our results from Section 3 are bound to extend to that setting as well.

There are several issues that are left open. Can one get a strictly decreasing curve for LLF?
Moreover the difference between the upper and lower bounds for LLF is currently considerable.
For SCALE it would be interesting to close the rather small gap that exists between our upper and
lower bounds. It would be interesting also if one could determine the instances on which SCALE
outperforms LLF and vice versa. Finally, and perhaps more importantly, is there an optimal
Stackelberg strategy for general multicommodity networks?
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