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1 Introduction

Finding disjoint paths in graphs is a problem that has attracted considerable attention from at least three

perspectives: graph theory, VLSI design and network routing/flow. The corresponding literature is extensive.

In this chapter we limit ourselves mostly to results on offline approximation algorithms for problems on

general graphs as influenced from the network flow perspective. Surveys examining the underlying graph

theory, combinatorial problems in VLSI, and disjoint paths on special graph classes can be found in [35, 36,

86, 88, 76, 83, 75, 51].

An instance of disjoint paths consists of a (directed or undirected) graph G = (V, E) and a multiset

T = {(si, ti) : si ∈ V, ti ∈ V, i = 1, . . . , k} of k source-sink pairs. Any source or sink is called a terminal. An

element of T is also called a commodity. One seeks a set of edge- (or vertex-)disjoint paths P1, P2, . . . , Pk,

where Pi is an si−ti path, i = 1, . . . , k. In the case of vertex-disjoint paths we are interested in paths that are

internally disjoint, i.e., a terminal may appear in more than one pair in T . We abbreviate the edge-disjoint

paths problem by Edp. The notation introduced will be used throughout the chapter to refer to an input

instance. We will also denote |V | by n and |E| by m for the corresponding graph.

Based on whether G is directed or undirected and the edge- or vertex-disjointness condition one obtains
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four basic problem versions. The following polynomial-time reductions exist among them. Any undirected

problem can be reduced to its directed counterpart by replacing an undirected edge with an appropriate

gadget; both reductions maintain planarity. See [78] and [88, Chapter 70] for details. An edge-disjoint

problem can be reduced to its vertex-disjoint counterpart by replacing G with its line graph (or digraph as

the case may be). Directed vertex-disjoint paths reduce to directed edge-disjoint paths by replacing every

vertex with a pair of new vertices connected by an edge. There is no known reduction from a directed

to an undirected problem. The reader should bear in mind these transformations throughout the chapter.

They can serve for translating approximation guarantees or hardness results from the edge-disjoint to the

vertex-disjoint setting and vice versa.

The unsplittable flow problem (Ufp ) is the generalization of Edp where every edge e ∈ E has a positive

capacity ue, and every commodity i has a demand di > 0. The demand from si to ti has to be routed in an

unsplittable manner, i.e., along a single path from si to ti. For every edge e the total demand routed through

that edge should be at most ue. We will often refer to a capacitated graph as a network. In a similar manner

a vertex-capacitated generalization of vertex-disjoint paths can be defined. Ufp was introduced in the PhD

thesis of Kleinberg [51]. Versions of the problem had been studied before though not under the Ufp moniker

(see, e.g., [22, 6]).

If one relaxes the requirement that every commodity should use exactly one path, one obtains the

multicommodity flow problem which is well known to be solvable in polynomial time. When all the sources

of a multicommodity flow instance coincide at a vertex s and all the sinks at a vertex t, we obtain the classical

maximum flow problem to which we also refer to as s-t flow. The relation between Ufp and multicommodity

flow is an important one to which we shall return often in this survey. We will denote a solution to either

problem as a flow vector f, defined on the edges or the paths of G as appropriate.

1.1 Complexity of disjoint-path problems. For general k all four basic problems are NP -complete.

The undirected vertex-disjoint paths problem was shown to be NP -complete by Knuth in 1974 (see [49]),

via a reduction from SAT, and by Lynch [71]. This implies the NP -completeness of directed vertex-disjoint

paths and directed edge-disjoint paths. Even, Itai and Shamir [30] showed that both problems remain NP -

complete on directed acyclic graphs (DAGs). In the same paper the undirected edge-disjoint paths problem
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was shown NP -complete even when T contains only of two distinct pairs of terminals. In the case when

s1 = s2 = . . . = sk all four versions are in P as special cases of maximum flow. For planar graphs Lynch’s

reduction [71] shows NP -completeness for undirected vertex-disjoint paths; Kramer and van Leeuwen [65]

show that undirected Edp is NP -complete. The NP -completeness of the directed planar versions follows.

For fixed k, the directed versions are NP -complete even for the case of two pairs with opposing source-

sinks, i.e., (s, t) and (t, s) [34]1. Undirected vertex-disjoint paths, and by implication edge-disjoint paths as

well, can be solved in polynomial time [84]. This is an outcome of the celebrated project of Robertson and

Seymour on graph minors. See [13] for an informal description of the highly impractical Robertson-Seymour

algorithm. It is notable that for fixed k, vertex-disjoint paths, and by consequence Edp, can be solved

on DAGs by a fairly simple polynomial-time algorithm [34]. Earlier polynomial-time algorithms for k = 2

include the one by Perl and Shiloach on DAGs [78] and the ones derived independently by Seymour [89],

Shiloach [91] and Thomassen [102] for vertex-disjoint paths on general undirected graphs.

For planar graphs and fixed k the directed vertex-disjoint path problem is in P [87] while the complexity

of the edge-disjoint case is open. When the input graph is a tree, Garg, Vazirani and Yannakakis gave a

polynomial-time algorithm to maximize the number of pairs that can be connected by edge-disjoint paths

[41]. The algorithm extends for vertex-disjoint paths [N. Garg, personal communication, July 2005]. By total

unimodularity, the Edp maximization problem is polynomial-time solvable on di-trees as well, i.e., directed

graphs in which there is a unique directed path from si to ti, for all i; a reduction to a minimum-cost

circulation problem is also possible in this case (cf. [23]). Reducing directed vertex-disjoint paths to Edp

maintains the di-tree property, hence the former problem is in P as well. Observe that directed out- and

in-trees are special cases of di-trees.

Our presentation will focus mostly on Edp and its generalization to edge-capacitated Ufp . We will switch

explicitly to vertex-disjoint paths when necessary. Approximation algorithms for vertex-disjoint paths are

typically obtained by modifying appropriately algorithms for the edge-disjoint case.

1The NP -completeness proof holds for a sparse graph with m = Θ(n); this observation has consequences for hardness of

approximation proofs in [44, 7]
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1.2 Optimization versions. Two basic NP -hard optimization problems are associated with unsplittable

flow and hence with Edp. Given a Ufp instance an unsplittable flow solution or simply a routing is a selection

of k′ ≤ k paths, one each for a subset T ′ ⊆ T of k′ commodities. Any routing can be expressed as a flow

vector f ; the flow fe through edge e equals the sum of the demands using e. A feasible routing is one that

respects the capacity constraints. In the maximum demand optimization problem one seeks a feasible routing

of a subset T ′ of commodities such that
∑

i∈T ′ di is maximized. The congestion of a routing f is defined

as maxe∈E{max{fe/ue, 1}}. Note that the events fe < ue and fe = ue are equivalent for this definition. In

the minimum congestion optimization problem one seeks a routing of all k commodities that minimizes the

congestion, i.e., one seeks the minimum λ ≥ 1 such that all k commodities can be feasibly routed if all the

capacities are multiplied by λ. From now on, when we refer to Edp without further qualification we imply

the maximum demand version of Edp. Some other objective functions of interest will be defined in Section 3.

1.3 Main threads. We present now some of the unifying themes in the literature on approximation

algorithms for disjoint-path problems.

LP-rounding algorithms. As mentioned above, multicommodity flow is an efficiently-solvable relaxation

of Edp. Hence it is no accident that multicommodity flow theory has played such an important part

in developing algorithms for disjoint-path problems. This brings us to the standard linear programming

formulation for multicommodity flow. Let Pi denote the set of paths from si to ti. Set P :=
⋃k

i=1 Pi.

Consider the following linear program (LP) for maximum multicommodity flow:

maximize
∑

P∈P

fP (LP-MCF)

∑

P∈Pi

fP ≤ di for i = 1, . . . , k

∑

P∈P : P3e

fP ≤ ue for e ∈ E

fP ≥ 0 for P ∈ P

The number of variables in the LP is exponential in the size of the graph. By using flow variables defined on

the edges one can write an equivalent LP of polynomial size. We choose to deal with the more elegant flow-

path formulation. Observe that adding the constraint fP ∈ {0, di}, ∀P ∈ Pi, to (LP-MCF) turns it into an
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exact formulation for maximum demand Ufp. A similar LP, corresponding to the concurrent flow problem,

can be written for minimizing congestion. See [104] for details. We call an LP solution for the optimization

problem of interest fractional. Several early approximation algorithms for Ufp, and more generally integer

multicommodity flow, work in two stages. First a fractional solution f is computed. Then f is rounded to

an unsplittable solution f̂ through procedures of varying intricacy, most commonly by randomized rounding

as shown by Raghavan and Thompson [82]. The randomized rounding stage can usually be derandomized

using the method of conditional probabilities [28, 95, 81]. The derandomization component has gradually

become very important in the literature for two reasons. First, through the key work of Srinivasan [98, 96]

on pessimistic estimators, good deterministic approximation algorithms were designed even in cases where

the success probability of the randomized experiment was small. See [97, 11] for applications to disjoint

paths. Second, in some cases the above two-stage scheme can be implemented rather surprisingly without

solving first the linear program. Instead one designs directly a suitable Langrangean relaxation algorithm

implementing the derandomization part. See the work of Young [105] and Chapter R-2 in this volume.

We note that some of the approximation ratios obtained through the LP-rounding method can nowadays

be matched (or surpassed) by simple combinatorial algorithms. By combinatorial one usually means algo-

rithms restricted to ordered ring operations as opposed to ordered field ones. Two distinct greedy algorithms

for Edp were given by Kleinberg [51] (see also [55]), and Kolliopoulos and Stein [62] (see also [57]). Most of

the subsequent work on combinatorial algorithms uses these two approaches as a basis. Still the influence

of rounding methods on the development of algorithms for disjoint-path problems can hardly be overstated.

See Chapters 6 and 7 in this volume for further background on LP-based approximation algorithms.

Approximate max-flow min-multicut theorems. One of the first results on disjoint paths and in fact one of the

cornerstones of graph theory is Menger’s Theorem [74]: an undirected graph is k vertex-connected if and

only if there are k vertex-disjoint paths between any two vertices. The edge analogue holds as well and the

min-max relation behind the theorem has resurfaced in a number of guises, most notably as the max-flow

min-cut theorem for s-t flows. Let G = (V, E) be undirected. For U ⊆ V, define δ(U) := {{u, v} ∈ E : u ∈

U and v ∈ V \U}. Similarly dem(U) is the sum of all demands over commodities which are separated by the

cut δ(U). A necessary condition for the existence of a feasible fractional solution to (LP-MCF) that satisfies
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all demands is the cut condition:

∑

e∈δ(U)

ue ≥ dem(U), for each U ⊆ V.

For s-t flows, the max-flow min-cut theorem [33, 38, 27] states that the cut condition is sufficient. For

undirected multicommodity flow, Hu showed that the cut condition is sufficient for k = 2 [45]. It fails in

general for k ≥ 3. For directed multicommodity flows there are simple examples with k = 2, for which the

directed analogue of the cut condition holds but the demands cannot be satisfied fractionally (see, e.g., [88]).

For undirected Edp, already for k = 2 the cut condition is not sufficient for a solution to exist [35].

Starting with the seminal work of Leighton and Rao [68] a lot of effort has been spent on establishing

approximate multicommodity max-flow min-cut theorems. A multicut in an undirected graph G = (V, E)

is a subset of edges F ⊆ E, such that if all edges in F are deleted none of the pairs (si, ti) i = 1, . . . , k

are in the same connected component of the remaining graph. Garg, Vazirani and Yannakakis [40] showed

constructively that the minimum multicut is always at most O(log k) times the maximum multicommodity

flow and this is existentially tight. See [92, 104, 24] for surveys of the many results in this area and their

applications to approximation algorithms. Most of this work focused originally on fractional flows. The

methods were versatile enough to extend to Ufp, typically yielding results that were also obtainable via

randomized rounding. See, e.g., the discussion on the high-capacity Ufp in Par. 3.1 below. Moreover this

body of work contributed significantly to the intellectual climate that spawned, among other currents in

approximation algorithms, the renewed interest in disjoint paths. This research produced also increased

interest in the efficient solution of multicommodity flow problems via combinatorial approximation schemes,

thereby producing fast algorithms for solving disjoint-path relaxations. Such approximation schemes had

been first investigated by Shahrokhi and Matula [90]. The running time was significantly improved in [50]

with extensions and refinements following in [67, 42, 80]. Extensions of these methods to general fractional

packing/covering problems were first pursued in [43, 79]. A representative sample of subsequent work on

fractional multicommodity flow and related problems can be found in [105, 39, 32, 47, 12].

Finally, one should acknowledge the influence of the PhD thesis of Kleinberg [51] on solidifying the various

strands of work on disjoint-path problems up to the mid 90s. The results in [51] gave impetus to new research

and the thesis itself is a valuable reference tool for earlier work.
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The outline of this chapter is as follows. In Section 2 we present hardness of approximation results and

(mostly greedy) algorithms for Edp. In Section 3 we examine the more general Ufp problem, properties

of the fractional relaxation and packing integer programs. Finally in Section 4 we present results on some

variants of the basic problems. Unless mentioned otherwise, all of the approximation algorithms we will

describe in the upcoming sections work equally well on directed and undirected graphs.

2 Algorithms for edge-disjoint paths

In this section we examine the problem of finding a maximum-size set of edge-disjoint paths, mostly from

the perspective of combinatorial algorithms. We defer the discussion of the LP-rounding algorithms and the

integrality gaps of the linear relaxations until Section 3, where we examine them in the more general context

of Ufp. Similarly for some key results on expander graphs and hardness bounds particular to Ufp.

2.1 Hardness results. Guruswami et al. [44] showed that on directed graphs it is NP-hard to obtain an

O(n1/2−ε) approximation for any fixed ε > 0. They gave a gap-inducing reduction from the two-pair decision

problem to Edp on a sparse graph with Θ(n) edges. Since this Edp problem reduces to a vertex-disjoint

path instance on a graph with N = Θ(n) vertices, we obtain that is NP -hard to approximate vertex-disjoint

paths on graphs with N vertices within O(N 1/2−ε), for any fixed ε > 0. Ma and Wang [72] showed via the

PCP theorem that it is NP -hard to approximate Edp on directed graphs within O(2log1−ε n), even when the

graph is acyclic. See Chapter R-14 in this volume for background on the PCP theorem and the theory of

inapproximability. For the undirected edge-disjoint path problem Andrews and Zhang [4] showed that there

is no O(log1/3−ε n) approximation algorithm unless NP ⊆ ZPTIME(npolylog(n)). ZPTIME(npolylog(n))

is the set of languages that have randomized algorithms that always give the correct answer in expected

running time npolylog(n). The lower bound was improved to Ω(log1/2−ε n) in [2], under the same complexity-

theoretic assumption. Even when congestion C > 1 is allowed, [2] shows that the maximization version is

logΩ(1/C) n-hard to approximate. Edp on undirected graphs was shown MAX SNP-hard in [41].

2.2 Greedy algorithms. The first approximation algorithm analyzed in the literature for Edp on general

graphs seems to be the online Bounded Greedy Algorithm (BGA) in the PhD thesis of Kleinberg [51]; see
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also [55]. The algorithm is parameterized by a quantity L. The terminal pairs are examined in one pass.

When (si, ti) is considered, check if si can be connected to ti by a path of length at most L. If so, route

(si, ti) on such a path Pi. Delete Pi from G and iterate. To simplify the analysis we assume that the last

terminal pair is always routed if all the previous pairs have been rejected.

The idea behind the analysis of BGA [51] is very simple but it has influenced later work such as [62], [64]

and [15]. Informally it states that in any graph there cannot be too many long paths that are edge-disjoint.

In [51] the algorithm was shown to achieve a (2L + 1)-approximation if L = max{diam(G),
√

m}. Several

people quickly realized that the analysis can be slightly altered to obtain an O(
√

m)-approximation. We

provide such an analysis with L =
√

m. The first published O(
√

m) approximation for Edp was given by

Srinivasan using LP-rounding methods [97].

Let O be a maximum-cardinality set of edge-disjoint paths connecting pairs of T . Let B be the set of

paths output by BGA and Ou ⊂ O be the set of paths corresponding to terminal pairs unrouted by the

BGA. We have that

|O| − |Ou| = |O \ Ou| ≤ |B|. (1.1)

One tries to relate |Ou| to |B|. This is done by observing that a commodity l routed in Ou was not routed in

B because one of two things happened: (i) no path of length shorter than L exists or (ii) the existing paths

from sl to tl were blocked by (intersect on at least one edge with) paths selected earlier in B. The paths in

Ou can thus be partitioned into the two corresponding subsets O1 and O2. O1 contains paths blocked by a

path in B and has size at most L|B|, since the elements of B are edge-disjoint paths of length at most L.

The second set O2 := Ou \ O1, consists of disjoint paths longer than L, hence |O2| < m/L. Therefore

|Ou| <
m

L
+ L|B| =

√
m +

√
m|B| ≤ 2

√
m|B|. (1.2)

Adding inequalities (1.1) and (1.2) yields that the BGA is an O(
√

m)-approximation algorithm. In Par. 3.3

below we return to the performance of the BGA on expander graphs.

The astute reader has noticed that the idea used in the analysis above is an old one. It goes back to the

blocking flow method of Dinitz [25] for the s-t flow problem as applied to unit-capacity networks by Even

and Tarjan [31]. A blocking flow is a flow that cannot be augmented without rerouting. The blocking flow

method iterates over the residual graph. In every iteration a blocking flow is found over the subgraph of
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the residual graph that contains the edges on a shortest path from s to t. At the end of an iteration the

distance from s to t in the new residual graph can be shown to have increased by at least one. When the

distance becomes larger than L, the number of edge-disjoint paths from s to t is O(min{m/L, n2/L2}) and

this bounds also the remaining number of augmentations required by the algorithm [31].

Kolliopoulos and Stein [62] made the connection with the blocking flow idea explicit and proposed the

offline Greedy Path algorithm, from now on called simply the greedy algorithm. The motivation behind the

greedy algorithm was the following: what amount of residual flow has survived if one is never allowed to

reroute the flow sent along shortest paths at a given iteration? In every iteration, greedy picks the unrouted

(si, ti) pair such that the length of the shortest path Pi from si to ti is minimized. The pair is routed using

Pi. The greedy algorithm is easily seen to achieve an O(
√

m)-approximation [62]. Using the BGA notation

and analysis from above we obtain the following. See also [15].

Lemma 1.1 Consider the restriction of the greedy algorithm that stops as soon as the minimum shortest

path length among the unrouted pairs exceeds L. The approximation guarantee is at most max{L, |O2|}.

The analysis in [62] used the fact that |O2| ≤ m/L. This was extended by Chekuri and Khanna [15]:

Theorem 1.1 [15] Using the notation defined above |O2| = O(n2/L2) for undirected simple graphs and

|O2| = O(n4/L4) for the directed case.

The theorem together with Lemma 1.1 and [62] yield immediately that the greedy algorithm achieves an

O(min{√m, n2/3})-approximation for undirected Edp and an O(min{√m, n4/5}) for directed Edp. Varadara-

jan and Venkataraman [103] improved the bound for directed graphs to O(min{√m, (n log n)2/3}), again for

the greedy algorithm. Interestingly, their argument shows the existence of a cut of size O((n2/L2) log2(n/L))

that separates all terminal pairs (si, ti) lying at distance L or more. This brings us almost full circle back

to the Even-Tarjan bound [31] for s-t flows. The latter argument demonstrates the existence of a cut of

size O(n2/L2) when the source is at distance L or more from the sink. [15] demonstrates an infinite family

of directed and undirected instances on which the approximation ratio achieved by the greedy algorithm is

Ω(n2/3). New ideas are thus required to bring the approximation down to O(
√

n) which in [15] is conjectured

to be possible. Chekuri, Khanna and Shepherd [18] and independently Nguyen [77] have recently obtained
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O(
√

n)-approximation algorithms for Edp on undirected graphs and DAGs.

We now sketch the proof of Theorem 1.1 for the undirected case as given by Chekuri and Khanna [15]. The

theorem holds for the fractional solution as well, i.e., the value ν of the maximum fractional multicommodity

flow connecting terminals at distance more than L. Call a vertex of G high-degree if its degree is more than

6n/L and low-degree otherwise. The total capacity incident to low-degree vertices is O(n2/L). We claim

that every si − ti path, (si, ti) ∈ T , must contain at least L/6 of the low-degree vertices. Therefore ν, the

sum of flow values over the paths used in the fractional solution, is O(n2/L2). To prove the claim consider a

breadth-first search tree rooted at si and let layer Lj be the set of vertices at distance j from si. We will show

something stronger: there are at least L/6 layers among the first L consisting only of low-degree vertices.

Partition the layers into blocks of three contiguous layers and let Bj denote the block made up of layers

L3j+1, L3j+2, L3j+3. Discard the blocks which contain at least one layer consisting entirely of low-degree

vertices. If L/6 or more blocks are discarded, we are done. So assume that we are left with at least L/6

blocks. The blocks are disjoint so at least one of the remaining blocks, call it B∗, must contain at most 6n/L

vertices. Consider a high-degree vertex in the middle layer of B∗. By the breadth-first search property all

its neighbors must be within B∗ itself, a contradiction. This completes the proof of Theorem 1.1.

Other guarantees for general graphs. In the original paper on the greedy algorithm, it was shown to output a

solution of size Ω(max{OPT 2/m0, OPT/d0}), where OPT is the optimum, m0 is the minimum number of

edges used in an optimal solution, and d0 is the minimum average length of the paths in an optimal solution

[62]. The second bound is a straightforward consequence of the first. The first bound is obtained through a

somewhat more sophisticated charging scheme for the number of paths in an optimal solution blocked by the

paths in B. In conclusion, greedy gives better results in the case where there is a “sparse” optimal solution.

2.3 Acyclic digraphs. The author observed in [57] that greedy achieves an o(n)-approximation if the

terminal pairs are disjoint and there is an acyclic optimal solution. In particular, one can show using a

result in [48] that in this case m0 = O(n3/2); an O(n3/4)-approximation follows. Chekuri and Khanna [15]

provided an O(
√

n log n)-algorithm for DAGs. The following applies to general graphs. Because of the d0-

approximation outlined earlier, one can assume without loss of generality that all shortest si − ti paths have
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length Ω(
√

n). Then a counting argument shows that there is a vertex u such that at least Ω(OPT/
√

n)

paths in the optimal solution go through this “congested” vertex u. We guess u and concentrate on finding

the maximum-size u-solution, to our original Edp instance: this consists only of paths going through u.

Devising an O(log n)-approximation algorithm of the LP-rounding variety for this special case gives the

desired result. Recently, Nguyen [77] showed that an optimal u-solution is polynomial-time computable in

DAGs and undirected graphs.

2.4 Vertex-disjoint paths. The greedy algorithm, with the obvious modifications, connects a set of

terminal pairs of size Ω(max{OPT/
√

n0, OPT 2/n0, OPT/d0}) [62]. Here n0 denotes the minimum size of a

set of vertices used in the optimal solution and d0 the minimum average path length in an optimal solution.

By the hardness result of [44] this result is essentially tight on directed graphs, unless P = NP.

3 The general unsplittable flow problem

We start with some additional definitions. We assume that a Ufp instance always satisfies the balance

(also called no-bottleneck) condition: dmax := maxi=1,...,k di ≤ umin := mine∈E ue, i.e., any commodity can

be routed through any of the edges. This assumption is common in the literature and we will refer explicitly

to an extended Ufp instance when the balance condition is not met. In the weighted Ufp, commodity i has

an associated weight (profit) wi > 0; one wants to route feasibly a subset of commodities with maximum total

weight. Note that maximizing demand reduces to maximizing the weight: simply set wi := di, i = 1, . . . , k.

Another objective function of interest in addition to maximizing demand and minimizing congestion is

routing in the minimum number of rounds. A round corresponds to a set of commodities that can be routed

feasibly, hence one seeks a minimum-size partition of the set of commodities into feasible unsplittable flow

solutions. A uniform capacity unsplittable flow problem (Ucufp ) is a Ufp in which all edges of the input

graph have the same capacity value.

3.1 Randomized rounding and UFP. Some of the approximation ratios achieved by LP-rounding that

we are about to present are currently also obtainable with simple greedy algorithms. See Par. 3.3 below.

Nevertheless LP-rounding algorithms are analyzed with respect to the existentially weak optima of the linear
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relaxations. In addition their analysis yields upper bounds on the respective integrality gaps. An imple-

mentation study comparing the actual performance of the LP-based vs. the more combinatorially-flavored

algorithms would be of interest. For an in-depth survey of randomization for routing problems see [99].

Minimizing congestion. The best known algorithm for congestion is also perhaps the best known example of

the randomized rounding method of Raghavan and Thompson [82]. A fractional solution f to the concurrent

flow problem is computed and then one path is selected independently for every commodity from the following

distribution: commodity i is assigned to path P ∈ Pi with probability fP /di. An application of the Chernoff

bound [20] shows that with high probability the resulting congestion is O(log n/ log log n) times the fractional

optimum. The process can be derandomized using the method of conditional probabilities [81]. Young [105]

shows how to construct the derandomized algorithm without having first obtained the fractional solution.

The analysis of the performance guarantee cannot be improved. Leighton, Rao and Srinivasan [66] provide

an instance on a directed graph on which a fractional solution routes at most 1/ logc n flow per edge, for

any constant c > 0, while any unsplittable solution incurs congestion Ω(log n/ log log n). If the unsplittable

solution uses only paths with nonzero fractional flow the lower bound holds for both undirected and directed

instances with optimal Ufp congestion 1 [66, 73]. Chuzhoy and Naor [21] show that for directed graphs there

is no c log log n-approximation for some constant c, unless NP ⊆ DTIME(nO(log log log n)). For undirected

graphs, Andrews and Zhang [3] show that congestion cannot be approximated within (log log m)1−ε, for any

constant ε > 0, unless NP ⊆ ZPTIME(npolylog(n)). Trivially, it is NP -hard to approximate congestion

within better than 2 in the case of Edp; this would solve the decision problem.

Maximum demand. Srinivasan published the first O(
√

m)-approximation for Edp and more generally Ucufp

in [97]. The first non-trivial O(
√

m log m)-approximation for Ufp was published in the IPCO version of [62].

Simultaneously and independently, Baveja and Srinivasan refined the results in [97] to obtain an O(
√

m)-

approximation for the general Ufp ; this work was published in [11]. The Baveja-Srinivasan methods extend

the earlier key work of Srinivasan on LP-rounding methods for approximating Packing Integer programs

[98, 96]. We outline now some of the ideas in [98, 97, 11]. The algorithm computes first a fractional solution

f to the (LP-MCF) linear relaxation (cf. Par. 1.3). The rounding method has two phases. First, a randomized

rounding experiment is analyzed to show that it produces with positive probability a near-optimal feasible
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unsplittable solution. Second, the experiment is derandomized yielding a deterministic polynomial-time

algorithm for computing a feasible near-optimal solution. Let y∗ be the fractional optimum.

One starts by scaling down every variable fP by an appropriate parameter α > 1. This is done to boost

the probability that after randomized rounding all edge capacities are met. Let Bi denote the event that in

the unsplittable solution, the capacity of the edge ei ∈ E is violated. Let Bm+1 denote the event that the

routed demand will be less than y∗/(βα), for some β > 1. The quantity βα is the targeted approximation

ratio. The randomized rounding method of Raghavan and Thompson in the context of Ufp works by

bounding the probability of the “bad” event
⋃m+1

i=1 Bi by
∑m+1

i=1 Pr(Bi). Srinivasan [97] and later Srinivasan

and Baveja [11] exploit the fact that the events Bi are positively correlated: if it is given that a routing

respects the capacities of the edges in some S ⊂ E, the conditional probability that for ei ∈ E \ S, Bi

occurs, is at least Pr(Bi). Mathematically this is expressed via the FKG inequality due to Fortuin, Ginibre

and Kasteleyn (see [1, Chapter 6]). Using the positive correlation property, Baveja and Srinivasan obtain

a better upper bound on Pr(
⋃

ei∈E Bi) than the naive union bound and therefore can prove the existence

of an unsplittable solution while using a better, i.e., smaller, βα scaling factor than traditional randomized

rounding. The second ingredient of Srinivasan’s method in [98, 96] is to design an appropriate pessimistic

estimator to constructively derandomize the method. Such an estimator is shown for Ufp as well in [11]. The

by-now standard derandomization approach of Raghavan [81] fails since it relies precisely on the probability

Pr(
⋃m+1

i=1 Bi) being upper-bounded by
∑m+1

i=1 Pr(Bi).

Let d denote the dilation of the optimal fractional solution f, i.e., the maximum number of edges on any

flow-carrying path. The Baveja-Srinivasan algorithm computes a solution to weighted Ufp of value

Ω(max{(y∗)2/m, y∗/
√

m, y∗/d}), (1.3)

The corresponding upper bounds on the integrality gap of (LP-MCF) follow. The analysis of [98] was

simplified by Srinivasan in [100] by using randomized rounding followed by alteration. Here the outcome

of the random experiment is allowed to violate some constraints. It is then altered in a greedy manner

to achieve feasibility. The problem-dependent alteration step should be analyzed to quantify the potential

degradation of the performance guarantee. This method was applied to Ufp in [14].

For weighted vertex-disjoint paths the corresponding bounds hold with n in place of m [11, 62]. In
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addition to the upper bounds on the integrality gap of (LP-MCF) given by (1.3), the integrality gap for Edp

is O(
√

n) on undirected graphs [18] and O(n4/5) on directed graphs [15]. The gap is known to be at least

k/2 by an example in a grid-like planar graph with k = Θ(
√

n), even for the Edp case [41].

Minimizing the number of rounds. Aumann and Rabani [5] (see also [51]) show that a ρ-approximation for

maximum demand translates to an O(ρ log n) guarantee for the number of rounds objective. [11] provides

improvements when all edge capacities are unit. Let χ(T ) be the minimum number of rounds. In determin-

istic polynomial-time one can feasibly “route in rounds”, the number of rounds being the minimum of (i)

O(χ(T )dδ log n + d(y∗ + log n)) for any fixed δ ∈ (0, 1), (ii) O(η−1d(y∗ + log n)), if for all i, di ≥ η and (iii)

O
(

χ(T )
√

m (1 + (log n)/χ(T ))
)

[11]. Minimizing the number of rounds for Ufp is related to wavelength

assignment in optical networks. Connections routed in the same round can be viewed as being assigned the

same wavelength. There is a burgeoning literature dealing with path coloring as this problem is often called;

usually the focus is on special graph classes. See [101, Chapter 2] for an introduction to this area.

The high-capacity case. In the high-capacity Ufp, the minimum edge capacity is Ω(log m) times the maximum

demand. An optimal deterministic O(log n)-competitive online algorithm was obtained by Awerbuch, Azar

and Plotkin [6]. It maintains length functions for the edges that are exponential in the current load. This

idea was introduced for multicommodity flow in [90] and heavily used thereafter (see, e.g., [67, 79, 105,

39]). Raghavan [81] showed that standard randomized rounding achieves with high probability an O(1)-

approximation for maximum weight with respect to the fractional optimum. Similarly, one obtains that the

high-capacity Ufp admits an O(1)-approximation for congestion. In general, if dmax ≤ umin/B, for some

B > 1, various improved bounds that depend on B exist, some obtainable via combinatorial algorithms. See

[62, 11, 7, 64, 14] for details. Some particularly good results have been obtained for the half-disjoint case,

i.e., when B = 2 [53, 16, 77].

3.2 Packing Integer Programs and UFP. Given A ∈ [0, 1]M×N , b ∈ [1,∞)M and c ∈ [0, 1]N with

maxj cj = 1, a packing integer program (PIP) P = (A, b, c) seeks to maximize cT · x subject to x ∈ ZN
+

and Ax ≤ b. Constraints of the form 0 ≤ xj ≤ dj are clearly allowed. Let B and ζ denote respectively

mini bi, and the maximum number of non-zero entries in any column of A. The restrictions on the values in
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A, b, c are without loss of generality; arbitrary nonnegative values can be scaled appropriately [98]. When

A ∈ {0, 1}M×N , we say that we have a (0, 1)-PIP. The best guarantees known for PIPs are due to Srinivasan;

those for (0, 1)-PIPs are better than those known for general PIPs by as much as an Ω(
√

M) factor [98, 96].

As witnessed by the (LP-MCF) relaxation, Ufp is a packing problem, albeit one with an exponential

number of variables. Motivated by Ufp, [62] defined the class of column-restricted PIPs (CPIPs): these are

the PIPs in which all nonzero entries of column j of A have the same value ρj , for all j. Observe that a

CPIP generalizes Knapsack. If one obtains the fractional solution f to the (LP-MCF) relaxation, one can

formulate the rounding problem as a polynomial-size CPIP where the columns of A correspond to the paths

used in the fractional solution and the rows correspond to edges in the graph, hence to capacity constraints.

The column value ρj equals the demand dj of the commodity corresponding to the path represented by the

column. A preprocessing step requires to transform first the fractional solution to a fractional single-path

solution. This is a fractional solution in which (i) at most one path per commodity is used and (ii) if a

commodity is routed at least a Ω(1/ logm) fraction of the demand is sent to the sink [62]. In combination

with improved bounds for CPIPs this approach yielded the O(
√

m log m)-approximation for Ufp mentioned

above. The fractional single-path solution concept resurfaced in the algorithm for Edp on DAGs in [15] (cf.

Par. 2.3).

A result of independent interest in [62] shows that any family of column-restricted PIPs can be approxi-

mated asymptotically as well as the corresponding family of (0, 1)-PIPs. This result is obtained constructively

via the grouping-and-scaling technique which first appeared in [61] in the context of single-source Ufp (see

Par. 3.4 below). Let z∗ be the fractional optimum. For a general CPIP the result of [62] translates to

the existence of an integral solution of value Ω

(

max

{

z∗
M1/(bBc+1) ,

z∗
ζ1/bBc , z∗

(

z∗
M log log M

)1/bBc
})

. Baveja

and Srinivasan [10] improved the dilation bound for column-restricted PIPs to Ω( z∗
t1/bBc ) where t ≤ ζ is the

maximum column sum of A.

3.3 Combinatorial algorithms and other results. For extended Ufp with polynomially bounded de-

mands, [44] gave a simple randomized algorithm that achieves an O(
√

m log3/2 m)-approximation and gen-

eralized the greedy algorithm for Edp [62] (cf. Par. 2.2) to Ufp, to obtain an O(
√

m log2 m)-approximation.

Azar and Regev [7] provided the first strongly-polynomial algorithm for weighted Ufp that achieves an
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O(
√

m)-approximation. For weighted extended Ufp they obtained a strongly-polynomial O(
√

m log(2 +

dmax

umin
))-approximation algorithm. By a reduction from the two-pair decision problem, [7] shows it is NP -

hard to obtain an O(n1−ε)-approximation for extended weighted Ufp, for any fixed ε > 0. The lower bound

applies with all the commodities sharing the same source but with weights different from the demands. For

extended Ufp the integrality gap of (LP-MCF) is Ω(n) even when the input graph is a path [14].

Further progress in terms of greedy algorithms was achieved by Kolman and Scheideler [64] and Kolman

[63]. Recall the BGA algorithm from Par. 2.2. Kolman and Scheideler proposed the careful BGA, parameter-

ized by L. The commodities are ordered according to their demands, starting with the largest. Commodity

i is accepted if there is a feasible path P for it such that, after routing i, the total flow is larger than half

their capacity on at most L edges of P. Let B1 be the solution thus obtained and B2 the solution consisting

simply of the largest demand routed on any path. The output is B := max{B1,B2}. In [64] the careful BGA

is shown to achieve an O(
√

m)-approximation for extended Ufp. Generalizing Theorem 1.1 above to Ufp,

Kolman showed that the careful BGA achieves an O(min{√m, n2/3})-approximation on undirected networks

and O(min{√m, n4/5})-approximation on directed networks, even for extended Ufp. Currently these are

the best published bounds for Ufp; previously they had been shown for Ucufp in [15]. Recently, Chekuri

et al. [18] obtained an LP-based O(
√

n)-approximation algorithm for Ufp on undirected graphs.

Guarantees depending on the network structure. Existing approximation guarantees for Ufp are rather weak

and on directed graphs one cannot hope for significant improvements, unless P= NP. A different line of work

has aimed for approximation ratios depending on parameters other than n and m. This type of work was

originally motivated in part by popular hypercube-derived interconnection networks (cf. [85]). Theoretical

advances on these networks are typically facilitated by their rich expansion properties. A graph G = (V, E)

is an α-expander if for every set X of at most half the vertices, the number of edges leaving X is at least

α|X |. Concluding a long line of research, Frieze [37] showed that in any r-regular graph with sufficiently

strong expansion properties and r a sufficiently large constant, any Ω(n/ log n) vertex pairs can be connected

via edge-disjoint paths. See [37] for references on the long history of the topic and the precise underlying

assumptions. In such an expander the median distance between pairs of vertices is O(log n), hence the result

of Frieze is within a constant factor of optimal. This basic property, that expanders are rich in short edge-
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disjoint paths, has been exploited in various guises in the literature. Results for fractional multicommodity

flows along short paths were first given by Leighton and Rao [68].

Kleinberg and Rubinfeld analyzed the BGA on expanders in [54]. In the light of Frieze’s result above, the

BGA achieves an O(log n)-approximation. In [54] it was also shown that for Ucufp one can efficiently com-

pute a fractional solution that routes at least half the maximum demand with dilation d = O(∆2α−2 log3 n).

Here ∆ denotes the maximum degree of the (arbitrary) input graph. The bound on d was improved in [64].

Kolman and Scheideler introduced a new network measure, the flow number FG,u, and showed that there

is always a near optimal fractional flow of dilation O(FG,u). The flow number is a quantity computable in

polynomial time which is defined based on the solution to a multicommodity flow problem on G. If umin ≥ 1,

FG,u is always Ω(α−1) and O(∆α−1 log n) [64]. The BGA examining the demands in nonincreasing order

and with L := 4FG,u achieves an O(FG,u) approximation for Ufp [64]. Chakrabarti et al. [14] provide

an O(FG log n)-approximation for Ufp where FG is a definition of the flow number concept of [64] made

independent of capacities. FG and FG,u coincide on uniform capacity networks. Notably [14] presents an

O(
√

∆ log n)-approximation for Ucufp on ∆-regular graphs with sufficiently strong, in the sense of [37],

expansion properties.

3.4 Single-Source Unsplittable Flow. Much better approximation guarantees exist for the case where

all commodities share the same source, the so-called single-source Ufp (SUfp). In contrast to single-source

Edp, SUfp is strongly NP -complete [52]. The version of SUfp with costs has also been studied. In the latter

problem every edge e ∈ E, has a nonnegative cost ce. The cost of an unsplittable flow solution is
∑

e∈E cefe.

The first constant-factor approximations for all the three main objectives (minimizing congestion, max-

imizing demand and minimizing the number of rounds) were given by Kleinberg [52]. The factors were

improved by Kolliopoulos and Stein in [61] where also the first approximations for extended SUfp were

given. The grouping-and-scaling technique of [61] consists of partitioning the original problem into a collec-

tion of independent subproblems, each of them with demands in a specified range. The fractional solution is

then used to assign capacities to each subproblem. The technique is in general useful for translating within

constant factors integrality gaps obtained for unit demand instances to arbitrary demand instances. It found

further applications, e.g., in approximating CPIPs [62, 10] (cf. Par. 3.2 above), weighted Ufp on trees
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[19], and [17]. The currently best constant factors for SUfp were obtained by Dinitz, Garg and Goemans

[26], though none of them is known to be best possible under some complexity-class separation assumption.

Our understanding seems to be better for congestion. The 2-approximation in [26] is best possible if the

fractional congestion is used as a lower bound. No ratio better than 3/2 is possible unless P = NP. The

lower bound comes from minimizing makespan on parallel machines with allocation restriction [69] which re-

duces in an approximation-preserving manner to SUfp. The mentioned scheduling problem is also a special

case of the generalized assignment problem for which a simultaneous (2, 1)-approximation for makespan and

assignment cost exists [93]. Naturally one wonders whether a simultaneous (2, 1)-approximation for conges-

tion and cost is possible for SUfp. This is an outstanding open problem. The currently best tradeoff is a

(3, 1)-approximation algorithm due to Skutella [94] which cleverly builds on the earlier (3, 2)-approximation

in [61]. Erlebach and Hall [29] show that it is NP -hard to obtain a (2 − ε, 1)-approximation, for any fixed

ε > 0. Experimental evaluations of algorithms for congestion can be found in [60, 59].

4 Variants of the basic problems

In this section we examine some variants of the basic problems. In the bounded-length Edp (Bledp), an

additional input parameter M is specified. One seeks a maximum-cardinality set of disjoint si − ti paths,

i = 1, . . . , k, under the constraint that the length of each path is at most M. In (s, t)-Bledp all the pairs

share the same source s and sink t. Cases that used to be tractable become NP -hard with the length

constraint. Both in the vertex and the edge-disjoint case, (s, t)-Bledp is NP-complete on undirected graphs

even when M is fixed [46]. For variable M and fixed k, the problems remain NP-complete [70]. It is NP -

hard to approximate (s, t)-Bledp within O(n1/2−ε) on directed graphs and, unless NP = ZPP, Bledp

cannot be approximated in polynomial time within O(n1/2−ε) on undirected graphs, for any fixed ε > 0

[44]. On the positive side it is easy to obtain an O(
√

m)-approximation for Bledp. For the paths in the

optimal solution with length at most M ′ := min{√m, M} the BGA with parameter L = M ′ achieves an

O(M ′)-approximation. This is because, in the notation of Par. 2.2, O2 is empty. On the other hand there

are at most
√

m edge-disjoint paths of length more than
√

m. See [44] for other algorithmic results.

In transportation logistics a commodity may be splittable in different containers, each of them to be
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routed along a single path. One wishes to bound the number of containers used. This motivates the b-

splittable flow problem, a relaxed version of Ufp where a commodity can be split along at most b ≥ 1 paths,

b an input parameter. This problem was introduced and first studied by Baier, Köhler and Skutella [9].

Clearly for b = m, it reduces to solving the fractional relaxation; it is NP -complete for b = 2. See [73, 56]

for a continuation of the work in [9]. The author observes in [58] that the single-source 2-splittable flow

problem admits a simultaneous (2, 1)-approximation for congestion and cost. Finally, a problem in a sense

complementary to b-splittable flow and with more history is the multiroute flow where for reliability purposes

the flow has to be split along a given number of edge-disjoint paths. See [8] for definitions and background.

Acknowledgements. Thanks to Chandra Chekuri, Sanjeev Khanna, Maren Martens, Martin Skutella, and

Cliff Stein for valuable comments and suggestions. Thanks to Naveen Garg for a clarification on [41], to Aris

Pagourtzis for pointing out [101], and to Lex Schrijver for information on Edp on planar graphs.

References

[1] N. Alon and J. Spencer. The Probabilistic method, 2nd edition. John Wiley and Sons, 2000.

[2] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of undirected edge disjoint paths with

congestion. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,

pages 226–244, 2005.

[3] M. Andrews and L. Zhang. Hardness of the undirected congestion minimization problem. In Proceedings

of the 37th annual ACM Symposium on Theory of Computing, pages 284–293, 2005.

[4] M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint paths problem. In Proceedings of

the 37th annual ACM Symposium on Theory of Computing, pages 276–283, 2005.

[5] Y. Aumann and Y. Rabani. Improved bounds for all-optical routing. In Proceedings of the 6th ACM-

SIAM Symposium on Discrete Algorithms, pages 567–576, 1995.

[6] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In Proceedings of the

34th Annual IEEE Symposium on Foundations of Computer Science, pages 32–40, 1993.



REFERENCES 20

[7] Y. Azar and O. Regev. Strongly polynomial algorithms for the unsplittable flow problem. In Proceedings

of the 8th Conference on Integer Programming and Combinatorial Optimization, pages 15–29, 2001.

[8] A. Bagchi, A. Chaudhary, and P. Kolman. Short length Menger’s Theorem and reliable optical routing.

Theoretical Computer Science, 339:315–332, 2005. Prelim. version in SPAA 03 (revue paper).
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A. Schrijver, editors, Paths, Flows and VLSI-Layout, pages 49–100. Springer-Verlag, Berlin, 1990.

[36] A. Frank. Connectivity and network flows. In R. Graham, M. Grötschel, and L. Lovász, editors,

Handbook of Combinatorics, pages 111–177. North-Holland, 1995.

[37] A. M. Frieze. Edge-disjoint paths in expander graphs. SIAM Journal on Computing, 30:1790–1801,

2001. Prelim. version in SODA 00.

[38] D. R. Fulkerson and G. B. Dantzig. Computation of maximum flow in networks. Naval Research

Logistics Quarterly, 2:277–283, 1955.

[39] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional

packing problems. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer

Science, pages 300–309, 1998.

[40] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their

applications. SIAM Journal on Computing, 25:235–251, 1996. Prelim. version in STOC 93.



REFERENCES 23

[41] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for integral flow and

multicut in trees. Algorithmica, 18:3–20, 1997. Prelim. version in ICALP 93.

[42] A. Goldberg. A natural randomization strategy for multicommodity flow and related algorithms.

Information Processing Letters, 42:249–256, 1992.

[43] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs with many

blocks and coupling constraints. SIAM Journal on Optimization, 4(1):86–107, February 1994.

[44] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-optimal hard-

ness results and approximation algorithms for edge-disjoint paths and related problems. Journal of

Computer and System Sciences, 67:473–496, 2003. Prelim. version in STOC 99.

[45] T. C. Hu. Multi-commodity network flows. Operations Research, 11:344–360, 1963.

[46] A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint paths with length

constraints. Networks, 12:277–286, 1982.

[47] G. Karakostas. Faster approximation schemes for fractional multicommodity flow problems. In Pro-

ceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pages 166–173, 2002.

[48] D. R. Karger and M. S. Levine. Finding maximum flows in simple undirected graphs seems easier than

bipartite matching. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,

1998.

[49] R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–68, 1975.
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cut condition, 5
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bounded length, 18

combinatorial algorithms, see greedy algorithms
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definition, 1

directed acyclic graphs, 10

edge-disjoint paths, 1

expander graphs, 16
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hardness of approximation, 7
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unsplittable flow, 2
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max-flow min-cut theorem, 6

max-flow min-multicut theorems, 5–6

maximum flow, 2, 8

multicommodity flow, 2

randomized rounding for, 5

multiroute flow, 19
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path coloring, 14

splittable flow, 18

unsplittable flow

balance condition, 11

combinatorial algorithms, 16

definition, 2

hardness of approximation, 7, 16

high-capacity case, 14

integrality gaps, 13
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