$\Delta \varepsilon ́ v \delta \rho \alpha \quad[$ Liu, x६ழ. 6]

Opıбuoí

 ($\left.\sigma \tau 0 \downarrow \chi \varepsilon เ \omega^{\delta} \eta\right) \chi \cup x \lambda \omega^{\prime} \mu \alpha \tau \alpha$.
 عíval ठ́́vópo.

 $\beta \alpha \vartheta \mu o u ́>1$.

Паро́סєьчүи

 $\mu \varepsilon$ аитó тоv арı७นó хó $\mu \beta \omega \nu$.

Iotótntes

$\Sigma \varepsilon$ б́́vтро $T=(V, E)$
 пou tıs عvढ́vel.
2. $|V|=|E|+1$.
3. $|V| \geq 2 \Rightarrow \# \varphi \dot{\prime} \lambda \lambda \omega \nu \geq 2$

 отоเฉбб́ñотє 2 жоричє́s v, w.

Iotótntes

Aлóo. Iòเótnt α (2), $\mu \varepsilon \varepsilon \pi \alpha \gamma \omega \gamma \eta$:
Вव́бๆ: \#хорифо́̀ $=1 \Rightarrow \# \alpha \chi \mu \dot{\omega} \nu=0$
$\# \chi о р и \varphi \varphi \dot{\nu}=2 \Rightarrow \# \alpha \chi \mu \omega \dot{\omega}=1$

$$
\left.\begin{array}{cc}
\left|V_{1}\right|+\left|V_{2}\right|=|V| & \left|E_{1}\right|+\left|E_{2}\right|=|E|-1 \\
\left|V_{1}\right|=\left|E_{1}\right|+1 & \left|V_{2}\right|=\left|E_{2}\right|+1
\end{array}\right\} \Rightarrow
$$

$$
|V|=\left|E_{1}\right|+\left|E_{2}\right|+2 \Rightarrow|V|=|E|+1
$$

Iotótntes

Aлód. Iঠıótทta (2), $\varepsilon \pi \varepsilon \xi \eta \dot{\eta} \eta \sigma \eta$...

Oı xopuǿ̨s tou V_{1} opí̧ouv to utoóévópo T_{1} tou a.
Oиоícs uпоо́évópo T_{2} tou b.

Iotótntes

A τ ó δ. I δ เót $\eta \tau \alpha$ (3)

${ }^{\prime} \operatorname{E} \sigma \tau \omega|V| \geq 2 \chi \alpha l \nexists v \in V: \quad d(v)=0$ 。
Пер. 1: А $\nu \mu$ ио $\alpha \delta$ ıо́
$v \in V: d(v)=1 \Rightarrow \sum_{v \in V} d(v) \geq 1+2(|V|-1)=2|V|-1 \downarrow$
Пєр. 2: A $\nu \nexists v \in V: d(v)=1 \Rightarrow \sum_{v \in V} d(v) \geq 2|V|$ ATOПO \downarrow

Iбoठ́v́vauot opıбиoí

 μ огабıхо́ μ оvота́tı $v \leadsto w$.

Aлóб. $[\Leftarrow]$

Iбoóv́vauot opıбuoí

 $m=n-1$ о́тои $|V|=n$ хаи $|E|=m$.

Алód. $[\Leftarrow]$

 $v \mu \varepsilon \operatorname{\tau ov}$ xúxio \Rightarrow uтव́pXouv $\geq n-c \alpha x \mu \varepsilon ́ \varsigma ~ \nexists C$
$\Rightarrow m \geq(n-c)+c=n$ ATOПO \downarrow
$\therefore \nexists \dot{\sigma} \dot{x} \lambda \omega \mu \alpha$

Iбoठúvauoı opıбнoí

 $m=n-1$ о́тои $|V|=n$ хаı $|E|=m$.

Aлóб. $[\Leftarrow]$

$\Rightarrow m_{1}=n_{1}-1, m_{2}=n_{2}-1, \ldots$
$\Rightarrow m_{1}+m_{2}+\cdots+m_{k}=n_{1}+n_{2}+\cdots+n_{k}-k, \quad k \geq 2$
$\Rightarrow m=n-k, k \geq 2$
$\Rightarrow m \leq n-2$ АТОПО \downarrow

Паро́סєьчүи

 $\gamma \nu \omega$ рíouv.

Паро́ס́вıүиа

 rvopíouv.
 x α ol $\alpha x \mu \varepsilon ́ s ~ \tau \alpha ~ \mu \eta \nu u ́ \mu \alpha \tau \alpha . ~$

- To G हíval ouvextixó.
 $\sigma \tau \eta \nu$ o $\mu \alpha ́ \delta \alpha \tau \omega \nu \alpha \tau o ́ \mu \omega \nu \pi 0 \cup$ ह́ $\lambda \alpha \beta \alpha \nu$ т $\eta \nu \pi \lambda \eta \rho о \varphi о р i ́ \alpha \Longrightarrow$ Apı७цós ax $\mu \dot{\omega} \nu m=n-1$.

Eлouévفs to G عíval סévópo.

$\Delta \varepsilon ́ v \delta \rho \alpha \mu \varepsilon$ рí̧ α

 бévтрои.

 $\varepsilon \xi \cup \pi 0 \nu O o u ́ v \tau \alpha l$.

Пара́סєьүиа

П. Х. Гєvєа入оүьхó бє́vঠро

Opıбноí

Op. $m-\alpha \delta \iota x o ́ ~ \delta$ д́vбро:
$\forall \varepsilon \sigma \omega \tau$. хо́ $\mu \beta$ оऽ (\& pí̧ α) є́ $\chi \varepsilon \iota \leq m \pi \alpha \iota \delta ı \alpha ́$.
Op. Kavovıxó $m-\alpha \delta ı x o ́ ~ \delta ́ ́ v \delta \rho o: ~$

 avtıбтolðoúv $\sigma \varepsilon$ vox-ג́OUt $\alpha \gamma \dot{\omega} \nu \varepsilon \varsigma ~ \chi \cup \pi \varepsilon ́ \lambda \lambda o u . ~$

Aрıभиós عб

П. Х. K $\alpha v o v ı x \alpha ́ ~ \delta \nu \alpha \delta ı x \alpha ́ ~ \delta \varepsilon ́ v \delta \rho \alpha: ~ o ı ~ \varepsilon \sigma \omega \tau \varepsilon р ı x o i ́ ~ x o ́ \mu \beta o ı ~$

$\Lambda \eta ́ \mu \mu . \quad \sum \varepsilon$ x $\alpha \nu о \nu \iota x \alpha ́ \delta \nu \alpha \delta \iota x \alpha ́ ~ \delta \varepsilon ́ v \delta \rho \alpha, \# \varepsilon \sigma \omega \tau=\# \varphi \dot{\lambda} \lambda \lambda \omega \nu-1$.

 $\# \alpha \gamma \omega \dot{\omega} \omega \nu=\# o \mu \alpha ́ \delta$. $\pi o \cup \varphi \varepsilon u ́ \gamma o u \nu=\# o \mu \alpha ́ \delta \omega \nu-1=\# \varphi \dot{\lambda} \lambda \lambda \omega \nu$ -1 .
Eлоц乏́v $\omega \varsigma \# \varepsilon \sigma \omega \tau=\# \alpha \gamma \omega ́ \nu \omega \nu=\# \varphi \dot{\nu} \lambda \lambda \omega \nu-1$.

АрıЧио́s عб

П. Х. K $\alpha v o v ı x \alpha ́ ~ \delta \nu \alpha \delta ı x \alpha ́ ~ \delta \varepsilon ́ v \delta \rho \alpha: ~ o ı ~ \varepsilon \sigma \omega \tau \varepsilon р ı x o i ́ ~ x o ́ \mu \beta o ı ~$

$\Lambda \eta ́ \mu \mu . \quad \Sigma \varepsilon$ к $\alpha \nu о \nu \iota x \alpha ́ \delta \nu \alpha \delta \iota x \alpha ́ ~ \delta \varepsilon ́ v \delta \rho \alpha, \# \varepsilon \sigma \omega \tau=\# \varphi u ́ \lambda \lambda \omega \nu-1$.

$\# \alpha \gamma \omega \dot{\omega} \omega \nu=\# o \mu \alpha ́ \delta$. $\pi o \cup \varphi \varepsilon u ́ \gamma o u \nu=\# o \mu \alpha ́ \delta \omega \nu-1=\# \varphi \dot{\lambda} \lambda \lambda \omega \nu$ -1 .
Eлоц乏́v $\omega \varsigma \# \varepsilon \sigma \omega \tau=\# \alpha \gamma \omega ́ \nu \omega \nu=\# \varphi \dot{\nu} \lambda \lambda \omega \nu-1$.
 $(\# \varepsilon \sigma \omega \tau .-1)+\# \varphi \dot{\nu} \lambda \lambda \omega \nu$.

Kavovıxá סévópa

$(m-1) \# \varepsilon \sigma \omega \tau . \chi o ́ \mu \beta \omega \nu=\# \varphi \dot{\nu} \lambda \lambda \omega \nu-1$.
A π óб.
$\Theta \varepsilon \omega \rho о и ́ \mu \varepsilon \# \varphi \dot{\nu} \lambda \lambda \omega \nu=\# о \mu \alpha ́ \delta \omega \nu$.

$(m-1) \# \varepsilon \sigma \omega \tau=\#(o \mu \alpha ́ \delta \varepsilon \varsigma ~ \varepsilon \chi \tau o ́ \varsigma ~ \chi \cup \pi \varepsilon ́ \lambda o \cup)$
 $=(\# \varepsilon \sigma \omega \tau .-1)+\# \varphi \dot{\nu} \lambda \lambda \omega \nu$.

Kavovıxá סévópa

П. $\chi . \quad \# \varphi^{\prime} \lambda \lambda \omega \nu=(m-1) \# \varepsilon \sigma \omega \tau+1$, $\delta \eta \lambda \alpha \delta \dot{\eta} m=4 \Longrightarrow \# \varphi \dot{\lambda} \lambda \lambda \omega \nu=3 \# \varepsilon \sigma \omega \tau+1$

Мйхоs ноготатıল́v

' $\Upsilon \psi o s ~ \delta e ́ v o ́ p o u ~$

П. χ. I $\sigma o ́ t \eta \tau \alpha, \# \varphi \dot{\prime} \lambda \lambda \omega \nu \leq 3^{2}=9$.

' $\Upsilon \psi o s ~ \delta e ́ v \delta \rho o u ~$

 $\sigma \chi \varepsilon ́ \sigma \eta: \# \varphi \dot{\nu} \lambda \lambda \omega \nu \geq m+(m-1)(h-1)$.

Aлód. $\# \phi=(m-1) \# \varepsilon \sigma \omega \tau+1$, $\# \varepsilon \sigma \omega \tau \geq h$,
$\Rightarrow \# \phi \geq(m-1) h+1=(m-1)(h-1)+(m+1-1)$.

 $h \geq\left\lceil\log _{m} l\right\rceil$.

 $h \geq\left\lceil\log _{m} l\right\rceil$.

 $\varphi \dot{\nu} \lambda \lambda \alpha$ عival $\sigma \varepsilon$ úqos $h \dot{\eta} h-1$.

 $m^{h-1}<l$.

