Грачи́ната («Гра́цро»») [Liu, $\varkappa \varepsilon \varphi .5]$

Гદ́qupes tou Königsberg

Opıбнoí

Op. Katevখuvóuevo үpá $\uparrow \eta \mu \alpha$
$G=(V, E): V$ би́voخo, $E \subseteq V \times V$.
 троऽ $\alpha \lambda \lambda о$ ($\tau \dot{\varepsilon} \lambda о \varsigma)$.

- $\alpha \pi o \mu o v \omega \mu \varepsilon ́ v \eta$ жори甲

 $\tau \omega \nu \alpha x \mu \omega े$.
П.х.

$$
\begin{aligned}
& (V, E)=(\{a, b, c, d\},\{\{a, b\},\{b, c\},\{c, a\},\{c, c\}\})
\end{aligned}
$$

Подиүра́ч \quad иа

П. χ.

А $\nu \vartheta \alpha$ хр $\quad \sigma \mu о \pi о เ ท ́ \sigma о \cup \mu \varepsilon ~ \chi \alpha \tau \varepsilon \cup \vartheta \cup \nu o ́ \mu \varepsilon \nu о ~ \eta ́ ~ \mu \eta ~ \chi \alpha \tau \varepsilon \cup \vartheta \cup \nu o ́ \mu \varepsilon \nu о ~$
 $\mu о \nu \tau \varepsilon \lambda о \pi о \stackrel{ŋ ́ \sigma о \cup \mu \varepsilon . ~}{\text { к }}$
П. χ. $\alpha \nu$ ol $\alpha \chi \mu \varepsilon ́ \varsigma ~ \delta \eta \lambda \omega ́ \omega \nu о u \nu ~ \sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~ \pi р о \tau \varepsilon р \alpha ı o ́ \tau \eta \tau \alpha \varsigma ~ \pi р \varepsilon ́ \pi \varepsilon ı ~ \nu \alpha ~$

П. χ. $\delta(v)=3, \delta(w)=2$.

'Avpotб $\mu \alpha \beta \alpha \vartheta \mu \omega^{\prime} \nu$

$$
\sum_{v \in V} \delta(v)=2|E|
$$

 бтоv ópo $\delta(v)$ каı $\mu i ́ \alpha ~ \sigma \tau o v ~ \delta(w)$.

Kopuчés $\pi \varepsilon$ рıtтоú $\beta \alpha \vartheta \not \mu$ ои́

 \＃（xоричй́v лєрıттои́ $\beta \alpha \vartheta \mu$ ои́ $)=\alpha \dot{\alpha}$ тгоऽ．

А $\boldsymbol{\sigma} \delta \bar{\delta}$ ．
$\sum_{k \in V} \delta(k)=2 \cdot|E|=$ 人́ptıos $=\sum_{k: \delta(k) \text { д́pt．}} \delta(k)+\sum_{k: \delta(k) \pi \varepsilon \rho .} \delta(k)$

$$
\Rightarrow \sum_{k: \delta(k) \pi \varepsilon \rho .} \delta(k)=\text { 人́ptıs. }
$$

Σ

$$
\delta(k)=
$$

$$
\left(2 d_{k}+1\right) \Rightarrow
$$

$$
1=\text { áptıos. }
$$

$k: \delta(k) \pi \varepsilon p \iota \tau t o ́ s$

$$
k: \delta(k) \pi \varepsilon p u \tau \text { т́s }
$$

$$
k: \delta(k) \pi \varepsilon \rho .
$$

Про́ß入 пиш

 x xal o y $\gamma \nu \omega \rho i$ í̧ovtal.
Aлó то $\Theta \varepsilon \omega ́ \rho \eta \mu \alpha$ o $\alpha р \imath \vartheta \mu o ́ s ~ \tau \omega \nu ~ \alpha \tau o ́ \mu \omega \nu ~ \mu \varepsilon ~ \pi \varepsilon р \iota \tau \tau o ́ ~ \beta \alpha \vartheta \mu o ́ ~(=~$

П入йогs rра́ч пиа

Op. ($\mathrm{M} \eta$) x $\alpha \tau \varepsilon \cup \vartheta \cup \nu o ́ \mu \varepsilon \nu о$ $\pi \lambda$ ńpes $\gamma \rho \alpha ́ \varphi \eta \mu \alpha K_{n}(\dot{\eta} \chi \lambda i x \alpha$, clique)
 $\alpha x p \beta \omega \dot{\omega} \mu i ́ \alpha(\alpha x \mu \dot{\eta}) \beta \varepsilon ́ \lambda о \varsigma$.

'Aбкпбп

Movorátıa

$e_{1}, e_{2}, \ldots e_{k}$ т乏́тоı $\omega^{\omega} \sigma \tau \varepsilon:$

 $v \leadsto w .\left(\Sigma \varepsilon \mu \eta \chi \alpha \tau \varepsilon \cup \vartheta\right.$. $\gamma \rho \alpha \varphi \eta^{\prime} \mu \alpha \tau \alpha v \leadsto w \Leftrightarrow w \leadsto v$. $)$

Op. A $\pi \lambda o ́ \mu о \nu о \pi \alpha ́ \tau \iota ~ \alpha \nu \chi \alpha ́ \vartheta \varepsilon ~ \alpha \chi \mu \eta ́, ~ \chi р \eta \sigma \mu о \pi о เ \varepsilon i ́ \tau \alpha l ~ \tau o ~ \pi o \lambda u ́ ~ \mu i ́ \alpha ~$ popá.
 $\pi o \lambda u ́ \mu i ́ \alpha ~ \varphi o p \alpha ́ . ~$

Movorátıa

То́тє $\exists \mu$ оขота́ть $v_{1} \leadsto v_{2}, \mu \varepsilon \leq n-1 \alpha \chi \mu \varepsilon ́ \varsigma . ~$
 μ огота́ть ($\alpha \nu \alpha \pi \alpha р \alpha ́ \sigma \tau \alpha \sigma \eta ~ \varkappa о р.) ~=~\left(~ v_{1}, \ldots, v_{k}, \ldots, v_{k}, \ldots, v_{2}\right) \Rightarrow$

$\Sigma \cup \nu \varepsilon \chi i \zeta \omega \mu \varepsilon ́ \chi p ı ~ \# ~ \alpha x \mu \omega ́ \omega \nu<n$.

Kиж入 $\dot{\sigma}^{\prime} \mu \alpha \tau \alpha$

П. Х. Kúx $\frac{1 \omega \mu \alpha \sigma \tau о \iota \chi \varepsilon เ \omega ́ \delta \varepsilon \varsigma ~(\alpha ́ p \alpha ~ \chi \alpha l ~}{\alpha \pi \lambda o ́): ~}$

Kик入л'́ $\mu \alpha \tau \alpha$

П. χ. $\quad \Sigma \tau о$ тро́ $\beta \lambda \eta \mu \alpha$ тои Königsberg $\zeta \eta \tau \alpha ́ \mu \varepsilon \alpha \pi \lambda o ́ ~ \chi u ́ \chi \lambda \omega \mu \alpha \pi о \cup$ $\nu \alpha \pi \varepsilon \rho \nu \alpha ́ \varepsilon \iota ~ \alpha \pi o ́ ~ o ́ \lambda \varepsilon \varsigma ~ \tau u \varsigma ~ \alpha \chi \mu \varepsilon ́ s: ~$

इUvextuxótnta

K $\alpha \tau \varepsilon \cup \vartheta \cup \nu o ́ \mu \varepsilon \nu o ~ \sigma u v \varepsilon \chi \tau เ \varkappa o ́ ~ \gamma \rho \alpha ́ \varphi \eta \mu \alpha ~ \alpha \nu ~ \tau о ~ \mu \eta ~ \chi \alpha \tau \varepsilon \cup \vartheta \cup \nu o ́ \mu \varepsilon \nu о ~$
 ouvextıxó．
 $\alpha \nu \forall$ そ̌ú $\gamma о \varsigma ~ \chi о р \cup \varphi \omega ́ \nu ~ a, ~ b: ~ a ~ b, ~ K A I ~ b ~ a . ~$

IбXupá $\sigma u v \varepsilon \chi \tau เ \varkappa o ́ ~ \Rightarrow ~ \sigma u v e \chi \tau เ \varkappa o ́ . ~$

бuvextixó

$\mu \eta$-бuvextuxó

Movoт́́tı $\alpha / \chi \cup x \lambda \bar{\omega} \dot{\rho} \alpha \tau \alpha$ Euler

 $\alpha x \mu \varepsilon ́ s ~ t o u ~ E . ~$

П.Х. Movo兀র́тє Euler:

Kижл $\omega^{\prime} \mu \alpha \tau \alpha$ Euler

 بóvo μ оvoт́́tı Euler.

Kих入 $\omega_{\rho} \mu \alpha \tau \alpha$ Euler

$\Sigma \tau о \pi \rho o ́ \beta \lambda \eta \mu \alpha$ тou Königsberg o Euler $\alpha \pi \varepsilon ́ \delta \varepsilon ı \xi \varepsilon \pi \omega \varsigma$ тє́тoเo

Op. B $\alpha \vartheta \mu o ́ s ~ t n s ~ x o p u \varphi n ̃ s ~ v e V ~ \varepsilon i v a l ~ o ~ \varepsilon i v \alpha l ~ \# ~ \alpha x \mu \omega ́ v ~ \pi o u ~$ $\pi \rho о \sigma \pi i ́ \pi \tau o u \nu \sigma \tau \eta \nu$ кори甲ウ́. $\Sigma \cup \mu \beta$ д $i \zeta \varepsilon \tau \alpha l \mu \varepsilon \delta(v)$.
 \#(корицஸ́̀ тєрıттои́ $\beta \alpha \vartheta \mu о и ́)=\alpha ́ \alpha т ь ๐ s . ~$

$' \Upsilon \pi \alpha \rho \xi \eta$ Kи $\lambda \lambda \bar{\omega}{ }^{\prime} \mu \alpha \tau о \varsigma$ Euler

 $\pi \rho \varepsilon ́ \pi \varepsilon \iota ~ \nu \alpha ~ \varepsilon ́ \chi \varepsilon ા ~ \beta \alpha \vartheta \mu o ́ ~ 2 k . ~$
 $\beta \alpha \vartheta \mu o ́ 2 \lambda$.

Пoú хрвı $\alpha \sigma \tau \grave{\prime} \nprec \alpha \mu \varepsilon ~ \tau \eta ~ \sigma \cup \nu \varepsilon \chi \tau เ \chi o ́ \tau \eta \tau \alpha ;$

 W $\sigma \tau \operatorname{cov} G$. ${ }^{\text {E } \sigma \tau \omega ~} s \stackrel{W}{\sim} t$.

$$
s \stackrel{W}{\sim} s=s \stackrel{W_{1}}{\sim} v \stackrel{W_{2}}{\sim} s
$$

 ало́ то W, а́тото.

Movotátı Euler

Паро́ס́єıүна

Пара́ס́єıү $\mu \alpha$ үı Movoтд́тı Euler

 $\pi \lambda \dot{\eta} \vartheta \circ \varsigma \tau \omega \nu \varepsilon \xi \varepsilon \rho \chi \circ \mu \varepsilon ́ v \omega \nu \alpha \chi \mu \omega ́ \nu$.
 Euler $\Longleftrightarrow \delta^{-}(v)=\delta^{+}(v) \gamma ı \alpha$ x́́vє жори甲ท́ $v \in V$.

 k_{1}, k_{2} о́точ, $\delta^{+}\left(k_{1}\right)=\delta^{-}\left(k_{1}\right)+1$ каь $\delta^{+}\left(k_{2}\right)=\delta^{-}\left(k_{1}\right)-1$

Movorátı Hamilton

Op. Movo $\alpha_{\alpha} \tau \iota$ Hamilton $\varepsilon i v \alpha l ~ \mu o v o \pi \alpha ́ \tau \iota ~ \pi o u ~ \pi \varepsilon \rho v \alpha ́ \alpha ~ \alpha \pi o ́ ~ \chi \alpha ́ \alpha \vartheta \varepsilon ~$
 عíval $\sigma \tau 0 \downarrow \chi \varepsilon เ \omega ่ \delta \varepsilon \varsigma$.

'Абх. 5.28

П.Х. Euler-Hamilton

П.Х. Euler-Hamilton

П.Х. Euler-Hamilton

П. χ. Euler-Hamilton

