
Stacked generalization for information extraction

Georgios Sigletos1,2, Georgios Paliouras1, Constantine D. Spyropoulos1, Takis Stamatopoulos2

Abstract.1This paper defines a new stacked generalization
framework in the context of information extraction (IE) from online
sources. The proposed setting removes the constraint of applying
classifiers at the base-level. A set of IE systems are trained instead
to identify relevant fragments within text documents, which differs
significantly from the task of classifying candidate text fragments as
relevant or not. The templates filled by the base-level IE systems
are stacked, forming a set of feature vectors for training a meta-
level classifier. Thus, base-level IE systems are combined with a
common classifier at meta-level. The proposed framework was
evaluated on three Web domains, using well known IE approaches
at base-level and a variety of classifiers at meta-level. Results
demonstrate the added value obtained by combining the base-level
IE systems in the new framework.

1 INTRODUCTION
One of the most attractive topics in supervised machine learning is
learning how to combine the predictions of multiple classifiers. The
motivation for doing this derives from the opportunity to obtain
higher prediction accuracy, while treating classifiers as black boxes,
i.e. without considering the details of their functionality.

Stacked generalization or stacking [1] deals with the task of
learning a meta-level classifier to combine the predictions of
multiple base-level classifiers. The set of base-level classifiers is
generated by applying different learning algorithms to a given data
set. Alternative combination methods like boosting [2] and bagging
[3] deal with multiple classifiers, generated however by applying
the same learning algorithm to different versions of the data.

Research on stacking has primarily focused on classification.
Each instance in the domain of interest is represented by a vector

 of attribute values, where is the class attribute,
whose value we wish to predict. To classify a new instance, the
predicted class values of the base-level classifiers form a new vector
that is assigned the final class by the meta-classifier.

>< yxx n ,...1 y

In this article we investigate the effectiveness of stacked
generalization in the task of information extraction (IE) from online
sources: a form of shallow text processing that extracts relevant text
pieces to populate a predefined template. However IE is naturally
an identification task, rather than a classification one [4]. A rich
variety of IE systems, e.g. [5, 6, 7, 8] are typically trained to
identify relevant text fragments, i.e. sequences of tokens, within
documents. There is only a small number of approaches [9, 10] that

1 Institute of Informatics and Telecommunications, NCSR “Demokritos”,

15310, Aghia Paraskevi, Attikis, GREECE, email: {sigletos, paliourg,
costass}@iit.demokritos.gr

2 Departments of Informatics and Telecommunications, University of
Athens, Panepistimiopolis, Athens, GREECE, email {takis@di.uoa.gr}

enumerate a high proportion of all possible text fragments that can
be found within a document and then model the IE task as a binary
classification one. In this latter case, the task is to learn whether or
not a candidate fragment fills some template-slot. However, there
are several problems associated with this approach such as the
exponential number of candidate fragments and the artificially large
number of negative examples.

Thus, the main contribution of this article is a new stacking
framework that accommodates IE systems at base-level that are not
required to perform classification. Given a document, the templates
populated by the base-level IE systems are stacked to a single
template, wherefrom a set of feature vectors is assembled for
training a meta-level classifier. At runtime, this classifier decides
whether a candidate fragment, among the ones predicted by the
base-level IE systems, is relevant or not. The proposed framework
was experimentally evaluated in three Web domains, using well
known IE approaches at base-level and a variety of classifiers at
meta-level. Results show a superior performance of stacking against
both base-level IE systems and voting, for all domains.

Section 2 presents some background on stacked generalization
and information extraction at meta-level. Section 3 describes the
proposed framework. Section 4 presents the experimental results.
Finally we conclude in section 5, discussing further improvements.

2 BACKGROUND

2.1 Stacking
The key idea behind stacking is to learn a meta-level (or level-1)
classifier based on the output of base-level (or level-0) classifiers,
estimated via cross-validation as follows:

Let D a dataset consisting of feature vectors, also referred to as
level-0 data, and a set of different learning algorithms.
During a -fold cross-validation process,

NLL ...1 N
J D is randomly split into

disjoint parts of equal size and similar class distribution.
At each jth fold,
J JDD ...1

Jj ..1= , the algorithms are trained on the
training set and the induced classifiers are applied to the
test part . The concatenated class predictions of the induced
classifiers on each vector i in , followed by the original class
value , form a new set

NLL ...1

jDD \
jD

x jD
)(ii xy jMD of meta-level vectors.

At the end of the cross-validation process, the union
=MD ∪ jMD , Jj ..1= , constitutes the full meta-level dataset, also

referred to as level-1 data, which is used for training a meta-level
classifier . The learning algorithm that is employed at meta-
level could be one of the or a different one. Finally, the

 learning algorithms apply to the entire dataset

MC
NLL ...1

NLL ...1 D inducing
the final base-level classifiers to be used at runtime. NCC ...1

In order to classify a new instance, the concatenated predictions
of all base-level classifiers form a meta-level vector that is
finally assigned a class value by the meta-level classifier.

NCC ...1

In [11] an extension of stacking was proposed, where each
classifier outputs a class probability distribution for every example,
instead of a single class. In the same work, multi-response linear
regression models (MLR) were used as a meta-level classifier that
proved to be highly effective compared to other classifiers. Other
recent approaches to stacking include work presented in [12, 13].

2.2 Information extraction at meta-level
Despite the growing interest in combining machine learning
algorithms and the application to some natural language parsing
tasks such as part-of-speech tagging [14], which is fundamentally a
classification task, this topic has received little attention by the IE
community. The only relevant work is described in [9] where the IE
task is transformed into a classification one, as mentioned in
Section 1, using a set of four base-level extractors. Having done
that, a multistrategy approach based on voting is used. Although
this approach could be upgraded to stacking, it inherits the problems
of treating IE as a classification problem, as explained in Section 1.

On the other hand, a rich variety of IE approaches e.g. [5, 6, 7,
8] do not externally enumerate all possible text fragments within a
page. Such systems typically generalize a set of pattern-matching
extraction rules from positive examples. At runtime, the induced
patterns apply within a document, trying to match relevant text
fragments. Therefore, it would be desirable to design an alternative
stacking framework that can accommodate such IE systems.

3 STACKED GENERALIZATION FOR
INFORMATION EXTRACTION

3.1 Definition of the extraction task
Let a set of W extraction fields, defining a template }...{ 1 WffF =
T , and a document annotated by the domain expert with
instances of those fields. A field instance is a pair ,
where is a text fragment, with s and e the indices of the start
and end tokens of the fragment in page’s token table, and

d
>< fest),,(

),(est
Ff ∈

the related field. A field is typically a target-slot in T , while
 is a slot-filler. In this article we assume that),(est T is filled with

pairs . Table 1 shows a part of a Web page describing
laptop products where relevant text is highlighted in bold. Table 2
shows the hand-filled template for this page.

>< fest),,(

Table 1. Part of a Web page describing laptop products.

…TransPort ZX
 15"XGA TFT Display

 Intel Pentium III 600 MHZ 256k Mobile processor

 256 MB SDRAM up to 1GB …

Table 2. Hand-filled populated template for the page of Table 1.
T Short description for field f

),(est es, Field f
Transport ZX 47, 49 model Name of laptop’s model

15" 56, 58 screenSize Size of laptop’s screen
TFT 59, 60 screenType Type of laptop’s screen

Intel Pentium III 63, 67 procName Name of laptop’s processor
600 MHZ 67, 69 procSpeed Speed of laptop’s processor
256 MB 76, 78 Ram Laptop’s ram capacity

The IE task can be defined as follows: given a new document
and an empty template

d
T , find all possible instances for each

extraction field and populate T . An extended approach to IE is to
group field instances into higher-level concepts, also referred as
multi-slot extraction [8]. However, the simpler single-slot approach
addressed here covers a wide range of IE tasks and motivated the
development of a variety of learning algorithms [5, 6, 7, 9, 10].

3.2 Stacking information extraction systems
Let a set of learning algorithms, designed for IE tasks
and

NLL ...1 N
D an annotated corpus, e.g. of Web pages describing laptop

products. Let the IE systems that were built by training
 on

NEE ...1

NLL ...1 D . Finally, define a set of templates populated
by from a document in

NTT ...1

NEE ...1 d D . Table 3 shows two
templates by two fictitious IE systems for the page
of Table 1.

21 ,TT 21 , EE

Table 3. Templates populated by two IE systems for the page of Table 1.
1T

),(est e s, f
Transport ZX 47, 49 model

15" 56, 58 screenSize
TFT 59, 60 screenType

Intel
Pentium III

63, 67 procName

600 MHZ 67, 69 procSpeed
256 MB 76, 78 ram

1 GB 81, 83 ram

2T

),(est es, f
Transport

ZX
47,49 manuf

TFT 59, 60 screenType
Intel
Pentium

63, 66 procName

600 MHZ 67, 69 procSpeed
256 MB 76, 78 ram

1 GB 81, 83 HDcapacity

Examining Table 3 we note some disagreement in the predictions of
the two IE systems: for two text fragments (“Transport ZX”,
“1GB”) the predicted fields by disagree. Comparing to the
hand-filled template of Table 2, we conclude that “Transport ZX”
has been correctly identified as model only by the first IE system,
while “1GB” has been incorrectly identified by both systems.
Furthermore, the fragment “15"” has been identified only by ,
while did not identify it at all. Finally, there is an overlapping
case: the fragment “Intel Pentium III” has been correctly
identified by 1 as procName, while incorrectly predicted the
same field for “Intel Pentium”. This disagreement is better
observed in the stacked template of Table 4.

21 , EE

1E
2E

E 2E

Table 4. Stacked template of and 1T 2T

es,),(est Field by 1E Field by 2E Correct field
47, 49 Transport ZX model manuf model
56, 58 15" screenSize - screenSize
59, 60 TFT screenType screenType screenType
63, 66 IntelPentium - procName -
63, 67 IntelPentium III procName - procName

… … … … …
81, 83 1 GB ram HDcapacity -

Constructing the stacked template of Table 4 is a straightforward
process: all fragments identified by in are
inserted into an initial pool. Duplicate fragments are removed; two
text fragments differ if either their start or end index differs. For the
remaining distinct fragments, the predicted fields by are
collected and appended with the correct field (last column in Table
4), according to the hand-filled template of Table 2.

),(est 21 , EE 21 ,TT

21 , EE

Examining Table 4, the desirable performance task is to
automatically fill the last column with the correct fields. The
simplest idea is to use voting on the predictions of the IE systems.
An alternative approach is to learn to predict the correct field for
each distinct text fragment. The idea suggested in this paper is to
create a feature vector for each entry of Table 4, i.e. for each

distinct fragment , and use the new vectors for training a
common classifier. Table 5 shows the new feature vectors.

),(est

Table 5. Meta-level feature vectors for the stacked template of Table 4.

 Feature vectors
es,),(est Features by 1E Features by 2E class

47, 49 Transport ZX model, manuf, model
56, 58 15" screenSize, ?, screenSize
59, 60 TFT screenType, screenType, screenType
63, 66 IntelPentium ?, procName, false
63, 67 IntelPentium III procName, ?, procName

… … … … …
81, 83 1 GB ram, HDcapacity, false

Absence of prediction by an IE system is indicated by “?”. If a text
fragment doesn’t exist in the hand-filled template it is classified as
false. The remaining issue is to construct the full set of feature
vectors that will be used for training a meta-level classifier, from
the base-level training set that consists of annotated documents.
This disparity between base-level and meta-level datasets motivated
us to propose a new variant of the cross-validation methodology
that samples from documents, rather than from feature vectors, as
described in section 2.1.

3.3 The new stacking framework
The key idea behind stacking for IE is to learn a meta-level
classifier based on the output of base-level IE systems, estimated
via cross-validation as follows:

At the jth fold, , of cross-validation, the learning
algorithms are trained on the document set and the
induced IE systems are applied to the test set .
For each document in , let the populated templates
by respectively. A stacked template is
assembled from , as shown in section 3.2. A new feature
vector is produced for each entry in , which is added to the
meta-level dataset

Jj ..1= N
NLL ...1 jDD \

)()...(1 jEjE N jD
d jD NTT ...1

)()...(1 jEjE N ST
NTT ...1

ST
jMD . At the end of the cross-validation process,

the union =MD ∪ jMD constitutes the full meta-level dataset,
which is used for the training of a meta-level classifier . Finally,
the learning algorithms are retrained on the entire dataset

MC
N D

inducing the base-level IE systems to be used at runtime.
Table 6 presents an algorithmic description of the new stacking
framework.

NEE ...1

The vectors in the new meta-level dataset MD belong to
classes, where W the number of fields in the domain of interest,
plus the value “false”. A vector classified as “false” indicates that
the corresponding text fragment doesn’t exist in the hand-filled
template, and thus none of the IE systems should have predicted a
field for it (e.g. the “1 GB” in Table 5).

1+W

At runtime, given a new document , the base-level IE systems
are used to identify relevant instances and fill the corresponding
templates. A stacked template is created by the individual ones. For
each entry in the stacked template a feature vector is created and
finally classified by the meta-level classifier . If the vector is
classified into one of the W fields (i.e. it isn’t a “false” prediction),
the corresponding entry is inserted in the final
template for , otherwise (“false” prediction) the entry is rejected.
The stacking framework at runtime is shown in Figure 1.

d

MC

>< fest),,(
d

A major issue concerning cross-validation methodologies is
stratification. Unlike classification tasks where a similar
distribution of classes is maintained at each fold, in IE there is a
different distribution of field instances in each document. Therefore

Table 6. The new stacking framework for information extraction.

procedure stacking_for_IE (D , , , J NLL ...1 ML) begin
 = partition of JDD ...1 D into sets of documents of equal size J
 for = 1 to do begin j J

jMD = {}
for = 1 to do i N
 = the IE system obtained by training on)(jE i iL jDD \

 foreach document in d jD do begin
 for = 1 to do i N
 = template populated by applying to iT)(jE i d
 = create_stacked_template (,) ST d NTT ...1

 foreach entry, i.e. for each distinct , in do begin),(est ST
 for i = 1 to do N
 = the field by for ∈if }?"",,...{ 1 Wff)(jE i),(est
 = the correct field for },,...{ 1 falsefff W∈),(est
 jMD = jMD ∪ vector >< fff N ,,...1

 end
end

 end // end of cross-validation
 MD = ∪ jMD , Jj ..1=
 = meta-classifier obtained by applying MC ML on MD
 // Train the base-level IE systems
 for = 1 to do i N

 iE = the base-level IE system obtained by training on iL D
end

Figure 1. Stacking for information extraction at runtime.

it is extremely hard to even approximate the same distribution of
fields in each fold. Despite the lack of explicit stratification, in our
experiments we didn’t encounter particular problems.

3.4 Stacking with confidence scores
Algorithms that learn pattern matching rules for IE typically
determine an appropriate metric for evaluating the confidence of the
patterns being learned. A straightforward extension of the proposed
stacking framework is based on the idea that a predicted field for a
text fragment is accompanied by the confidence score of the
pattern that matched that fragment. The exact procedure follows:

),(est

• Instead of predicting one of the W fields for each , each
IE system generates a confidence score for the field , if
a field is predicted at all. This is modeled by a W -element
vector that contains zero values, except possibly for the kth
position where appears, i.e. .

),(est
kc kf

kc >< 0 0...,... kc
• Each vector is mapped to a new one , where

is a probability estimate that corresponds to and reflects the
correctness of the prediction in a range between zero and one.
The argument for performing this mapping is that confidence
scores produced by different algorithms are not comparable nor

>< 0...,...0 kp kp
kc

Meta level
vectors

New
document d

1E

2E

NE

1T

2T

NT

Stacked
template

MCT
Final

template

…

they bear any resemblance to probability estimates [9]. For
example, in the (LP)2 system [6] the confidence is measured
through the number of wrong matches made by each pattern
during training, while HMMs measure confidence by
logarithmic values assigned by the Viterbi algorithm. The
mapping of confidence scores to true probability estimates is
done using a form of linear regression, as proposed in [9]. This
allows us to adopt a similar multistrategy approach as that
presented in [9] for comparison purposes.

• Finally, the output vectors by for form a single
one of *W elements, appended by the correct field.

NEE ...1),(est
N

The inner foreach loop in Table 6 is appropriately modified to
handle the new setting. Table 7 shows the new meta-level vectors
assembled by the stacked template of Table 4.

Table 7. Meta-level vectors using confidence scores.

 Feature vectors
es, Features by 1E Features by 2E class

47, 49 0, 0, 0.92, 0, 0, 0, 0, 0, 0, 0.34, 0, 0, 0, 0, 0, 0, model
56, 58 0, 0, 0, 0, 0, 0, 0.83, 0, 0, 0, 0, 0, 0, 0, 0, 0, screenSize
59, 60 0, 0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.91, screenType
63, 66 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61, 0, 0, 0, 0, false
63, 67 0, 0, 0, 0.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, procName

… … … …
81, 83 0, 0, 0, 0, 0, 0.55, 0, 0, 0.89, 0, 0, 0, 0, 0, 0, 0, false

The same vector representation was used in the extension of
stacking for classification tasks proposed in [11]. The difference is
that class (or field) probability distributions are not typically
produced by IE systems. Therefore, except for the places in the
vectors that correspond to the predicted fields, all other values are
set to zero.

3.5 Voting and multistrategy learning
Voting does not involve an internal cross-validation process and
thus it is much faster than stacking. Given a page at runtime, a
stacked template is again formed by the individual ones. For each
entry in the stacked template, i.e. for each , the predicted
fields are counted and the one with the highest count is selected.
This is majority voting and in case of a tie, a random selection is
performed among the winning fields.

),(est

Multistrategy learning was used in [9] in the form of voting
using probability estimates, mapped from confidence scores. Since
in stacking with confidence scores we employ a similar mapping
process, as mentioned in section 3.4, we can use the same approach:
each predicted field by some IE system for is followed by a
confidence score which is mapped to a probability estimate. The
field with the highest estimate is finally selected and compared
against the field predicted by stacking.

),(est

4 EXPERIMENTS
The aims of the experiments are to a) determine if stacking provides
added value over the base-level IE systems, b) compare the simple
approach to stacking (with fields) against stacking with confidence
scores, c) compare stacking against majority voting and
multistrategy learning d) compare different classifiers at meta-level.

4.1 Algorithms
At base-level we experimented with three well-known learning
approaches for IE: the (LP)2 system [6], a sequential covering rule-

based learning approach, Hidden Markov Models (HMMs) [7], a
stochastic finite-state approach for IE, and Boosted Wrapper
Induction (BWI) [10]. At meta-level we experimented with six
different classifiers, as implemented in the WEKA environment
[15]: J48, an implementation of the C4.5 decision-tree inducer,
NaiveBayes, the well known Naïve Bayes classifier, IB1, the 1-
nearest-neighbour, SMO, an implementation of Support Vector
Machines, MLR, a multi-response linear regression implementation,
a setting commonly used in stacking for classification tasks [11, 12,
13], and finally the LogitBoost boosting algorithm using decision
stumps as weak classifiers.

4.2 Domains
Experiments were conducted using three collections of Web pages
describing three different domains. The first two collections consist
of 101 pages describing CS courses and 96 pages describing
research projects, and were constructed in the context of the
WebKB project [16]. They were hand-filled for three and two
extraction fields respectively: crsNumber, the number of the course,
crsTitle, the course title, crsInst, the course instructor, projTitle, the
project title and projMember, the name of a project member.

The third collection consists of 50 pages, describing laptop
products that were collected from 25 vendor sites1. A total of 19
extraction fields were hand-filled for this domain, including the
manufacturer of the laptop, the model name, the processor name,
processor speed, ram, hard disk capacity, etc. The particular dataset
was constructed in the context of building a shopping comparison
agent that visits various vendor sites, extracts laptop descriptions
and presents the results to the user.

As baseline for evaluating the proposed stacking framework we
used the best results obtained by the three base-level IE systems in
each dataset. Comparisons were also conducted against the best
results obtained by voting and multistrategy learning as described in
section 3.5. Finally, for the two WebKB datasets our results were
compared against multistrategy learning results, as presented in [9].

4.3 Evaluation methodology and metrics
For the evaluation, cross-validation was used to obtain an unbiased
estimate of performance on unseen data. For the laptop products
domain, the corpus of 50 pages was randomly split into five equally
populated parts. At each fold, a different part consisting of ten
pages was kept for evaluation and the systems were trained on the
remaining forty pages to induce the base-level IE systems and the
meta-level classifier. Results on the unseen parts were averaged
over all folds. Note that the cross-validation procedure used for
evaluation is completely different from the cross-validation used for
training, as presented in Table 6.

A different evaluation methodology was followed for the two
WebKB domains, in order to achieve an objective comparison with
the results reported for those domains in [9]. Each corpus was
randomly split into two parts of equal size. The first part was used
to induce the base-level IE systems and the meta-level classifiers.
The second part was kept for evaluation. The process was repeated
five times, averaging the results at the end.

As a performance measure we use the 1F evaluation metric,
which is the harmonic mean of recall (R) and precision (P),
defined as)/(21 PRRPF += . Precision is the percentage of the
predicted field instances that are correct, while recall is the

1 Dataset is available in http://www.iit.demokritos.gr/skel/crossmarc

percentage of the annotated field instances (in the hand-filled
templates) that were predicted by the system.

4.4 Results
Table 8 presents the best 1F scores of the base-level IE systems for
each domain, compared to the best results of majority voting-
multistrategy learning and the best meta-level classifiers, using the
simple approach (with fields) and the confidence-score approach.

Table 8. Best scores (%) of base-level IE systems, multistrategy setting
and best meta-level classifiers, for each of the three domains.

1F

 Base-level
IE system

Majority Voting-
Multistrategy

Stacking
with fields

Stacking with
conf. scores

CS courses 65,73 66,12 66,03 71,93
Projects 61,64 63,53 66,05 71,41
Laptops 63,81 64,38 68,46 71,55

For the CS courses domain (LP)2 obtained the best results at base-
level, while the HMMs obtain the best results for the other two
domains. Table 8, shows a clear improvement in performance when
using stacking with confidence scores against simple stacking,
majority voting-multistrategy learning and the best base-level IE
systems for all domains. Results in the third column are the best of
multistrategy learning, which are higher than the best results of
majority voting.

Table 9 shows the best 1F scores of all meta-level classifiers in
the stacking with confidence scores approach over all three
domains. The values in bold are the best 1F scores obtained for
each domain. On average, the LogitBoost and J48 classifiers
obtained the best results for all domains, with the former being
slightly better. The LogitBoost classifier performed best for the CS
courses, and the laptop products domain, while J48 performed best
for the domain of research projects.

Table 9. Best scores (%) of the meta-level classifiers over all domains. 1F

 CS courses Projects Laptops Average
J48 70,24 71,41 70,31 70,68
NaiveBayes 65,16 66,53 61,33 64,34
IB1 70,87 66,58 69,15 68,87
SMO 68,24 66,36 69,43 68,01
LogitBoost 71,93 70,67 71,55 71,38
MLR 70,50 65,19 69,72 68,47

Table 10 shows the best 1F scores per-field for the two WebKB
datasets, in order to compare against the results presented in [9].

Table 10. Per-field best scores (%) for the two WebKB datasets. 1F

 Best
Base

Multi-
strategy

Stacking with
confidence scores

Best
Base [9]

Multi-
strategy [9]

crsNumber 94,46 94,46 93,85 89,9 88,9
crsTitle 70,05 71,68 74,26 55,9 62,0
crsInst 48,21 48,98 58,53 48,1 49,8
projMember 65,00 66,38 73,83 41,1 45,5
projTitle 39,66 34,96 40,15 33,7 34,1

Experiments confirm the superiority of stacking with confidence
scores, on four out of five fields. Stacking results are also better
than the multistrategy learning results presented in [9]. This seems
to be partially due to the higher performance of the base-level
extractors that we used.

Note that the 1F scores in Tables 8 and 9 are based on precision
and recall averaged over all instances of all fields. This allows an
objective overall comparison among different IE systems.

Experiments in stacking pairs of base-level IE systems were also
conducted but did not lead to better results.

5 CONCLUSIONS AND FUTURE WORK
This paper presented a new framework for stacked generalization,
appropriate for IE tasks and demonstrated its effectiveness.
Experimental results have shown the superiority of the approach
against single IE systems and combination of IE systems through
voting and multistrategy learning.

Experiments will be continued using more datasets as well as
other algorithms both at base-level and at meta-level. A more
comprehensive use of the confidence scores generated by the
individual IE systems, other than the one described in [9], will also
be investigated, expecting to improve the new stacking framework.
Longer-term plans include the application of stacking to handle
harder forms of template-filling tasks.

6 ACKNOWLEDGEMENTS
The authors are grateful to Fabio Ciravegna for offering (LP)2 and
to Dayne Freitag for offering the two annotated WebKB datasets.

7 REFERENCES
[1] Wolpert, D., Stacked Generalization, Neural Networks,5(2): 241-260,

1992.
[2] Freund, Y., Shapire, R., Experiments with a new boosting algorithm. In

Proceedings of the 13th ICML, 148-156, 1996.
[3] Breiman, L., Bagging Predictors, Machine Learning, 24(2): 123-140,

1996.
[4] Thompson, C.A.,, Califf, M.E., Mooney, R.J., Active Learning for

Natural Language Parsing and Information Extraction, In Proceedings
of the 16th ICML, Bled, Slovenia, 1999.

[5] Califf, M.E., Mooney R.J., Bottom-up Relational Learning of Pattern
Matching Rules for Information Extraction, JMLR, (4), 177-210, 2003.

[6] Ciravegna, F., Adaptive Information Extraction from Text by Rule
Induction and Generalization. In Proc. of 17th IJCAI, Seattle, 2001.

[7] Freitag, D., McCallum, A., Information Extraction using HMMs and
schrinkage. AAAI-99 Workshop on machine learning for IE, 1999.

[8] Sonderland, S., Learning Information Extraction Rules for Semi-
structured and Free Text, Machine Learning, 34-(1/3), 233-272, 1999.

[9] Freitag, D., Machine Learning for Information Extraction in Informal
Domains, Machine Learning, 39, 169-202, 2000.

[10] Freitag, D., Kushmerick, N., Boosted Wrapper Induction, In
Proceedings of the 17th AAAI, 59-66, 1999.

[11] Ting, K., Witten M., Issues in stacked generalization, Journal of
Artificial Intelligence Research, 10, 271-289, 1999.

[12] Džeroski, S., Ženko, B., Is Combining Classifiers Better than Selecting
the Best One? Machine Learning, 54(3): 255-273, 2004.

[13] Seewald, A., Towards understanding stacking, PhD Thesis, Dept. of
Informatics, Technical University of Wien, Austria, 2003.

[14] Halteren, H., Zavrel, J., Daelemans, W., Improving accuracy in word
class tagging through combination of machine learning systems,
Computational Linguistics, 27 (2), 199-230, 2001.

[15] Witten, I., Frank, E., Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann, 2000.

[16] Craven, M., DiPasquo, D., Freitag, D., McCallum, A.K., Mitchell, T.,
Nigam, K., Slattery, S., Learning to extract symbolic knowledge from
the World Wide Web. In Proceedings of AAAI, 1998.

	INTRODUCTION
	BACKGROUND
	Stacking
	Information extraction at meta-level

	STACKED GENERALIZATION FOR INFORMATION EXTRACTION
	Definition of the extraction task
	Stacking information extraction systems
	The new stacking framework
	Stacking with confidence scores
	Voting and multistrategy learning

	EXPERIMENTS
	Algorithms
	Domains
	Evaluation methodology and metrics
	Results

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

