PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

PyRCC8 A Efficient Qualitative Spatial Reasoner

Michael Sioutis

Department of Informatics and Telecommunications National and Kapodistrian University of Athens

December 24, 2011

э

Table of Contents

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

1 Introduction

2 The RCC8 Calculus

3 Path Consistency

4 Consistency

5 Experimental results

6 Conclusions

7 Future Work

8 Bibliography

イロト イポト イヨト イヨト

About PyRCC8..

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

 PyRCC8 is an efficient qualitative spatial reasoner written in pure Python. It employs PyPy¹, a fast, compliant implementation of the Python language (2.7.1).

 Qualitative spatial reasoning is based on qualitative abstractions of spatial aspects of the common-sense background knowledge, on which our human perspective on the physical reality is based.

¹http://pypy.org/

Michael Sioutis

PyRCC8A Efficient Qualitative Spatial Reasoner

Reasons for Qualitative Spatial Reasoning

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- Two main reasons why non-precise, qualitative spatial information may be useful:
 - Only partial information may be available (e.g. we may know that one region is *disconnected* from another without knowing the precise geometry of the regions)
 - 2 General constraints holding among geographical objects are often most naturally stated in qualitative terms (e.g. we may wish to state that one region is *part of* another region)

イロト イポト イヨト イヨト

Applications of Qualitative Spatial Reasoning

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimental results

Conclusions

Future Work

Bibliography

 Qualitive spatial reasoning is an important subproblem in many *applications*, such as:

- Natural language understanding
- Document interpretation
- Geographical information systems

Region Connection Calculus

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- The Region Connection Calculus (RCC) is a first-order language for representation of and reasoning about topological relationships between extended spatial regions
- RCC abstractly describes regions, that are non-empty regural subsets of some topological space which do not have to be internally connected
- Relationships between spatial regions can be defined based on the C(a, b) connected relation, which is true if the topological closures of the regions a and b share a common point

Region Connection Calculus RCC8

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- The Region Connection Calculus RCC8 is a constraint language formed by the combination of the following eight jointly exhaustive and pairwise disjoint base relations:
 - disconnected (DC)
 - externally connected (EC)
 - equal (EQ)
 - partially overlapping (PO)
 - tangential proper part (TPP)
 - tangential proper part inverse (TPPi)
 - non-tangential proper part (NTPP)
 - non-tangential proper part inverse (NTPPi)

イロト イポト イヨト イヨト

The eight basic relations of the RCC8 calculus

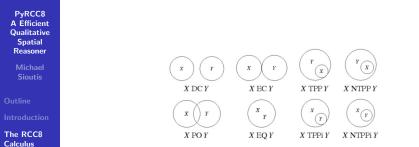


Figure: Two dimesional examples for the eight base relations of RCC8

From these basic relations, combinations can be built. For example, proper part (PP) is the union of TPP and NTPP.

э

The RCC8 composition table

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

0	DC	EC	PO	TPP	NTPP	TPP	NTPP	EQ
DC		DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC	DC	DC
EC	DC,EC PO,TPP NTPP	DC,EC PO,TPP TPP [,] ,EQ	DC,EC PO,TPP NTPP	EC,PO TPP NTPP	PO TPP NTPP	DC,EC	DC	EC
РО	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP		PO TPP NTPP	PO TPP NTPP	DC,EC PO, TPP NTPP	DC,EC PO,TPP NTPP	PO
TPP	DC	DC,EC	DC,EC PO,TPP NTPP	TPP NTPP	NTPP	DC,EC PO,TPP TPP [,] EQ	DC,EC PO,TPP NTPP	TPP
NTPP	DC	DC	DC,EC PO,TPP NTPP	NTPP	NTPP	DC,EC PO,TPP NTPP	•	NTPP
TPP	DC,EC PO,TPP NTPP	EC,PO TPP ~~ NTPP ~~	PO TPP ~ NTPP ~	PO,EQ TPP TPP	PO TPP NTPP	TPP) NTPP)	NTPP	TPP
NTPP	DC,EC PO,TPP NTPP	PO TPP NTPP	PO TPP ~ NTPP ~	PO TPP ^{~~} NTPP ^{~~}	PO,TPP TPP,NTPP NTPP,EQ	NTPP	NTPP	NTPP
EQ	DC	EC	PO	TPP	NTPP	TPP	NTPP	EQ

Figure: Composition table for RCC8 relations

・ロト ・回ト ・ヨト ・ヨト

Э

RCC8 example

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

Two houses are connected via a road. Each house is located on an own property. The first house possibly touches the boundary of the property; the second one surely does not. What can we infer about the relation of the properties to the road?

house1 DC house2 house1 {TPP, NTPP} property1 house1 {DC, EC} property2 house1 EC road house2 { DC, EC } property1 house2 NTPP property2 house2 EC road property1 { DC, EC } property2 road { DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi } property1

Using a path consistency algorithm, we can refine the network in the following way:

coad { PO, EC } property1
coad { PO, TPP } property2

RCC8 example

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

Two houses are connected via a road. Each house is located on an own property. The first house possibly touches the boundary of the property; the second one surely does not. What can we infer about the relation of the properties to the road?

house1 DC house2 house1 {TPP, NTPP} property1 house1 {DC, EC} property2 house1 EC road house2 { DC, EC } property1 house2 NTPP property2 house2 EC road property1 { DC, EC } property2 road { DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi } property1 road { DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi } property2

Using a *path consistency* algorithm, we can refine the network in the following way:

road { PO, EC } property1
road { PO, TPP } property2

The RSAT reasoning problem

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductior

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

 RSAT in the RCC8 framework, is the reasoning problem of deciding consistency of a set of spatial formula Θ, i.e., whether there is a spatial configuration where the relations between the regions can be described by Θ.

RSAT is NP-Complete!

■ However, tractable subsets *S* of RCC8 exist for which the consistency problem can be decided in polynomial time

The RSAT reasoning problem

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- RSAT in the RCC8 framework, is the reasoning problem of deciding consistency of a set of spatial formula Θ, i.e., whether there is a spatial configuration where the relations between the regions can be described by Θ.
- RSAT is NP-Complete!

■ However, tractable subsets *S* of RCC8 exist for which the consistency problem can be decided in polynomial time

イロト イポト イヨト イヨト

The RSAT reasoning problem

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- RSAT in the RCC8 framework, is the reasoning problem of deciding consistency of a set of spatial formula Θ, i.e., whether there is a spatial configuration where the relations between the regions can be described by Θ.
- RSAT is NP-Complete!
- However, tractable subsets S of RCC8 exist for which the consistency problem can be decided in polynomial time

イロト イポト イヨト イヨト

Maximal tractable subsets

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

```
Outline
```

Introduction

```
The RCC8
Calculus
```

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

■ First, we define as *NP*₈ the set of relations that by themselves result in NP-completeness when combined with the set of base relations:

 $NP_8 = \begin{cases} R \mid (\{PO\} \not\subseteq R \text{ and } (\{NTPP\} \subseteq R \text{ or } \{TPP\} \subseteq R) \\ and (\{NTPPi\} \subseteq R \text{ or } \{TPPi\} \subseteq R) \\ \cup \{\{EC, NTPP, EQ\}, \{DC, EC, NTPP, EQ, \}, \\ \{EC, NTPPi, EQ\}, \{DC, EC, NTPPi, EQ, \} \} \end{cases}$

The following subsets are maximal tractable subsets that contain all base relations:

 $\hat{J}_{8} = (\text{RCC8} \setminus NP_{8}) \setminus \{ R \mid (\{EQ, NTPP\} \subseteq R \text{ and } \{TPP\} \not\subseteq R) \\ \text{or } (\{EQ, NTPPi\} \subseteq R \text{ and } \{TPP\} \not\subseteq R) \}$

 $\Omega_8 = (\operatorname{RCC8} \setminus \operatorname{NP}_8) \setminus \{ \operatorname{R} \mid (\{\operatorname{EQ}\} \subset \operatorname{R} \text{ and } \{\operatorname{PO}\} \not\subseteq \operatorname{R}) \text{ and } \{\operatorname{PO}\} \not\subseteq \operatorname{R})$ $R \cap \{\operatorname{TPP}, \operatorname{NTPP}, \operatorname{TPPi}, \operatorname{NTPPi}\} \neq \emptyset \}$

Maximal tractable subsets

PyRCC8 A Efficient Qualitative Spatial Reasoner

Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

■ First, we define as *NP*₈ the set of relations that by themselves result in NP-completeness when combined with the set of base relations:

```
P_8 = \begin{cases} R \mid (\{PO\} \not\subseteq R \text{ and } (\{NTPP\} \subseteq R \text{ or } \{TPP\} \subseteq R) \\ and (\{NTPPi\} \subseteq R \text{ or } \{TPPi\} \subseteq R) \} \\ \cup \{\{EC, NTPP, EQ\}, \{DC, EC, NTPP, EQ, \}, \\ \{EC, NTPPi, EQ\}, \{DC, EC, NTPPi, EQ, \} \} \end{cases}
```

The following subsets are maximal tractable subsets that contain all base relations:

 $\hat{H_8} = \begin{array}{c} (\mathsf{RCC8} \setminus NP_8) \setminus \{ \mathsf{R} \mid (\{\mathsf{EQ}, \mathsf{NTPP}\} \subseteq R \text{ and } \{\mathsf{TPP}\} \not\subseteq R) \\ \text{ or } (\{\mathsf{EQ}, \mathsf{NTPPi}\} \subseteq R \text{ and } \{\mathsf{TPP}\} \not\subseteq R) \} \end{array}$

 $C_8 = \begin{array}{c} (\mathsf{RCC8} \setminus \textit{NP}_8) \setminus \{ \ \mathsf{R} \mid (\{\mathsf{EC}\} \subset \textit{R} \ \mathsf{and} \ \{\mathsf{PO}\} \not\subseteq \textit{R}) \ \mathsf{and} \\ R \cap \{\mathsf{TPP}, \mathsf{NTPP}, \mathsf{TPPi}, \mathsf{NTPPi}, \mathsf{EQ}\} \neq \emptyset \} \end{array}$

 $\begin{array}{ll} \mathcal{Q}_8 = & (\mathsf{RCC8} \setminus \underline{\textit{NP}_8}) \setminus \{ \ \mathsf{R} \mid (\{\mathsf{EQ}\} \subset \textit{R} \ \mathsf{and} \ \{\mathsf{PO}\} \not\subseteq \textit{R} \} \ \mathsf{and} \\ & R \cap \{\mathsf{TPP}, \mathsf{NTPP}, \mathsf{TPPi}, \mathsf{NTPPi} \} \neq \emptyset \} \end{array}$

Path Concistency

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- Approximates consistency and realises *forward checking* in a backtracking algorithm
- Checks the consistency of all triples of relations and eliminates relations that are impossible though iteravely performing the operation

$$M_{ij} \leftarrow M_{ij} \cap M_{ik} \circ M_{kj}$$

untill a fixed point \overline{M} is reached. If $M_{ij} = \emptyset$ for a pair (i, j) then M is inconsistent, otherwise \overline{M} is *path-consistent*.

• Computing \overline{M} is done in $O(n^3)$

Is path consistency sufficient?

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

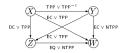
Outline

Introductio

The RCC8 Calculus

Path Consistency

Consistency


Experimenta results

Conclusions

Future Work

Bibliography

- Path consistency does **not imply** consistency
- The following set of spatial constraints is path-consistent but not consistent

• Still, path consistency is **sufficient** for deciding consistency, if only relations in any tractable subset that contains all base relations, like \hat{H}_8 , C_8 , Q_8 , are used

- 4 同 2 4 日 2 4 日 2

Is path consistency sufficient?

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

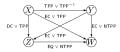
Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency


Experimenta results

Conclusions

Future Work

Bibliography

- Path consistency does not imply consistency
- The following set of spatial constraints is path-consistent but not consistent

Still, path consistency is sufficient for deciding consistency, if only relations in any tractable subset that contains all base relations, like H₈, C₈, Q₈, are used

イロト イポト イヨト イヨト

Algorithm

select and delete an (i, j) from Q

if $t \neq C_{ik}$ then

 $C_{ik} \leftarrow t$ $C_{\nu i} \leftarrow \check{t}$

if $t \neq \check{C}_{ki}$ then if $t = \emptyset$ then

 $C_{ki} \leftarrow t$

 $C_{ik} \leftarrow \check{t}$ $Q \leftarrow Q \cup \{(k, j)\}$

if $t = \emptyset$ then

return False

 $Q \leftarrow Q \cup \{(i, k)\}$

 $t \leftarrow C_{ki} \cap (C_{ki} \circ C_{ii})$

return False

for $k \leftarrow 1$ to n, k = i and k = j do $t \leftarrow C_{ik} \cap (C_{ii} \circ C_{ik})$

PyRCC8 A Efficient Qualitative Path-Consistency(C) Input: A constraint network C Spatial Reasoner Output: A refined constraint network C'. True or False 1: $Q \leftarrow \{(i, j) \mid 1 \le i < j \le n\} //$ Initialize the queue Sioutis 2: while Q is not empty do 3: 4: 5: 6: 7: 8: 9: 10: Path 11: Consistency 12: 13: 14: 15: 16: 17: 18: 19:return True Future Work

イロン イヨン イヨン イヨン

Implementations

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductior

The RCC8 Calculus

Path Consistency

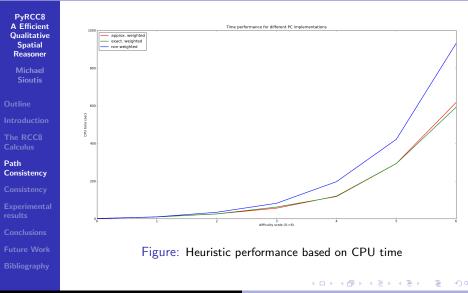
Consistency

Experimenta results

Conclusions

Future Work

Bibliography


Based on Simple Queue

Implentation with non-weighted arcs

Based on Priority Queue (process most restrictive arc first)

- Implentation with exactly weighted arcs
- Implentation with approximately weighted arcs, using the approach by Van Beek and Manchak [1]

Comparison of Implementations

Queue Structure

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductio

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

Simple Queue (combines set and deque):

- Membership checking: O(1)
- Push: *O*(1)
- Pop: *O*(1)
- Priority Queue (combines dictionary and heapq):
 - Membership checking: O(1)
 - Push: O(log(n))
 - Pop: O(log(n))

Comparing PC implementations of different QSRs

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

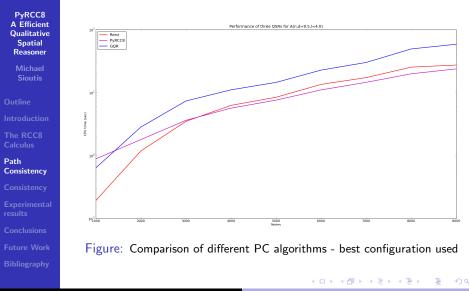
Path Consistency

Consistency

Experimenta results

Conclusions

Future Work


Bibliography

- We compare the PC implementation of PyRCC8 to the PC implementations of the following spatial qualitative reasoners:
 - Renz's solver²
 - GQR³
- Different size n of instances from A(n, d = 9.5, l = 4.0) were used

²http://users.rsise.anu.edu.au/%7Ejrenz/software/ rcc8-csp-solving.tar.gz ³http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/

Tools/gqr.html

Comparison diagram

Using the AdminGeo ontology to compare PC implementations of different QSRs

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductior

The RCC8 Calculus

Path Consistency

Consistency

Experimental results

Conclusions

Future Work

Bibliography

- We compare the PC implementation of PyRCC8 to the PC implementations of the following spatial qualitative reasoners:
 - Renz's solver
 - GQR
 - Pellet Spatial⁴
- The AdminGeo⁵ dataset (11761 regions / 77910 relations) was used which was properly translated to fit the input format of the different PC implementations

⁴http://clarkparsia.com/pellet/spatial/ ⁵http://data.ordnancesurvey.co.uk/ontology/admingeo/ ≧ ∽へ

Evaluation with a large dataset

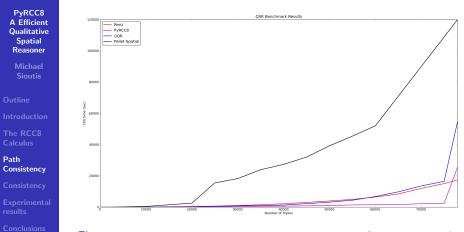


Figure: Comparison with use of the AdminGeo dataset (11761 regions / 77910 relations)

イロン イヨン イヨン イヨン

Consistency

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimental results Conclusions Future Work Bibliography

- To explore the search space in order to solve an instance
 Θ of RSAT, some sort of backtracking must be used.
- We implemented two backtracking algorithms:
 - 1 A strictly recursive one
 - 2 An equivalent iterative one which resembles tail-recursion

Recursive Algorithm

PyRCC8 A Efficient Qualitative Spatial Reasoner Michael Sioutis	Consistency (C) Input: A constraint network C Output: A refined constraint network C' if C is satisfiable or None
Outline	1: if not Path-Consistency(C) then 2: return None
Introduction	3: if no constraint can be split then 4: return C
The RCC8	5: else
Calculus	6: choose an unprocessed constraint $x_i R x_j$ and split R into $S_1, \ldots, S_k \in S$: $S_1 \cup \ldots \cup S_k = R$
D. 11	7: Values $\leftarrow \{S_l \mid 1 \leq l \leq k\}$
Path	8: for V in Values do
Consistency	9: replace $x_i R x_j$ with $x_i V x_j$ in C
Consistency	10: result = Consistency(C) 11: if result ≠ None then
Experimental results	11: In result 2 None 12: return result 13: return None
Conclusions	
Future Work	

<ロ> (四) (四) (日) (日) (日)

Э

Iterative Algorithm

PYRCLO							
A Efficient	Consistency(C)						
Qualitative	Input: A constraint network C						
Spatial	Output: A refined constraint network C' if C is satisfiable or None						
Reasoner							
	1: Stack \leftarrow {} // Initialize stack						
Michael	2: if not Path-Consistency(C) then						
Sioutis	3: return None						
	4: while 1 do						
utline	5: if no constraint can be split then						
	6: return C						
troduction	7: else						
	8: choose an unprocessed constraint $x_i R x_j$ and split R into $S_1, \ldots, S_k \in S: S_1 \cup \ldots \cup S_k = R$						
he RCC8	9: Values $\leftarrow \{S_l \mid 1 \le l \le k\}$						
	10: while 1 do						
	11: if not Values then						
	12: while Stack do						
	13: Values = Stack.pop()						
onsistency	14: if Values then						
	15: break						
kperimental sults	16: else						
	17: return None						
	18: $V = Values.pop()$						
onclusions	19: replace $x_i R x_j$ with $x_i V x_j$ in C						
	20: if Path-Consistency(C) then						
	21: break						
	22: Stack.push(Values)						
ibliography	23: raise RuntimeError, Can't happen						

э

Heuristics

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductio

The RCC8 Calculus

Path Consistency

Consistency

Experimenta results Conclusions

Bibliography

Split set specific

- Base relations set: Average branching factor of 4.0
- Horn relations set (*Ĥ*₈): Average branching factor of 1.4375
- Constraint specific
 - Static/Dynamic: constraint processing is done *statically* before or *dynamically* during the search
 - Local/Global: constraint evaluation based on *local* heuristic weight or *global* heuristic criterion
- Value specific
 - Choice of a sub-relation based on its contrainedness

Comparing PyRCC8 to other QSRs

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductio

The RCC

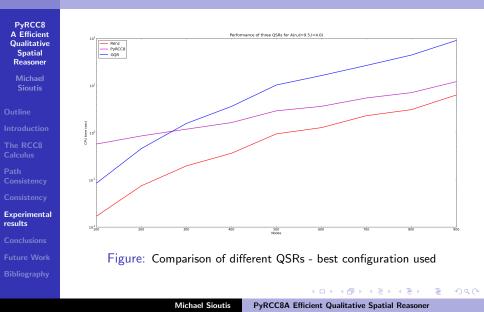
Path Consistency

Consistency

Experimental results

Conclusions Future Work We compare PyRCC8 to the following spatial qualitative reasoners:

Renz's solver⁶


GQR⁷

Different size n of instances from A(n, d = 9.5, l = 4.0) were used

⁶http://users.rsise.anu.edu.au/%7Ejrenz/software/ rcc8-csp-solving.tar.gz ⁷http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/ Tools/gqr.html

Michael Sioutis PyRCC8A Efficient Qualitative Spatial Reasoner

Comparison diagram

Evaluation of different heuristics with hard instances

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introduction

The RCC8 Calculus

Path Consistency

Consistency

Experimental results

Conclusions Future Work

Bibliography

- Hard instances are composed from relations of NP₈. We used the QSR benchmark dataset of QSTRLib⁸
- For all hard instances we ran PyRCC8 using the Horn relations set as our split set, and using the static/global and dynamic/local configuration, since dynamic/global and static/local proved to be insufficient, confirming the results in [2]
- Black line sets the # of visited nodes under which Renz's RCC8 reasoner was unable to solve instances for any configuration

⁸http://qstrlib.org/Benchmarks/

Results using hard of H instances (1/2)

PyRCC8 A Efficient Qualitative Spatial Reasoner

Michael Sioutis

Outline Introducti

The RCC Calculus

Path Consistenc

Consistency

Experimental results

Conclusions Future Work

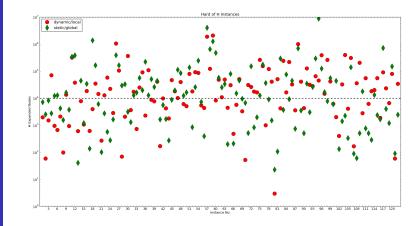


Figure: Comparison based on expanded nodes

Michael Sioutis PyRCC8A Efficient Qualitative Spatial Reasoner

・ロト ・日本 ・モート ・モート

Results using hard of H instances (2/2)

Michael Sioutis

Outline Introductic

The RCC Calculus

Path Consistenc

Consistency

Experimental results

Conclusions Future Work

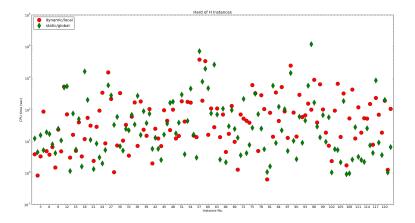
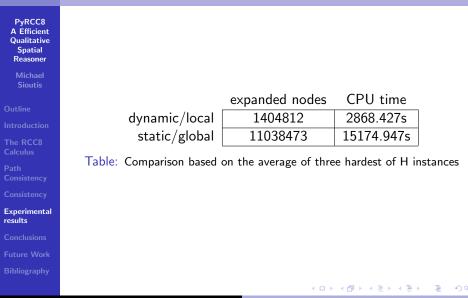



Figure: Comparison based on CPU time

Michael Sioutis PyRCC8A Efficient Qualitative Spatial Reasoner

イロン イヨン イヨン イヨン

Results using hardest of H instances

Conclusions

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductior

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- PyRCC8 outperforms GQR and Renz's reasoner in terms of path-consistency checking, as shown in Figure 4, and outperforms GQR and converges to the performance of Renz's reasoner in terms of consistency checking, as shown in Figure 6
- Allthough not demonstrated, maximal tractable subsets make a huge difference over the use of base relations, considering the branching factor of the two approaches
- dynamic/local ≥ static/global > static/local ≫ dynamic/global

イロト イポト イヨト イヨト

Future Work

PyRCC8 A Efficient Qualitative Spatial Reasoner

> Michael Sioutis

Outline

Introductior

The RCC

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

- Explore intelligent tie-breakers regarding variable and value selection
- Create module to generate spatial CSPs
- Transform PyRCC8 to a generic qualatitave reasoner
- Enhance PyRCC8 with spatial reasoning involving landmarks [3]
- Make use of Python's dynamic features to the fullest

イロト イポト イヨト イヨト

References

PyRCC8 A Efficient Qualitative Spatial Reasoner

Michael Sioutis

Outline

Introductio

The RCC8 Calculus

Path Consistenc

Consistency

Experimenta results

Conclusions

Future Work

Bibliography

[Van Beek and Manchak, 1996]

The design and experimental analysis of algorithms for temporal reasoning.

Journal of Artificial Intelligence Research, 4, 1-18.

[Nebel and Renz, 2001]

Efficient Methods for Qualitative Spatial Reasoning

Journal Of Artificial Intelligence Research, Volume 15, pages 289-318, 2001

[Weiming Liu, Shengsheng Wang, Sanjiang Li, and Dayou Liu, 2011] Solving qualitative constraints involving landmarks

CP'11 Proceedings of the 17th international conference on Principles and practice of constraint programming

	The End
PyRCC8 A Efficient Qualitative Spatial Reasoner Michael Sioutis	
Outline	
Introduction	Any Questions? 🙂
The RCC8 Calculus	
Path Consistency	
Consistency	
Experimental results	
Conclusions	
Future Work	
Bibliography	
	<日> <聞> <聞> (聞> 」 聞 三 ろんぐ