Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Department of Informatics and Telecommunications National and Kapodistrian University of Athens

November 8, 2012

イロン 不同と 不同と 不同と

Table of Contents

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions Future Work

Acknowledge

Bibliography

1 Introduction

2 PyRCC8

3
□ → Path Consistency

4 Experimental Results

5 Conclusions

6 Future Work

イロン イヨン イヨン イヨン

What is Qualitative Spatial Reasoning?

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

 Qualitative spatial reasoning is based on qualitative abstractions of spatial aspects of the common-sense background knowledge, on which our human perspective on the physical reality is based

- 4 同 6 4 日 6 4 日 6

Reasons for Qualitative Spatial Reasoning

- Consistency of Chordal RCC-8 Networks
 - Michael Sioutis
- Outline
- Introduction
- PyRCC8
- **▽-Path** Consistenc
- Experimenta Results
- Conclusions
- Future Work
- Acknowledge
- Bibliography

- Two main reasons why non-precise, qualitative spatial information may be useful:
 - 1 Only partial information may be available
 - 2 Spatial constraints are often most naturally stated in qualitative terms

Applications of Qualitative Spatial Reasoning

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- Qualitative spatial reasoning is an important subproblem in many *applications*, such as:
 - Robotic navigation
 - High level vision
 - Geographical information systems (GIS)
 - Reasoning and querying with semantic geospatial query languages (e.g., stSPARQL, GeoSPARQL)

Region Connection Calculus

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- The Region Connection Calculus (RCC) is a first-order language for representation of and reasoning about topological relationships between extended spatial regions
- RCC abstractly describes regions, that are non-empty regural subsets of some topological space which do not have to be internally connected

・ 同 ト ・ ヨ ト ・ ヨ ト

The RCC-8 Calculus

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimental Results

Conclusions

Future Work

Acknowledge

Bibliography

- RCC-8 is a *constraint* language formed by the combination of the following eight jointly exhaustive and pairwise disjoint *base relations*:
 - disconnected (DC)
 - externally connected (EC)
 - equal (EQ)
 - partially overlapping (PO)
 - tangential proper part (TPP)
 - tangential proper part inverse (TPPi)
 - non-tangential proper part (NTPP)
 - non-tangential proper part inverse (NTPPi)

The Eight Basic Relations of the RCC-8 Calculus

example, proper part (PP) is the union of TPP and NTPP.

The RCC-8 Composition Table

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistence

Experimenta Results

Conclusions

Future Worl

Acknowledge

Bibliography

\$	DC	EC	PO	трр	NTPP	TPPi	NTPPi	EQ
DC	*	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC,EC PO,TPP NTPP	DC	DC	DC
EC	DC,EC PO,TPPi NTPPi	DC,EC PO,TPP TPPi,EQ	DC,EC PO,TPP NTPP	EC,PO TPP NTPP	PO TPP NTPP	DC,EC	DC	EC
PO	DC,EC PO,TPPi NTPPi	DC,EC PO,TPPi NTPPi	*	PO TPP NTPP	PO TPP NTPP	DC,EC PO,TPPi NTPPi	DC,EC PO,TPPi NTPPi	РО
ТРР	DC	DC,EC	DC,EC PO,TPP NTPP	TPP NTPP	NTPP	DC,EC PO,TPP TPPi,EQ	DC,EC PO,TPPi NTPPi	ТРР
NTPF	DC	DC	DC,EC PO,TPP NTPP	NTPP	NTPP	DC,EC PO,TPP NTPP	*	NTPP
ТРРі	DC,EC PO,TPPi NTPPi	EC,PO TPPi NTPPi	PO TPPi NTPPi	PO,EQ TPP TPPi	PO TPP NTPP	TPPi NTPPi	NTPPi	ТРРі
NTPF	i DC,EC PO TPPi NTPPi	PO TPPi NTPPi	PO TPPi NTPPi	PO TPPi NTPPi	PO,TPP NTPP NTPPi TPPi,EQ	NTPPi	NTPPi	NTPPi
EQ	DC	EC	PO	ТРР	NTPP	TPPi	NTPPi	EQ

Michael Sioutis

Consistency of Chordal RCC-8 Networks

イロン 不同と 不同と 不同と

Э

The RSAT Reasoning Problem

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- RSAT in the RCC-8 framework is the reasoning problem of deciding whether there is a spatial configuration where the relations between the regions can be described by a spatial formula Θ
- RSAT is NP-Complete!
- However, tractable subsets S of RCC-8 exist, such as H
 ₈, C₈, Q₈ [5], for which the consistency problem can be decided in polynomial time

The RSAT Reasoning Problem

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- RSAT in the RCC-8 framework is the reasoning problem of deciding whether there is a spatial configuration where the relations between the regions can be described by a spatial formula Θ
- RSAT is NP-Complete!
- However, tractable subsets S of RCC-8 exist, such as H
 ₈, C₈, Q₈ [5], for which the consistency problem can be decided in polynomial time

The RSAT Reasoning Problem

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- RSAT in the RCC-8 framework is the reasoning problem of deciding whether there is a spatial configuration where the relations between the regions can be described by a spatial formula Θ
- RSAT is NP-Complete!
- However, tractable subsets S of RCC-8 exist, such as H
 ₈, C₈, Q₈ [5], for which the consistency problem can be decided in polynomial time

Path Concistency

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- Approximates consistency and realizes *forward checking* in a backtracking algorithm
- Checks the consistency of triples of relations and eliminates relations that are impossible though iteravely performing the operation

$$R_{ij} \leftarrow R_{ij} \cap R_{ik} \diamond R_{kj}$$

until a fixed point \overline{R} is reached

- If $R_{ij} = \emptyset$ for a pair (i, j) then R is inconsistent, otherwise \overline{R} is *path-consistent*.
- Computing \overline{R} is done in $O(n^3)$

About PyRCC8..

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistend

Experimenta Results Conclusions

Future Work

Acknowledge

Bibliography

 PyRCC8¹ is an efficient qualitative spatial reasoner written in pure Python. It employs PyPy², a fast, compliant implementation of the Python 2 language

 PyRCC8 offers a path consistency algorithm for solving tractable RCC-8 networks and a backtracking-based algorithm for general networks

¹http://pypi.python.org/pypi/PyRCC8

²http://pypy.org/

Comparing PC Implementations of Different Reasoners

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

- **▽-Path** Consistenc
- Experimental Results Conclusions
- Future Work
- Acknowledge
- Bibliography

- We compare the PC implementation of PyRCC8 to the PC implementations of the following qualitative spatial reasoners:
 - Renz's solver³
 - GQR⁴
 - Pellet Spatial⁵
- The admingeo⁶ dataset (11761 regions / 77910 relations) was used which was properly translated to fit the input format of the different PC implementations

```
5
http://clarkparsia.com/pellet/spatial/
```

http://data.ordnancesurvey.co.uk/ontology/admingeo/ 🗆 > 🔸 🗗 > ᢣ 🛓 🐑 🚊 🔊 🔍

³ http://users.rsise.anu.edu.au/%7Ejrenz/software/rcc8-csp-solving.tar.gz
4

⁴http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html

Evaluation with a Large Dataset

э

Consistency

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work

Acknowledge

Bibliography

- To explore the search space for the general case of RCC-8 networks in order to solve an instance Θ of RSAT, some sort of backtracking must be used
- We implemented two backtracking algorithms:
 - 1 A strictly recursive one
 - 2 An equivalent iterative one which resembles recursion

Comparing PyRCC8 to Other Reasoners

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistend

Experimenta Results Conclusions Future Work

Acknowledge

Bibliography

- We compare PyRCC8 to the following qualitative spatial reasoners:
 - Renz's solver⁷
 - GQR⁸
- Different size n of instances from A(n, d = 9.5, l = 4.0) were used

⁸ http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html > < 🗄 > 🛛 🚊 🔊 🔍 🔇

⁷ http://users.rsise.anu.edu.au/%7Ejrenz/software/rcc8-csp-solving.tar.gz

Comparison Diagram

¬-Path Concistency

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline Introduction

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge

Bibliography

Up till now, all aproaches in qualitative spatial reasoning enforce path consistency on a complete spatial network

We propose enforcing path consistency on a *chordal* spatial network [2] as Chmeiss and Condotta have done for temporal networks [3], and we call this type of local consistency as *¬*-*path consistency* for clarity

¬-Path Concistency

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline Introductio

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge

Bibliography

- Up till now, all aproaches in qualitative spatial reasoning enforce path consistency on a complete spatial network
- We propose enforcing path consistency on a *chordal* spatial network [2] as Chmeiss and Condotta have done for temporal networks [3], and we call this type of local consistency as *¬*-*path consistency* for clarity

Chordal Graph

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline Introductio

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge Bibliography

- A graph is chordal if each of its cycles of four or more nodes has a *chord*, which is an edge joining two nodes that are not adjacent in the cycle
- An example of a chordal graph is shown below:

- 4 同 6 4 日 6 4 日 6

Triangulation

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistency

Experimenta Results Conclusions Future Work

Acknowledge

Bibliography

- Triangulation of a given graph is done by eliminating the vertices one by one and connecting all vertices in the neighbourhood of each eliminated vertex with *fill edges*
- Determining a minimum triangulation is an NP-hard problem
- Use of several heuristics for sub-optimal solutions (e.g. minimum degree, minimum fill)
- Chordality checking can be done efficiently in O(|V| + |E|) time, for a graph G = (V, E) (e.g., with MCS, LexBFS)

소리가 소문가 소문가 소문가

Preliminaries

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Outline Introduction

PyRCC8

- **▽-Path** Consistency
- Experimental Results Conclusions Future Work Acknowledge
- Bibliography

- Let G = (V, E) be an undirected chordal graph. There exists a tree T, called a *clique tree* of G, whose vertex set is the set of maximal cliques of G
- Let C be a constraint network from a given CSP. Then, V_C refers to the set of variables of C
- If V is any set of variables, C_V will be the constraint network C that involves variables of V

Patchwork Property in RCC-8 Networks

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Outline Introduction

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge Bibliography

Definition

We will say that a CSP has the patchwork property if for any finite satisfiable constraint networks C and C' of the CSP such that $C_{\mathcal{V}_C \cap \mathcal{V}_{C'}} = C'_{\mathcal{V}_C \cap \mathcal{V}_{C'}}$, the constraint network $C \cup C'$ is satisfiable [4].

Proposition

The three CSPs for path consistent $\hat{\mathcal{H}}_8, \mathcal{C}_8$, and \mathcal{Q}_8 networks, respectively, all have patchwork [4].

・ロト ・回ト ・ヨト ・ヨト

Proposition

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline Introduction

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge

Proposition

Let C be an RCC-8 constraint network with relations from $\hat{\mathcal{H}}_8, \mathcal{C}_8$, and \mathcal{Q}_8 on its edges. Let G be the chordal graph that results from triangulating the associated constraint graph of C, and T a clique tree of G. C is consistent if all the networks corresponding to the nodes of T are path consistent.

Example

Michael Sioutis

Outline Introductio

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge

・ロト ・回ト ・ヨト ・ヨト

Э

PyRCC8▽

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline Introductio

PyRCC8

▽-Path Consistency

Experimental Results Conclusions Future Work Acknowledge

- PyRCC8 is a chordal reasoner which was developed by extending PyRCC8
- Similarly to PyRCC8, PyRCC8 offers a offer

イロン イヨン イヨン イヨン

\bigtriangledown -Path Consistency Algorithm

¬-Path-Consistencv(C, G) Input: A constraint network C and its chordal graph G Output: True or False 1: $Q \leftarrow \{(i, j) \mid (i, j) \in E\}$ // Initialize the queue 2: while Q is not empty do select and delete an (i, j) from Q for each k such that (i, k), (k, j) $\in E$ do $t \leftarrow C_{ik} \cap (C_{ii} \diamond C_{ik})$ if $t \neq C_{ik}$ then if $t = \emptyset$ then return False $C_{i\nu} \leftarrow t$ $C_{ki} \leftarrow \check{t}$ $Q \leftarrow Q \cup \{(i, k)\}$ $t \leftarrow C_{ki} \cap (C_{ki} \diamond C_{ii})$ if $t \neq \check{C}_{kj}$ then if $t = \emptyset$ then return False $C_{ki} \leftarrow t$ $C_{ik} \leftarrow \check{t}$ $\vec{Q} \leftarrow Q \cup \{(k, i)\}$

イロン イヨン イヨン イヨン

Complexity Analysis

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Outline Introductio

PyRCC8

- **▽**-Path Consistency
- Experimenta Results Conclusions
- Future Work
- Acknowledge
- Bibliography

- Let δ denote the maximum degree of a vertex of ${\it G}$
- For each arc (i, j) selected at line 3, we have at most δ vertices of G corresponding to index k such that v_i, v_j, v_k forms a triangle
- Additionaly, there exist |E| arcs in the network and one can remove at most |B|⁹ values from any relation that corresponds to an arc
- It results that the time complexity of \bigtriangledown -path consistency is $O(\delta \cdot |E| \cdot |B|)$

 $^{^9{\}cal B}$ refers to the set of base relations of RCC-8

Recursive *¬*-Consistency Algorithm Consistency of Chordal RCC-8 Networks Michael ∇ -Consistency(C, G) Sigutis Input: A constraint network C and its chordal graph G Output: A refined constraint network C' if C is satisfiable or None 1: if not ¬-Path-Consistency(C, G) then 2. return None 3: if no constraint can be split then 4. return C 5 else **▽**-Path choose unprocessed constraint $x_i R x_i$; split R into $S_1, \ldots, S_k \in S$: $S_1 \cup \ldots \cup S_k = R$ 6: Consistency Values $\leftarrow \{S_l \mid 1 < l < k\}$ 7: 8: for V in Values do replace $x_i R x_i$ with $x_i V x_i$ in C 9: 10: result = ∇ -Consistency(C, G) 11: if result \neq None then 12. return result 13. return None

소리가 소문가 소문가 소문가

Iterative \bigtriangledown -Consistency Algorithm

Consistency

▽-Consistency(C, G) of Chordal Input: A constraint network C, A chordal graph G RCC-8 Output: A refined constraint network C' if C is satisfiable or None Networks Michael 1: Stack \leftarrow {} // Initialize stack Sigutis 2: if not
¬-Path-Consistency(C, G) then return None 3. 4 while 1 do 5: if no constraint can be split then 6: return C 7. else 8: choose unprocessed constraint $x_i R x_i$; split R into $S_1, \ldots, S_k \in S$: $S_1 \cup \ldots \cup S_k = R$ Q٠ Values $\leftarrow \{S_l \mid 1 < l < k\}$ while 1 do **▽**-Path 10. Consistency 11: if not Values then 12. while Stack do 13: C. Values = Stack.pop()14: if Values then 15: break 16: else 17: return None 18: V = Values.pop()replace $x_i R x_i$ with $x_i V x_i$ in C 19: if
¬-Path-Consistency(C, G) then 20: 21. break 22. Stack.push(C. Values) 23:raise RuntimeError, Can't happen

Comparing PyRCC8 \bigtriangledown to PyRCC8

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistency

Experimental Results

Conclusions Future Work Acknowledge

Bibliography

■ We compare PyRCC8 to PyRCC8, a complete graph dedicated reasoner, using the following data:

- Random instances composed from the set of all RCC-8 relations
- The admingeo¹⁰ dataset

¹⁰http://data.ordnancesurvey.co.uk/ontology/admingeo/□ → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) → < (□) →

Experimenting with Random Instances

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistency

Experimental Results

Conclusions Future Work Acknowledge Ribliography

- We generated instances from A(100, d, l = 4.0), for d varying from 3 to 15 with a step of 0.5. For each series, 300 networks were generated using Renz's network generator¹¹
- We used the Horn relations set as our split set, and the dynamic/local constraint scheme with a weighted queue configuration, since it proved to be the best combination for both reasoners, confirming the results in [5]

¹¹http://users.rsise.anu.edu.au/%7Ejrenz/software/rcc8=csp~solving.tar.gz >> = ~ () Q ()

Comparison Diagram on CPU time

Comparison Diagram on # of Revised Arcs

э

Comparison Diagram on # of Checked Constraints

	Results Summary				
Consistency of Chordal RCC-8 Networks					
Michael Sioutis					
Outline		PyRCC8	PyRCC8▽	%	
Introduction	CPU time	0.524s	0.509s	2.80%	
PyRCC8	revised arcs	1300.681	801.204	38.40%	
▽-Path Consistency	checked constraints	105751.173	74864.985	29.21%	
Experimental Results	Table: Comparison based on the average of different parameters				
Conclusions					
Future Work					

(ロ) (四) (E) (E) (E)

Experimenting with the Admingeo Dataset

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimental Results

Conclusions Future Work Acknowledge Bibliography

- The admingeo¹² dataset consists of 11761 regions and 77910 base relations, thus being an extremely large and sparse network, making itself a good candidate for stress testing different path consistency implementations
- We used a simple queue configuration, since the weighted variants made no difference on this dataset other than using much more memory

¹²http://data.ordnancesurvey.co.uk/ontology/admingeo/ □ > < □ > < ⊇ > < ⊇ > < ⊇ < >

Comparison Diagram on CPU Time

Comparison Diagram on # of Revised Arcs

Comparison Diagram on # of Checked Constraints

	Results Summary			
Consistency of Chordal RCC-8 Networks				
Michael Sioutis				
Outline		PyRCC8	PyRCC8▽	%
	CPU time	1825.129s	289.203s	84.15%
PyRCC8	revised arcs	4834133.78	373080.28	92.28%
▽-Path Consistency	checked constraints	3.606e + 10	1.181e + 09	96.72%
Experimental Results	Table: Comparison b	ased on the avera	ge of different pa	rameters
Conclusions				

Test Machine

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistency

Experimental Results

Conclusions

- -uture vvork
- Acknowledge
- Bibliography

- All experiments were carried out on a computer with an Intel Xeon 4 Core X3220 processor with a CPU frequency of 2.40 GHz, 8 GB RAM, and the Debian Lenny x86 64 OS
- Renz's solver and GQR were compiled with gcc/g++ 4.4.3
- PelletSpatial was run with OpenJDK 6 build 19, which implements Java SE 6
- PyRCC8 was run with PyPy 1.8, which implements Python 2.7.2
- Only one of the CPU cores was used for the experiments

Conclusions

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimental Results

Conclusions

Future Work Acknowledge Bibliography

- We made the case for a new generation of RCC-8 reasoners implemented in Python, and making use of advanced Python environments, such as PyPy, utilizing trace-based JIT compilation techniques
- \blacksquare We introduced $\bigtriangledown\mbox{-path}$ consistency for RCC-8 networks
- We showed that
 ¬-path consistency is sufficient to decide the consistency problem for the maximal tractable subsets Ĥ₈, C₈, and Q₈ of RCC-8
- We implemented a chordal graph dedicated reasoner for RCC-8 networks
- We showed expirimentally that ¬path consistency can offer a great advantage over full path consistency on sparse graphs

Main Points

Consistency of Chordal RCC-8 Networks

> Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experimenta Results

Conclusions

Future Work Acknowledge Bibliography

- Explore self learning heuristics regarding variable and value selection
- Create module to generate spatial CSPs
- Transform PyRCC8 into a generic qualitative reasoner
- Use other methods of triangulation and compare the behavior of partial path consistency for these different methods
- Perform experiments with other possible real datasets, such as GADM¹³

13 http://gadm.geovocab.org/

Acknowledge

- Consistency of Chordal RCC-8 Networks
 - Michael Sioutis
- Outline
- Introduction
- PyRCC8
- ▽-Path Consistenc
- Experimenta Results
- Conclusions
- Future Work
- Acknowledge
- Bibliography

- This work was funded by the FP7 project TELEIOS (257662)
- I would also like to thank my colleagues, and Katia Papakonstantinopoulou especially, for their help, interest, and advice

イロト イポト イヨト イヨト

э

References

Consistency of Chordal RCC-8 Networks

Michael Sioutis

Outline

Introduction

PyRCC8

▽-Path Consistenc

Experiment Results

Conclusions

Future Worl

Acknowledg

Bibliography

[Van Beek and Manchak]

The design and experimental analysis of algorithms for temporal reasoning JAIR, vol. 4, pages 1–18, 1996

[Bliek and Sam-Haroud]

Path Consistency on Triangulated Constraint Graphs In *IJCAI*, 1999

[Chmeiss and Condotta]

Consistency of Triangulated Temporal Qualitative Constraint Networks In *ICTAI*, 2011

[Huang]

Compactness and Its Implications for Qualitative Spatial and Temporal Reasoning

In *KR*, 2012

[Renz and Nebel]

Efficient Methods for Qualitative Spatial Reasoning JAIR, vol. 15, pages 289–318, 2001

イロン 不同と 不同と 不同と

	The End
Consistency of Chordal RCC-8 Networks Michael Sioutis	
Outline	
Introduction	
PyRCC8	Any Questions?
▽-Path Consistency	
Experimental Results	
Conclusions	
Future Work	
Acknowledge	
Bibliography	