
Yannis Smaragdakis

1 of 14

Object Layout and Dispatch 
for Multiple Inheritance

• This lecture is based on Myers’s Master thesis 
“Fast Object Operations in a Persistent 
Programming System”

- I will present all the arguments exactly as 
they are in the thesis, and then we will 
discuss them critically (hint: don’t agree 
with everything I say)

- This is an excellent intro to issues of object 
layout, dispatch mechanisms, multiple 
inheritance vs. interface inheritance, etc.

- Warning: the presentation is condensed. We 
should spend a long time on each slide

Yannis Smaragdakis

2 of 14

Single Inheritance Object Layout

• Indirection for dynamic dispatch

• Superclass object embedded into subclass 
object, superclass dispatch table (v-table) a 
prefix of subclass dispatch table

- subclass objects can always be viewed as 
superclass objects (makes things very simple)

CPoint

Point
x()
y()point

fields

x()
y()point

fields
get_c()
set_c()cpoint

fields

Yannis Smaragdakis

3 of 14

Background

• Recall: C++ has true multiple inheritance, Java 
has single inheritance, but a class can conform 
to multiple interfaces. This is also the case for 
Theta, the language discussed in this thesis

- alternatively: “a class has a single superclass but 
multiple supertypes”

• Assumptions for evaluation:
- we want to maintain separate compilation: 

when we compile a class we don’t know 
the entire inheritance hierarchy (especially, 
its subclasses)

- objects are much more numerous than 
classes. Some extra space overhead per 
class is negligible if it saves space per 
object

Yannis Smaragdakis

4 of 14

Multiple Inheritance Object Layout

• True multiple inheritance: layout becomes 
convoluted

• The subclass object can be treated as a 
superclass object only for the “primary 
superclass”

D

B
A fields A methsA C

D

D fields

B fields

C fields

D meths

B meths

C meths



Yannis Smaragdakis

5 of 14

• This means that method dispatch is more 
complicated: methods are pre-compiled for a 
certain object layout

- an inherited method will need to view a 
subclass object as a superclass object

- an overridden method will need to view a 
superclass subobject as a subclass object

• This means that every method dispatch will 
incur some “offset adjustment” overhead 
(which sometimes can be eliminated)

- an inherited method from a non-primary 
superclass, accessed through a subclass object, 
will need the this pointer adjusted to point 
to the superclass (where the method was 
inherited from) subobject

- an overridden method, originally defined in a 
non-primary superclass, accessed through that 
superclass’s subobject, will need this 
adjusted to point to the subclass object

- (example with point, rect, box, and an 
area method in rect and box)

Yannis Smaragdakis

6 of 14

Offset Adjustment Optimizations

• Neat optimization for the common case:
- for the few methods that do need 

adjustment, put a pointer to a stub method 
in the dispatch vector. The stub method 
first adjusts the this pointer, then jumps to 
the right method

- this way, the objects that don’t need offset 
adjustment incur no overhead

• Even better but complicated: rewrite the 
method code to use the correct offsets when it 
accesses fields. Point to the re-written version 
of the code from the dispatch table

Yannis Smaragdakis

7 of 14

Space Overhead Problems

• The standard multiple inheritance layout may 
incur significant space overheads per object: 
one dispatch header word for every path to a 
root of the hierarchy

• Pathological example: exponential number of 
dispatch words (in the depth of the hierarchy)

• Myers argues for a new layout that has benefits 
for Java-like languages

Yannis Smaragdakis

8 of 14

Layout Examples

• What are the layouts for these hierarchies
- “I” denotes interface, “C” denotes class

C2

C1I1

C2

C1

I1

I2



Yannis Smaragdakis

9 of 14

More Complex

• Myers argues that the following hierarchy is 
common in Java-like languages (motivating 
example)

• What is the layout for that?

C2

C1

I1

I2

C3

I3

C4

I4

Yannis Smaragdakis

10 of 14

Myers’s Bidirectional Object Layout

• Claimed to be 1) more compact; 2)amenable to 
faster dispatch; 3) better suited for persistent 
objects than the standard C++ multiple 
inheritance layout

- only applicable to Java-like languages with 
single superclass

• Standard C++ layout for such languages:

D

B
A fields A methsA C

D

D fields
D meths
B meths

C meths

Yannis Smaragdakis

11 of 14

• Bidirectional layout:

• Dispatch pointers grow upwards, fields grow 
downwards

• All objects have a single class dispatch header 
but perhaps multiple interface dispatch headers

• Offsets are simple:
- for access through class pointer, no adjustment
- for access through interface pointer, offset is 

same for every interface method (they are all 
“overridden”, figuratively)

D

B

A fields A meths

A C

D fields
D meths

B meths

C meths

Yannis Smaragdakis

12 of 14

Optimizations: Type Headers

• Merging type headers: dispatch tables must be 
merge-able (distinct indices for distinct 
methods—e.g., I1 has offsets 0,2,4,6, I2 has 
offsets 1,3,5)

- always true for sequential assignment of 
method offsets if a type is a subtype of 
another

- several tricks to make independent dispatch 
tables merge-able: more sparse assignment 
of method indices

- good for further reading if anyone is interested
- simple trick: even spacing, beginning at 

original index in the range 1..N (randomly)
- good when multiple supertypes are rare



Yannis Smaragdakis

13 of 14

Optimizations: Class + Type headers

Even with full merging of type headers, two 
separate header words (one for type header, one 
for class header) is still worse than single 
inheritance

• Merging class header with type header (3 
common optimizations)

- e.g., if class has no superclass, all methods 
can go after the supertype’s methods

- class methods can start at fixed offset (e.g., 
100 slots from the beginning of the 
dispatch vector—this leaves room for 100 
interface methods)

- negative method indices for types

• If all previous optimizations are applied, most 
objects will have a single dispatch word, both 
for interface and for class accesses

Yannis Smaragdakis

14 of 14

Critique

• What’s the contribution of the bidirectional 
object layout?

- how much of the benefit can be obtained by 
applying the same optimizations to the 
standard multiple inheritance layout, given 
that the language is Java-like(no multiple 
inheritance but multiple interfaces) ?


