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Abstract

Adding distributed capabilities to existing programs has
come to the forefront of software evolution. As a standard
Java distributed technology, applets offer the advantages
of being easily deployable over web browsers and requir-
ing little to no explicit distributed programming. Yet
applets are inflexible: they download remote code and run
it only on the client machine. We present appletizing: a
semi-automatic approach to transforming a Java GUI
application into a client-server application, in which the
client runs as a Java applet that communicates with the
server through RMI. To enable appletizing, we have
expanded the capabilities of J-Orchestra, our automatic
partitioning system that takes as input a Java application
in bytecode format and transforms it into a distributed
application, running across multiple standard JVMs. We
discuss the motivation, benefits, and J-Orchestra support
for appletizing, and validate our approach via a set of case
studies and associated benchmarks.

1. Introduction

As the emergence of the Internet has changed the com-
puting landscape, distribution is no longer optional but
necessary in a large and growing number of software sys-
tems. The focus of distributed computing has been shifting
from “distribution for parallelism” to “resource-driven dis-
tribution,” with the resources of an application naturally
remote from each other or from the computation. Because
of this shift, more and more legacy code needs to be
adapted for distributed execution. In out context, the term
‘legacy’ refers to all centralized Java applications, written
without distribution in mind, that need to be changed to
move parts of their execution to a remote machine. The
amount of such legacy code in Java is by no means insig-
nificant with the Java technology being a decade old and
four million Java developers worldwide [4].

A large part of what makes Java a language that “allows
application developers to write a program once and then
be able to run it everywhere on the Internet” [9] are stan-

dard distribution technologies over the web. Such Ja
technologies as applets and servlets have two major adv
tages: they require little to no explicit distributed program
ming and they are easily deployable over standard w
browsers. Nevertheless, these technologies are inflexib
In the case of applets, a web browser first transfers
applet’s code from the server site to the user system a
then executes it safely on its Java Virtual Machine (JVM
usually in order to draw graphics on the client’s screen.
the symmetric case of servlets, code executes entirely
the server, usually in order to access a shared resou
such as a database, transmitting only simple inputs a
outputs over the network. Therefore, these standard te
nologies offer a hard-coded answer to the important que
tion of how the distribution should take place, and it is th
same for each applet and servlet. Besides these t
extremes, one can imagine many other solutions that
customizable for individual programs. A hybrid of the two
approaches promises significant flexibility benefits: th
programmer can leverage both the resources of the cli
machine (e.g., graphics, sound, mouse input) and t
resources of a server (e.g., shared database, file syst
computing power). At the same time, the application wi
be both safe and efficient: one can benefit from the sec
rity guarantees provided by Java applets, while commu
cating only a small amount of data between the applet a
a remote server.

The challenge is to get an approach that runs code b
on clients and on a server while avoiding explicit distrib
uted systems development, just like applet and serv
technologies do. This paper presentsappletizing: a semi-
automatic approach to transforming a centralized, mon
lithic Java GUI application into a client-server application
in which the client runs as a Java applet that communica
with the server through Java RMI. Appletizing builds upo
automatic partitioning, a technology in which a tool take
as input a regular program and user-supplied locati
information for its code and data, and automatical
rewrites the program so that both the code and the d
divide into parts that can run in the desired location. An

1.  This research was performed while the author was at the Georgia Institute of Technology.
1



is-
on
its
rce
ith
ly
a
n-

n.
-
rd
f-
of
is
if-

if-
o-
he
ti-

h,
].

,
t,
d
n
ng
a
a

od

o
e
e

data exchange between parts of the program at different
locations automatically becomes remote communication.

Because appletizing is essentially a specialization of
automatic partitioning with a predefined deployment envi-
ronment for the resulting client-server applications, we
implemented it on top of J-Orchestra [21][22], our auto-
matic partitioning system, that takes as input a Java appli-
cation in bytecode format and transforms it into a
distributed application, running across multiple JVMs.
Similarly to regular partitioning, appletizing requires no
explicit programming or modification to the JVM or its
standard runtime classes.

At the same time, the specialized domain makes applet-
izing more automatic, which required adding several new
features to J-Orchestra such as a new static analysis heu-
ristics that automatically assigns classes to the client and
the server sites, a more precise profiling implementation,
special bytecode rewrites that adapt certain operations for
execution within an applet, and runtime support for the
applet/server coordination.

Overall, our approach offers a unique combination of
the following benefits:
• Programming advantages. This includes no-coding dis-

tribution and flexibility in writing applications that use
complex graphical interfaces and remote resources.

• User deployment advantages. With the client part run-
ning as a regular Java applet rather than as a stand-alone
distributed application, our approach is accessible to the
user via any Java-enabled browser.

• Performance advantages. We minimize network traffic
through profiling-based object placement and object
mobility. This results in transferring less data than when
using such remote control technologies as X-Windows.

2. J-Orchestra Overview

As a special-purpose application of our J-Orchestra
automatic partitioning system, appletizing is made possi-
ble by the hallmark ability of J-Orchestra to deal correctly
with system code: the code split during appletizing is sys-
tem code that deals with system resources such as graphics
and file storage. Therefore, we begin by presenting J-
Orchestra and its program transformations for distribution.

2.1. Technical Overview

J-Orchestra is a GUI-enabled tool that, under human
guidance, handles all the tedious tasks of splitting the
functionality of a centralized application into distinct enti-
ties running across different network sites. First, the sys-
tem lists all application classes and the systems classes
they reference. Then, the user creates different “sites” and
(at a first approximation) assigns classes to sites. In the

end, J-Orchestra rewrites the application to produce d
tinct partitions that can be run on separate machines,
standard, unmodified Java VMs. J-Orchestra relieves
users of the necessity to change the application sou
code (or even have source code available), to deal w
middleware directly, and to understand all the potential
complex data sharing structure of the application. For
large subset of Java, the partitioned application is guara
teed to behave exactly like its original, centralized versio

To maintain correct execution under distributed mem
ory spaces, the J-Orchestra rewrite follows the standa
technique of adding proxies to convert all direct object re
erences to indirect ones. Proxies hide the location
objects creating an abstraction of shared memory, which
necessary for correct execution of the program across d
ferent machines in the presence ofaliasing: the same data
may be accessible through different names (e.g., two d
ferent pointers) on different network sites. Changes intr
duced through one name/pointer should be visible to t
other, as if on a single machine. Figure 1 shows schema
cally the effects of the indirect referencing approac
which has been used in several prior systems [19][20][23

Adding indirection without changing the JVM entails
rewriting the code of the partitioned application. Thus
when the original application would create a new objec
the partitioned application will also create a proxy an
return it; whenever an object in the original applicatio
would access another object’s fields, the correspondi
object in the partitioned application would have to call
method in the proxy to get/set the field data; whenever
method would be called on an object, the same meth
now needs to be called on the object’s proxy; etc.

The difficulty of this rewrite approach is that it needs t
be applied toall code that might hold references to remot
objects, which is not only the application code, but also th

Run-time view of original application

Run-time view of application with indirect references

Figure 1: Indirect referencing schematically. Proxy
objects could point to their targets either locally or
over the network.
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code inside the runtime system. In the case of the Java
VM, such code is encapsulated by system classes that con-
trol various system resources through native code in the
JVM binary (executable or dynamic libraries). JVM code
can, for instance, have a reference to a thread, window,
file, etc., object created by the application. However, not
being able to modify the runtime system code, one can not
make it aware of the indirection. For instance, one cannot
change the JVM code that performs a file operation to
make it access the file object correctly for both local and
remote files. If a proxy is passed instead of the expected
object to runtime system code that is unaware of the distri-
bution, a run-time error will likely occur (e.g., because the
native code will try to read fields directly from the object).
(For simplicity, we assume the application itself does not
contain native code—i.e., it is a “pure Java” application.)

The conceptual novelty of J-Orchestra (compared to
past partitioning systems [13][20][23] and distributed
shared memory systems [1][2][5][24]) consists of address-
ing the problems resulting from inability to analyze and
modify Java VM code. Prior partitioning systems have
ignored the issues arising from native system code. J-
Orchestra features a novel rewrite mechanism that ensures
that, at run-time, references are always in the expected
form (“direct” = local or “indirect” = possibly remote) for
the code that handles them. The result is that J-Orchestra
can split code that deals with system resources, safely run-
ning, e.g., all sound synthesis code on one machine, while
leaving all graphics code on another.

Due to lack of space and previous publication [21], our
discussion of J-Orchestra in this paper is slightly simpli-
fied and omits some interesting elements. These include:
• a type-based “classification” heuristic that groups

classes whose instances can be accessed by the same
native code. Although by nature this analysis cannot be
sound (native code can potentially access all application
objects) in practice it is valuable in helping the user
decide groupings for classes that should be co-located.
The groupings typically reflect distinct resources, e.g.,
classes that deal with graphics, classes that deal with
sound, and classes that deal with files end up in three
distinct groups.

• optimizations for creating remote objects lazily, i.e.,
when the object first gets accessed remotely.

• the handling of Java language features, such as static
methods, inner classes, inheritance, etc.

• limitations of the system: unsupported language features
include reflective field access, dynamic loading, volatile
variables, and more. Prior limitations [21] with respect
to multithreading and monitor-style synchronization
have been addressed and the J-Orchestra distributed
threading mechanism is described in a recent publica-
tion [22].

2.2. The J-Orchestra Rewrite

Appletizing builds upon the J-Orchestra rewrite tha
enables remote access to JVM resources, such as grap
file I/O, and sound. To accomplish such remote access
Orchestra distinguishes between two different kinds
classes:anchoredand mobile. While “anchored” objects
remain in a single JVM for their entire lifetime, mobile
objects can migrate from site to site at run-time.

The two reasons behind “anchoring” classes are p
serving correctness and improving performance. A cla
must be anchored if its objects could be accessed throu
native code, which also determines where such obje
should be anchored (i.e., if an object can be accessed
native code running on some machine, the object shou
be anchored there). In addition, anchoring a classby
choicecan eliminate the overhead of accessing its objec
in local code on a specific site (i.e., make the access
quick as in the original centralized application). In a typ
cal J-Orchestra partitioning, the vast majority of objec
are anchored by choice. Anchored objects can still
accessed indirectly (through a proxy) from other machin
and by mobile objects even when these happen to be
the same machine.

The J-Orchestra “rewrite engine” is responsible fo
transforming existing application code through bytecod
manipulation (we use BCEL [6] for bytecode engineering
and generating new code to turn a centralized applicati
into a distributed one. We outline several major steps
the J-Orchestra rewrite process next.

Some transformations are at the bytecode level. O
example is ensuring that all data exchange among pot
tially remote objects is done through method calls: eve
time an object reference accesses fields of a differe
object and that object is either mobile or anchored on
different site, the corresponding instructions are replac
with a method invocation that will get/set the require
data. Another example is transforming original applicatio
classes into remote ones that extend the Java RMI cl
UnicastRemoteObject and can be registered as RM
remote objects (i.e., can be passed by-reference over
network).

In addition to bytecode rewriting, J-Orchestra also ge
erates some code from scratch, such as a proxy an
remote interface (i.e., extendingjava.rmi.Remote ) for
each class in the application. These generated clas
define all the methods as in the original class. A J-Orche
tra proxy is essentially a delegate for a remote class or
RMI “stub,” providing a mechanism for remote execution
We show below a simplified version of the code generat
for a classA.
3
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//Original mobile class A
class A {

void foo () { ... }
}

//Proxy for A (generated in source code form)
class A implements java.io.Externalizable {

//ref at different points can point to either
//remote implementation directly or RMI stub.
A__interface ref;
...
void foo () {

try { ref.foo (); } catch (RemoteException e) {
//let user provide custom failure handling

}
} //foo

} //A

//Interface for A (generated in source code form)
interface A__interface extends java.rmi.Remote {

void foo () throws RemoteException;
}

//Remote implementation (produced in bytecode
//form by modifying original class A)
class A__remote extends UnicastRemoteObject

implements A__interface {
void foo () throws RemoteException {...}

}

In addition, proxies provide logic for various other
pieces of functionality. First, they contain globally unique
identifiers, through which the J-Orchestra runtime system
maintains an “at most one proxy per site” invariant. Also,
proxies manage their own serialization (i.e., implement
java.io.Externalizable ), providing a mechanism for
object mobility that can move objects during serialization
as specified by a custom mobility scenario. Finally, prox-
ies are generated as source code to enable the sophisti-
cated user to supply custom handling code for remote
errors.

Because anchored classes are accessed directly by their
co-anchored clients (i.e., classes anchored on the same
site), they cannot change their superclass (toUnicastRem-

oteObject ) and must use a different mechanism to enable
remote execution. An extra level of indirection is added
through special purpose classes calledtranslators, which
implement remote interfaces and make anchored classes
look like mobile classes as far as the rest of the J-Orchestra
rewrite is concerned. Regular proxies, as well as remote
versions are created for translators, exactly like for mobile
classes.

In addition to giving anchored classes a “remote” iden-
tity, translators perform one of the most important func-
tions of the J-Orchestra rewrite: the dynamic translation of
direct references into indirect and vice versa, as these ref-
erences get passed between anchored and mobile code.
Consider what happens when references to anchored
objects are passed from mobile code to anchored code. For
instance, in Figure 2, a mobile application objecto holds a
referencep to an object of typejava.awt.Point . Objecto

can pass referencep as an argument to the methodcon-

tains of a java.awt.Component object. The problem is
that the referencep in mobile code is really a referenceto
a proxy for the java.awt.Point, but the contains

method cannot be rewritten and, thus, expects a direct r
erence to ajava.awt.Point (for instance, so it can assign
it or compare it with a different reference). In general, th
two kinds of references should be implicitly convertible t
each other at run-time, depending on what kind
expected by the code currently being run.

Translation takes place when a method is called on
anchored object. The translator implementation of th
method “unwraps” all method parameters (i.e., conver
them from indirect to direct) and “wraps” all results (i.e.
converts them from direct to indirect). Since all dat
exchange between mobile code and anchored code h
pens through method calls (which go through a translato
we can be certain that references are always of the corr
kind.

Past systems that follow a similar rewrite as J-Orches
[11][19][20][23] do not offer a translation mechanism
The partitioned application is safe only if objects passed
system code are guaranteed to always be on the same
as that code. This is a big burden to put on the user. T
translation mechanism of J-Orchestra ensures that all
interactions between application and system code are
the right form, making appletizing possible.

3. Supporting Appletizing

The foremost reason for distributing an applicatio
with J-Orchestra is to take advantage of remote hardwa
or software resources (e.g., a processor, a databas
graphical screen, or a sound card). Several special-purp
technologies do this already: distributed file systems allo
storage on remote disks; remote desktop applications (e
VNC, X) allow transferring graphical data from a remot
machine; network printer protocols let users prin
remotely. Nonetheless, the advantage of automatic pa
tioning is that it can put the code near the resource tha

anchored object
java.awt.Componentproxy

proxy

anchored object
java.awt.Point

mobile objecto

p
direct reference
to thePoint

Figure 2: Mobile code refers to anchored objects indi-
rectly (through proxies) but anchored code refers to
the same objects directly. Each kind of reference
should be derivable from the other.

translator

translator
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controls. Specifically, partitioning makes it possible to
draw graphics locally on the client machine from less data
than it takes to transfer the entire graphical representation
over the network, while collocating the server resources
with the code that controls them. As a special kind of par-
titioning, appletizing not only offers the same benefits but
also provides a higher degree of automation. The J-
Orchestra mechanisms that make this automation possible
are static analysis and profiling that in addition to byte-
code rewriting and runtime services enable appletizing.
We describe them in turn next.

3.1. Static Analysis for Appletizing

Consider an arbitrary centralized Java AWT/Swing
application that we want to transform into a client-server
application through appletizing. First, we classify the
application’s code (both application classes and the refer-
enced JRE system classes) into four distinct groups, as
Figure 3 demonstrates schematically.

Group I contains the GUI classes that can safely exe-
cute within an applet. Group II contains the GUI classes
whose code include instructions that the applet security
manager prevents from executing within an applet. For
example, an applet cannot perform disk I/O. Group III
contains the classes that must execute on the server. The
classes in this group control various non-GUI system
resources that applets are not allowed to access, such as
file I/O operations, shared resources (e.g., a database), and
native (JNI) code. Group IV contains the classes that do
not control any system resources directly and as such can
be placed on either the client or the server sites, purely for
performance reasons. Moreover, objects of classes in this
group do not have to remain on the same site during the
execution of the program: they can migrate on demand, or
according to an application-specific pattern.

We implemented the analysis of classes for appletizi
on top of the standard J-Orchestra type-based “classifi
tion” heuristic that groups classes whose instances can
accessed by the same native code. At a first approxim
tion, the heuristic examines the application bytecode fil
to see which class types get passed as arguments to sys
code, and groups these classes together with their s
classes and the native code front-end classes in
anchored group. Access through interfaces is safe ev
when the class is replaced by a proxy, so it does not en
any constraints in the analysis. Since the heuristic is typ
based it would not be safe if type information wer
obscured (e.g., if a method accepted an Object type a
used reflection to determine if the object is suitable). How
ever, we did not find this to be an issue in practice.

3.2. Profiling for Appletizing

Having completed the aforementioned classificatio
heuristics, J-Orchestra assigns the classes in groups I
and III to the client, client, and server sites, respective
The classification does not offer any help in assigning t
classes in group IV, so the user has to do this manua
before the rewriting for appletizing can commence. Deci
ing on the location of a class just by looking at its nam
can be a prohibitively difficult task, particularly if no
source code is available and the user has only a black-b
view of the application. To help the user in determining
good placement, J-Orchestra offers an off-line profiler th
reports data exchange statistics among different entit
(i.e., anchored groups and mobile classes). Integrated w
the profiler is a clustering heuristic that, given some initia
locations and the profiling results, determines a goo
placement for all classes. The heuristic is strictly adv
sory—the user can override it at will. Our heuristic imple
ments a greedy strategy: start with the given initia
placement of a few entities and compute the affinity o
each unassigned entity to each of the locations. (Affinity
a location is the amount of data exchanged between
entity and all the entities already assigned to the locati
combined.) Pick the overall maximum of such affinity
assign the entity that has it to the corresponding locati
and repeat until all entities are assigned. In principl
appletizing offers more opportunities than general applic
tion partitioning for automation in clustering: optima
clustering for a client-server partitioning can be done
polynomial time, while for 3 or more partitions the prob
lem is NP-hard. In practice we have not yet had the need
replace our heuristic for better placement.

In terms of implementation, the J-Orchestra profiler ha
evolved through several incarnations. The first profile
worked by instrumenting the Java VM through the JVMP
and JVMDI (Java Virtual Machine Profiling/Debugging

GUI code accepted by
the applet security
manager

GUI code rejected by
the applet security
manager

Code
not controlling
any resources
directly

Code
controlling
non-GUI
system
resources
(e.g., File
system, shared
DB, native
code, etc.)

I

II
III

IV

Runs on
the client

Runs on
the server

Figure 3: The appletizing perspective code view of a
centralized Java GUI application.

Runs on the

server or both
client or on the
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Interface) binary interfaces. We found the overheads of
this approach to be very high, even for recent VMs that
enable compiled execution under debug mode. The reason
is the “impedance mismatch” between the profiling code
(which is written in C++ and compiled into a dynamic
library that instruments the VM) and the Java object lay-
out. Either the C++ code needs to use JNI to access object
fields, or the C++ code needs to call a Java library that will
use reflection to access fields. We have found both
approaches to be much slower (15x) than using bytecode
engineering to inject our own profiling code in the applica-
tion. The profiler rewrite is isomorphic to the J-Orchestra
rewrite, except that no distribution is supported—proxies
keep track of the amount of data passed instead.

An important issue with profiling concerns the use of
off-line vs. on-line profiling. Several systems with goals
similar to ours (e.g., Coign [13] and AIDE [18]) use on-
line profiling in order to dynamically discover properties
of the application and possibly alter partitioning decisions
on-the-fly. So far, we have not explored an on-line
approach in J-Orchestra, because of its overheads for regu-
lar application execution. Since J-Orchestra has no control
over the JVM, these overheads can be expected to be
higher than in other systems that explicitly control the
runtime environment. Without low-level control, it is hard
to keep such overhead to a minimum. Sampling techniques
can alleviate the overhead (at the expense of some accu-
racy) but not eliminate it: some sampling logic has to be
executed in each method call, for instance. We hope to
explore the on-line profiling direction in the future.

3.3. Rewriting Bytecode for Appletizing

Once all the classes are assigned to their destination
sites, J-Orchestra rewrites the application for appletizing,
which augments the regular J-Orchestra rewrite with an
additional step that modifies unsafe instructions in GUI
classes for executing within an applet. The applet security
manager imposes many restrictions on what resources
applets can access, and many of these restrictions affect
GUI code. J-Orchestra inspects the bytecode of an applica-
tion for problematic operations and “sanitizes” them for
safe execution within an applet. Depending on the nature
of an unsafe operation, J-Orchestra uses two different
replacement approaches. The first approach replaces an
unsafe operation with a safe, semantically similar (if not
identical) version of it. For example, an unsafe operation
that reads a graphical image from disk gets rewritten with
a safe operation that reads the same image from the
applet’s jar file. The second approach, replaces an unsafe
operation with a semantically different operation. For
example, since applets are not allowed to callSys-

tem.exit , this method call gets replaced with a call to the

J-Orchestra runtime service that informs the user that th
can exit the applet by directing the web browser to anoth
page. Sometimes, replacing an unsafe instruction requi
a creative solution. For example, the applet security ma
ager prevents thesetDefaultCloseOperation method in
class javax.swing.JFrame from accepting the value
EXIT_ON_CLOSE. Since we cannot change the code insid
JFrame , which is a system class, we modify the calle
bytecode to pop the potentially unsafe parameter value
the stack and push the safe valueDO_NOTHING_ON_CLOSE

before callingsetDefaultCloseOperation . Once unsafe
instructions in GUI classes have been replaced, J-Orch
tra proceeds with its standard rewrite that ends up pack
ing all the rewritten classes in client and server jar file
ready for deployment.

The GUI-intensive nature of appletizing also allows u
to perform special-purpose code transformations to op
mize remote communication. For instance, knowing th
design principles of the Swing/AWT libraries allows us t
pass Swing event objects using by-copy semantics. This
done by making event objects implementjava.io.Seri-

alizable and adding a default no arguments constructor
it is not already present. Passing event objects by-copy
typically safe because event listener code commonly us
event objects as read-only objects, since the programm
model makes it very difficult to determine in what orde
event listeners receive events.

The rewrite also maintains the Swing design invaria
of having all event-dispatching and painting code execu
in a single event-dispatching thread. Splitting a singl
threaded application into a client and server parts crea
implicit multithreading. Thus, the server could call clien
Swing code remotely through RMI on a thread differen
from the event-dispatching one. To resolve this issue, t
rewrite generates special-purpose code inside transla
classes. The code uses the existing Swing facility (Swing-

Utilities.invokeLater method) to enable any thread to
request that the event-dispatching thread runs certain co

3.4. Runtime Support for Appletizing

Appletizing works with standard Java-enabled brow
ers that download the applet code from a remote server.
simplify deployment, the downloaded code is package
into two separate jar files, one containing the applicatio
classes that run on the client and the other J-Orches
runtime classes. In other words, the client of an appletiz
application does not need to have pre-installed any
Orchestra runtime classes, as a Java-enabled brow
downloads them along with the applet classes. Once
download completes, the J-Orchestra runtime client esta
lishes an RMI connection with the server and then invok
the main method of the application through reflection. Th
6
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name of the application class that contains the main
method along with the URL of the server’s RMI service
are supplied as applet parameters in an automatically gen-
erated HTML file. This arrangement allows hosting multi-
ple J-Orchestra applets on the same server that can share
the same set of runtime classes. In addition, multiple cli-
ents can simultaneously run the same applet, but they will
also spawn distinct server components. Our approach can-
not make an application execute concurrently when it was
not designed to do so. In addition to communication, the J-
Orchestra applet runtime provides various convenience
services such as access to the properties of the server
JVM, a capacity for terminating the server process, and a
facility for browsing the server’s file system efficiently.

4. Case Studies and Discussion

To demonstrate our approach, we appletized three real-
istic, third-party applications: JBits [10], JNotepad [15],
and Jarminator [14]. Our experience confirms the benefits
of the approach. Appletizing requires no programming: we
did not have to write distribution code or recode the sub-
ject applications; it is flexible: each of the subjects has a
complex GUI and could not be written as a servlet; it is
easy to deploy: all subjects run as applets over a standard
browser communicating with a server part; and results in
good performance: by putting the GUI code on the client,
we transmit less data than transferring all the graphics.

In our measurements, we compare the partitioned
applications’ behavior to using a remote X display to
remotely control and monitor the application. Since all
three subjects are interactive applications and we could not
modify what they do, we got measurements of the data
transferred and not the time taken to update the screen
(i.e., we measured bandwidth consumption but not
latency). Our experience is that appletizing is an even
greater win in terms of perceived latency. In all cases, the
overall responsiveness of the appletized versions is much
better than using remote X displays. This is hardly surpris-
ing, as many GUI operations require no network transfer.
Note that the data transfer numbers would not change in a
different measurement environment. For reference, how-
ever, our environment consisted of a SunBlade 1000 (dual
UltraSparc III 750MHz, 2GB RAM) and a Pentium III,
600MHz laptop connected via 10Mbps ethernet.

4.1. JBits

JBits, the largest of the three applications, is an FPGA
simulator by Xilinx—a web search shows many instances
of industrial use. The JBits GUI (see [10] for a picture of
an older version) is very rich with a graphical area present-
ing the results of the simulation cells, as well as multiple

smaller areas presenting the simulated components. T
GUI allows connecting to various hardware boards an
simulators and depicting them in a graphical form. It als
allows stepping through a simulation offering multiple
views of a hardware board, each of which can be zoom
in and out, scrolled, etc. The JBits GUI is quite represent
tive of CAD tools in general.

JBits was given to us as a bytecode-only applicatio
The installed distribution (with only Java binary cod
counted) consists of 1,920 application classes that hav
combined size of 7,577 KBytes. These application class
also use a large part of the Java system libraries. We h
no understanding of the internals of JBits, and only limite
understanding of its user-level functionality.

For our partitioning, the vast majority (about 1,800) o
the application’s classes are anchored by choice on
server. Thus co-anchored objects can access each o
directly and impose no overhead on the application’s ex
cution. This is particularly important in this case, as th
main functionality of JBits is the simulation, which is
compute-intensive. With the anchoring by choice, the sim
ulation steps of JBits incur no measurable overhead.

259 classes are always anchored on the client (i.
GUI) site. Of these, 144 are JBits application classes a
the rest are classes from the Java system’s graphical pa
ages (AWT and Swing). The rest of the classes a
anchored on the server site. (We later discuss a variation
which we make some objects mobile.)

The appletized JBits performs arbitrarily better than
remote X-Window display. For instance:
• JBits has multiple views of the simulation results (“Stat

View”, “Power View”, “Core View”, and “Routing Den-
sity View”). Switching between views is a completely
local operation in the J-Orchestra partitioned version—
no network transfers are caused. In contrast, the X w
dow system needs to constantly refresh the graphics
screen. For cycling through all four views, X neede
3.4MBytes transferred over the network.

• JBits has deep drop-down menus (e.g., a 4-level de
menu under “Board->Connect”). Navigating these dro
down menus is a local operation for the J-Orchestra p
titioned application, but not for remote access with th
X window system. For interactively navigating 4 level
of drop-down menus, X transferred 1.8MBytes of data

• GUI operations like resizing the virtual display, scroll
ing the simulated board, or zooming in and out (four o
the ten buttons on the JBits main toolbar are for resizin
operations) do not result in network traffic with the
appletized JBits. In contrast, the remote X display pr
duces heavy network traffic for such operations. Wit
our example board, one action each of zooming-in com
pletely and zooming-out results in 3.5MBytes of dat
transferred. Scrolling left once and down once produc
7
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about 2MBytes of data over the network with X, but no
network traffic with the J-Orchestra partitioned version.
Continuous scrolling over a 10Mbps link is unusably
slow with the X window system. Clearly, a slower con-
nection (e.g., DSL) is not suitable for remote interactive
use of JBits with X.
Even for a regular board redraw, in which the applet-

ized JBits needs to transfer data over the network, less data
get transferred than in the X version. Specifically, the
appletized version needs to transfer about 1.28MB of data
for a complete simulation step including a redraw of the
view. The X window system transfers about 1.68MBytes
for the same task. Furthermore, J-Orchestra transfers these
data using five times fewer total TCP segments, suggesting
that for a network in which latency is the bottleneck, X
would be even less efficient.

Although there may be ways (e.g., compression, or a
more efficient protocol) to reduce the amount of data
transferred by X, the important point is that some data
transfer needs to take place anyway. In contrast, the
appletized version only needs to transfer a data object to
the remote site, and all GUI operations presenting the
same data can then be performed locally. For the cases that
do produce network traffic, the appletized version can also
have its bandwidth requirements optimized by using a ver-
sion of Java RMI with compression.

Experiment: Mobility. In the previous discussion we did
not examine the effects of object mobility. In fact, very
few of the potentially mobile objects in JBits actually need
to move in an interesting way. The one exception is JBits
View Adaptor objects (instances of four*ViewAdaptor

classes). View adaptors seem to be logical representations
of visual components and they also handle different kinds
of user events such as mouse movements. During our pro-
filing we noticed that such objects are used both on the
server and the client partition and in fact can be seen as
carriers of data among the two partitions. Thus, no static
placement of all view adaptor objects is optimal—the
objects need to move to exploit locality. We specified a
mobility policy that originally creates view adaptors on the
client site, moves them to the server site when they need to
be updated, and then moves them back to the client site.

Surprisingly, object mobility results in more data trans-
ferred over the network! With mobile view adaptor objects
and an otherwise indistinguishable partitioning, J-Orches-
tra transferred more than 2.59MBytes per simulation step
(as opposed to 1.28MBytes without a mobility policy).
The reason is that the mobile objects are quite large (in the
order of 300-400KBytes) but only a small part of their data
are read/written. In terms of bytes transferred it would
make sense to leave these objects on one site and send
them their method parameters remotely. Nevertheless,

mobility results in a decrease in the total number of remo
calls: 386 remote calls take place instead of 484 for a sta
partitioning, in order to start JBits, load a file and perform
5 simulation steps. Thus, the partitioned version of JB
with mobile objects may perform better for fast network
where latency is the bottleneck instead of bandwidth.

4.2. JNotepad

JNotepad emulates the functionality of the Window
Notepad editor. It allows the user to read and write te
files. As in any simple text editor, the functionality o
JNotepad consists of a user interface and I/O facilitie
The user manipulates the content of a text file through t
user interface, which includes the interaction with the I/
facilities for writing and retrieval of files to and from disk.
One appletizing scenario for Notepad places the user int
face on the client, while processing the I/O on the serve

The analysis for appletizing showed that the applicatio
has a total of 106 classes (66 JRE system classes, and
application classes). It also assigned 98 classes to the
ent site, 7 classes to the server site, and left 2 classes u
signed. To help determine a good placement for th
unassigned classes namedCenter and Actions , we per-
formed a scenario-based profiling that consisted of ope
ing a file, searching for a word in it, changing its conten
and saving it back to disk. The data exchange patter
revealed by the profiling, showed that theCenter class has
been tightly coupled with the client classes, calling eac
other’s methods 17 times. Therefore, the most logic
placement for this class is on the client, together with th
GUI classes. TheActions class exhibited a more complex
data exchange pattern, communicating with both the clie
(18 method calls) and the server (42 method calls). Mo
detailed profiling showed that the data exchange betwe
the server classes and theActions class happens inside the
savE method, with the rest of the methods communicatin
only with the client classes. This is exactly a case fo
which object mobility can provide an elegant solution. Th
objects of typeActions can be created at the client site
and then temporarily move to the server for the duration
the savE method. As our measurements have shown, th
mobility arrangement does not result in less data bei
transferred over the network, but significantly decreas
the number of remote calls made (from 60 to 17).

We compared the behaviors of the partitioned applic
tion to the original one, run remotely under the X window
system. The test scenario was similar to the profiling on
described above. (We believe that this reflects typic
JNotepad use.) The appletized version transferred le
than 1/7th the amount of data over the network (~1 MB v
~7 MB). With all the GUI operation not generating any
network traffic, the appletized version sent data over t
8
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network only when reading and writing the text file. Under
X, JNotepad, running on the server that had the text file,
accessed it directly. However, its every interaction with the
GUI resulted in sending data over the network.

4.3. Jarminator

Jarminator is a popular Java application that examines
the content of multiple jar files and displays their com-
bined content in a tree view. The user can have only a sub-
set of the content displayed by supplying a wildcard filter.
We have appletized Jarminator so that it can examine jar
files on a remote machine and display the results locally.
The analysis for appletizing showed that the application
uses a total of 74 classes: 55 JRE system classes, and 19
application classes. The appletizing analysis assigned 62
classes to the client site, 4 classes to the server sites, and
left 8 classes unassigned. A case-based profiling suggested
assigning 6 classes to the client, 1 to the server, and did not
detect any data exchange with the remaining class. It also
did not reveal any communication patterns in which a
mobility scenario could be useful.

Again, we compared the behaviors of the partitioned
application to the original one, run remotely under the X
window system. In this benchmark, we used Jarminator to
explore three third-party jar files used by J-Orchestra. The
use scenario included loading the jars, navigating through
the tree view, and applying wildcard filters to the dis-
played content. The appletized version exhibits significant
benefits, transferring less than 1/30th the amount of data
over the network (~500 KB vs. ~15 MB). In fact, opera-
tions such as filtering the displayed contents are entirely
local in the appletized version and do not generate any net-
work traffic.

4.4. Limitations

Appletizing, just like general application partitioning,
is not free of limitations. Applications can be arbitrarily
complex and can defy correct partitioning. Furthermore,
although we handle common cases of invalid operations
inside applets, we do not have an exhaustive approach to
sanitize all Java code for applet execution. More common
in practice, however, is the case of applications that can be
correctly appletized (i.e., they do not employ unsupported
Java features such as dynamic loading or code rejected by
the applet security manager) yet require manual interven-
tion to override conservative decisions of the J-Orchestra
heuristic analyses.

Of our three case studies, JNotepad and Jarminator
were partitioned completely automatically within 1-2
hours of time. JBits required more intervention (but still
no explicit programming) to arrive at a good partitioning

within 1-2 days. For example, knowing only the JBits exe
cution from the user perspective, we speculated that t
integer arrays transferred from the server towards the G
part of JBits could safely be passed by-copy. These arra
turned out to never be modified at the GUI part of th
application. A more conservative rewrite would hav
introduced a substantial overhead to all array operation

Even in the less automatic cases, however, the exper
required to appletize an application is analogous to that
a system administrator, rather than that of a distribut
systems programmer. For instance, in the JBits case
partitioned a 7.5MB binary application without knowledg
of its internals. Even though the partitioning was not aut
matic, the effort expended was certainly much less th
that of a developer who would need to change an applic
tion with about 2,000 classes, more than 200 of whic
need to be modified to be accessed remotely.

5. Related Work

Several recent systems can be classified as autom
partitioning tools. In the Java world, the closes
approaches are the Addistant [23] and Pangaea [20] s
tems. The Coign system [13] has promoted the idea
automatic partitioning for applications based on COM
components. All three systems do not address the probl
of partitioning unmodifiable systems code (e.g., GU
code), and, thus, are unsuitable for appletizing.

Coign is the only one of these systems to have a cla
at scalability, but the applications partitioned by Coig
consist of independent components to begin with. Just li
appletizing, the Coign approach performs only clien
server partitioning. Coign does not address the hard pro
lems of application partitioning, which have to do with
pointers and aliasing: components cannot share d
through memory pointers. Such components are deem
non-distributable and are located on the same machi
Practical experience with Coign [13] showed that this is
severe limitation for the only real-world application
included in Coign’s example set (the Microsoft Photo
Draw program). The overall Coign approach would not b
feasible for applications in a general purpose langua
(like Java, C, C#, or C++) where pointers are prevalen
unless a strict component-based implementation meth
ology is followed.

JavaParty [11][19] is closely related to J-Orchestra. Th
similarity is not so evident in the objectives, since Jav
Party only aims to support manual partitioning and do
not deal with system classes. The implementation tec
niques used, however, are very similar to J-Orchest
especially for the newest versions of JavaParty [11]. Sim
lar comments apply to the FarGo [12] and AdJava [8] sy
tems. Notably, however, FarGo has focused on groupi
9
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classes together and moving them as a group. FarGo
groups are similar to J-Orchestra anchored groups. In fact,
groups of J-Orchestra objects that are all anchored by
choice could well move, as long as they do it all together.
We have not investigated such mobile groups, however.

Automatic partitioning is essentially a Distributed
Shared Memory (DSM) technique. Nevertheless, auto-
matic partitioning differs from traditional DSMs in several
ways. First, automatic partitioning systems do not change
the runtime system, but only the application. This is essen-
tial for deploying applets that will work on standard VMs
inside web browsers. Traditional DSM systems like Munin
[5], Orca [2], and, in the Java world, cJVM [1], and Java/
DSM [24] use a specialized run-time environment in order
to detect access to remote data and ensure data consis-
tency. Also, DSMs have usually focused on parallel appli-
cations and require programmer intervention to achieve
high-performance. In contrast, automatic partitioning con-
centrates on resource-driven distribution, which introduces
a new set of problems (e.g., the problem of distributing
around unmodifiable system code, as discussed). Among
distributed shared memory systems, the ones most closely
resembling the J-Orchestra approach are object-based
DSMs, like Orca [2].

Mobile object systems, like Emerald [3] have formed
the inspiration for many of the J-Orchestra ideas on object
mobility scenarios.

Both the D [17] and the Doorastha [7] systems allow
the user to easily annotate a centralized program to turn it
into a distributed application. Although these systems are
higher-level than explicit distributed programming, they
are significantly lower-level than J-Orchestra. All the bur-
den is shifted to the programmer to specify what semantics
is valid for a specific class (e.g., whether objects are
mobile, whether they can be passed by-copy, etc.). Pro-
gramming in this way requires full understanding of the
application behavior and can be error-prone: a slight error
in an annotation may cause insidious inconsistency errors.

6. Conclusions

Adding distributed capabilities to existing programs is
currently one of the most important software evolution
tasks in practice [16]. We presented appletizing, a semi-
automatic approach to transforming a Java GUI applica-
tion into a client-server application. We discussed the
motivation, benefits, and J-Orchestra support for appletiz-
ing, and validated our approach via a set of case studies
and associated benchmarks. We believe that our approach,
having the benefits of automation, flexibility, ease of
deployment, and good performance, is a useful tool for
software evolution, and that similar tools will become
mainstream in the future.
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