
nd
in-
ll-
ge
to
]
s).
a-
r
nd
in
i-

he
is

al
ca-
is
d
l-
of
-
p-
d
g
l-
-

n
a-

to
r-

le
e

glue
a-
Aspectizing Server-Side Distribution

Abstract

We discuss how a collection of domain-specific and
domain-independent tools can be combined to “aspectize”
the distributed character of server-side applications, to a
much greater extent than with prior efforts. Specifically,
we present a framework that can be used with a large class
of unaware applications to turn their objects into distrib-
uted objects with minimal programming effort. Our frame-
work is developed on top of three main components:
AspectJ (a high-level aspect language), XDoclet (a low-
level aspect language), and NRMI (a middleware facility
that makes remote calls behave more like local calls). We
discuss why each of the three components offers unique
advantages and is necessary for an elegant solution, why
our approach is general, and how it constitutes a signifi-
cant improvement over past efforts to isolate distribution
concerns.

1. Introduction

Separation of concerns[5] is the Holy Grail of comput-
ing. The term refers to the decomposition of a problem so
that different facets are isolated from each other and rea-
soning can be performed independently. “Separation of
concerns” has been a valuable philosophical mantra for
educating computer scientists. Nevertheless, at the imple-
mentation level it has well-defined limits. There are con-
cerns that fundamentally define what we mean by a
computation, and, thus, cannot be separated. For instance,
parallel algorithms often have no resemblance to sequen-
tial algorithms for the same problem and some problems
are very unlikely to even have an efficient parallel solu-
tion. Thus “efficient parallelism” is not a concern that can
be separated from the logic of a software application.

In view of such difficulties, most research has shifted
from the problem of separating concerns to the problem of
removing low-level technical barriers to the separation of
concerns, assuming that the separation is conceptually
possible. In language tools, two main directions have been
identified. The first is that of general-purpose tools for

expressing different concerns as distinct code entities a
composing them together. The second is that of doma
specific tools that achieve separation of concerns for we
defined domains by hiding such concerns behind langua
constructs. The term “aspect-oriented” is often used
describe the first direction (although it was originally [8
proposed as a concept that encompasses both direction

In this paper we present a general framework for sep
rating distribution concerns from application logic. Ou
approach is a mixture of aspect-oriented techniques a
domain-specific tools. Just like all other research
aspect-orientation, our goal is to remove low-level techn
cal barriers to the separation of distribution concerns—t
assumption remains that the structure of the application
amenable to adding distribution. The specific technic
substrate that we target is that of server-side Java appli
tions as captured by the J2EE specification. This domain
technically challenging (due to complex conventions) an
has been particularly important for applied software deve
opment in the last decade. We show how a combination
three tools can yield very powerful separation of distribu
tion concerns in a server-side application. We call this se
aration “aspectization”, following other aspect-oriente
work. (We use the main aspect-oriented programmin
terms in this paper, but do not embrace the full termino
ogy. E.g. we avoid the AOP meaning of the term “compo
nent” as a complement of “aspect” [8].)

To classify our approach, we can distinguish betwee
three levels of aspectization of a certain concern or fe
ture:
• Type 1: “out-of-sight”. The application already exhibits

the desired feature. The challenge of aspectization is
remove the relevant code and encapsulate it in a diffe
ent entity (aspect) that is composable with the rest of the
code at will. The approach is application-specific.

• Type 2: “enabling”. The application does not exhibit
the desired feature, but its structure is largely amenab
to the addition of the feature. Code implementing th
feature needs to be added in a separate aspect but
code may also need to be written to adapt the applic
tion logic and interfaces to the feature.

Eli Tilevich Stephan Urbanski Yannis Smaragdakis
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332
{tilevich, stephan, yannis}@cc.gatech.edu

Marc Fleury
The JBoss Group

Atlanta, GA
marc@jboss.org

a
ic.
s

n
ll-
r

no
v-
nd

tly
”,
a-

ng

te
ly
ss,
ces
e,
ork
k.
r.
if-
rd
tly
ote

gle
ri-
al
re
ch
d
this
to

he
-
e,

ng
nd
ns
eed

a
al
n-
sure
• Type 3: “reusable mechanism”. Both the feature imple-
mentation and the glue code are packaged in a reusable
entity that can be applied to multiple applications.
Adapting an existing application to include the desired
feature is trivial (e.g. a few annotations at the right
places).
Our framework achieves Type 3 aspectization for a

large class of server-side applications. In contrast, the
closest prior work [14] attempts Type 1 aspectization and
identifies several difficulties with the tools used: the need
to write code to synchronize views, the need to create
application-specific interfaces for redirecting calls, etc.
These difficulties are resolved automatically with our
approach. To achieve our goals we use three tools:
• NRMI [17]: an alternative to Java RMI that offers an

efficient implementation of call-by-copy-restore seman-
tics, in addition to regular call-by-copy. NRMI is the key
for going from a Type 1 aspectization to a Type 2. That
is, it provides the mechanism for enabling an application
that is written without distribution in mind to be distrib-
uted without significant changes to its logic. The NRMI
semantics is indistinguishable from local execution for a
large class of applications—e.g. all applications with
single-threaded clients and stateless servers.

• AspectJ[9]: a high-level aspect language. It is used as a
back-end, i.e. our framework generates AspectJ code. It
eliminates a lot of the complexity of writing glue code
to turn regular Java objects into Enterprise Java Beans
(EJBs).

• XDoclet[21]: a low-level aspect language. It is used pri-
marily for generating the AspectJ glue code that adapts
the application to the conventions of the distribution
middleware. Like AspectJ, XDoclet is a widely avail-
able tool and our framework just provides XDoclet tem-
plates for our task. XDoclet is the key for going from a
Type 2 aspectization to a Type 3. That is, it lets us cap-
ture the essence of the rewrite in a reusable template,
applicable to multiple applications.
As an example, we used our framework, (called

GOTECH, for “General Object To EJB Conversion
Helper”) to turn an existing scientific application (a ther-
mal plate simulator) into a distributed application. The
application-specific code required for the distribution con-
sists of only a few lines of annotations. The rest of the dis-
tribution-specific code is provided by the GOTECH
framework.

2. Background

We discuss next the challenges to adding distribution to
an existing application and give the necessary background
for our approach.

2.1. Challenges of Distribution

It is sometimes under debate whether distribution is
concern that can be at all separated from application log
For example, Waldo et al.’s well-known paper [19] argue
that “papering over the network” is ill-advised. The mai
reasons include difference in performance, different ca
ing semantics, and the possibility of partial failure. (Othe
reasons mentioned in [19], like direct memory access,
longer hold today with languages like Java and C#.) Ne
ertheless, the real-world success of many projects a
tools (e.g. the NFS distributed file system) is due exac
to the fact that they are “papering over the network
allowing use by unaware applications, even if the integr
tion with distribution is not entirely seamless.

2.1.1. Semantics.Consider a centralized application writ-
ten in a modular fashion with separate objects handli
distinct parts of the application’s functionality. It might
seem that moving a part of the functionality to a remo
machine is just a matter of making some object remote
accessible by the rest of the application. Neverthele
objects can be sharing data through memory referen
(which are valid only in a single address space). Of cours
one could emulate a single address space over a netw
of nodes by making all references be over the networ
Such an emulation would be prohibitively slow, howeve
As a result, the semantics of remote method calls are d
ferent from the semantics of local calls under standa
middleware. That is, the same code will behave differen
if executed in the same process and if executed as a rem
call (using CORBA, RMI, DCOM, etc.) on a different
machine. The lack of a shared address space is the sin
most important conceptual difference introduced by dist
bution. This problem cannot be solved in a fully gener
way. For instance, an application may have a structu
such that all its parts are tightly coupled, accessing ea
other’s data (or OS-level resources, like I/O) directly an
depending on reading the latest values of these data. In
case efficient distribution is impossible without change
the application structure.

Therefore, the assumption of our approach is that t
application is amenable to adding distribution without fun
damentally changing the application structure. In this cas
the memory semantics issue can be alleviated by givi
control to the programmer over the calling semantics a
by emulating local semantics under certain assumptio
(see Section 2.2.1.) so that the programmer does not n
to write a lot of tedious code.

Distribution also requires changes to the client of
remote object to become aware of the possibility of parti
failures. Again, there is no general solution, but Java la
guage designers used the exception mechanism to en

eep
ted
do
rn

an

y

a
u-
d

he

y
s).
lls
7],

ro-
ay

e-

w
e

partial failure awareness: the client of a remote call needs
to handle various exceptions that might arise in response
to various partial failure conditions.

2.1.2. Performance.With processor speed continuing to
increase at a much higher rate than network performance,
remote calls have become more costly than ever compared
to local calls. When some local calls suddenly become
remote, the resulting distributed application may become
unusable due to slowdown by orders of magnitude. When
applying distribution as a separate step, one has to be
aware of such latencies when deciding whether an object
can be moved to a remote site. An object can be moved to
a remote site only if it is not tightly coupled with the rest
of the application. For this reason, it is desirable to give to
the programmer complete control over the location of
objects.

2.1.3. Conventions.It has become a common business
practice to use a middleware mechanism such as RMI,
CORBA, DCOM, etc. to enable distribution. Since our
work aims to remove the low-level technical barriers to
aspectizing distribution, our main challenge is to change
application code to interface with distribution middleware.
This entails manipulating code to make it follow estab-
lished conventions.

In object-oriented distributed systems, types are often
used to mark an object to be able to interact with the mid-
dleware runtime services. For example, in order to be able
to interact with such a runtime service an object might
have to implement certain interfaces by providing methods
that are called by the middleware at runtime. Another
example would be changing those methods of the object
that are to be invoked remotely to declare that they could
throw exceptions for network errors. The client code needs
to be changed as well. A call to a remote object construc-
tor might have to be replaced by a sequence of calls to a
registry service. All of those changes can be quite tedious
to apply. Tool vendors have made some inroads in alleviat-
ing the task of converting plain objects to conform to a
given framework convention. One such example is
Microsoft’s Class Wizard for Visual C++, which creates
an MFC class from a given COM object. However, none of
these industrial tools help the programmer apply changes
to the clients of the modified object.

2.2. The Elements of our Approach

2.2.1. NRMI.Most middleware (e.g., RMI, CORBA,
etc.) offer call-by-copysemantics for remote calls. This
means that when a reference parameter is passed as an
argument to a remote routine, all data reachable from the
reference are deep-copied to the server side. The server

then operates on the copy. Any changes made to the d
copy of the argument-reachable data are not propaga
back to the client, unless the user explicitly arranges to
so (e.g., by passing the data back as part of the retu
value).

NRMI (Natural Remote Method Invocation) [17] is a
modified version of the Java RMI, such that the user c
selectcall-by-copy-restoresemantics for object types in
remote calls, in addition to the standard call-by-cop
semantics of RMI. Informally, call-by-copy-restore
semantics means the following: First, the callee gets
copy of all data reachable by the caller-supplied arg
ments. Then, after the call, all modifications to the copie
data are reproduced on the original data, overwriting t
original data values in-place.

NRMI supports copy-restore semantics for arbitrar
linked data structures (e.g. linked lists, trees, hash table
The result is that remote calls behave much like local ca
for most practical purposes. To use an example from [1
imagine the following function running on a remote
server:
void foo(Tree tree) {

tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null;
Tree temp = new Tree(2,tree.right.right, null);
tree.right.right = null;
tree.right = temp;

}

If the structure pointed byt in Figure 1 gets passed to
this remote methodfoo , the result of the call on the client
site (Figure 2) will be indistinguishable under NRMI and
under local execution (i.e. if the client andfoo were in the
same address space). The reason is that NRMI will rep
duce all remote changes to the local data in such a w
that they will be visible even by other references (aliases)
to the same data. NRMI does this while allowing the ex
cution of methodfoo to proceed at full speed. Only after
the end of the execution of the remote method, the ne
values of all objects reachable before the call will b

t

alias1

alias2
4

7

1 3

9

Figure 1. A tree data structure t and two aliasing
references to its internal nodes.

it
an
can
r-

ng
uld
an

e
ile

n-

the
ith

he
-

,
n
lly

let
ta-

t is
in
e
n-

-
-
e

ds

n

d

examined and all changes will be reproduced on the client
site. The algorithms and implementation of NRMI are dis-
cussed in detail in [17].

We should point out that NRMI is not aDistributed
Shared Memorysystem, i.e. it does not try to emulate a
single memory space across machines. Consequently, an
NRMI remote call occasionally differs from a local call.
Specifically, if the server code keeps references to the data
passed as arguments after the end of the remote call, these
data will not be kept consistent with the client’s version.
Furthermore, if the remote call is not atomic (i.e. if another
thread in the client could access the argument data while a
remote call takes place) the NRMI execution will be dif-
ferent from a local call. In this case, the programmer needs
to be aware of the distribution.

Overall, however, NRMI succeeds in making remote
calls resemble local calls for many practical scenarios. For
example, in the common case of a single-threaded client
(multiple clients may exist but not as threads in the same
process) and a stateless or memory-less server, NRMI
calls are indistinguishable from local calls.

The issue of reproducing the changes introduced by
remote calls is important in aspectizing distribution. For
instance, Soares et al. write in [14]:

When implementing the client-side aspect we had also
to deal with the synchronization of object states. This
was necessary because RMI supports only a copy
parameter passing mechanism ...
and

[Reproducing remote changes] requires some tedious
code to be written ...
With NRMI, the need for writing explicit code to repro-

duce remote changes is mostly eliminated. Thus, our
approach can be more easily applied to unaware applica-
tions.

2.2.2. AspectJ.AspectJ [9] is a general purpose, high-
level, aspect-oriented tool for Java. AspectJ allows the
user to define aspects as code entities that can then be

merged (weaved) with the rest of the application code. The
power of AspectJ comes from the variety of changes
allows to existing Java code. With AspectJ, the user c
add superclasses and interfaces to existing classes and
interpose arbitrary code to method executions, field refe
ences, exception throwing, and more. Complex enabli
predicates can be used to determine whether code sho
be interposed at a certain point. Such predicates c
include, for instance, information on the identity of th
caller and callee, whether a call to a method is made wh
a call to a certain different method is on the stack, etc.

For a simple example of the syntax of AspectJ, co
sider the code below:
aspect CaptureUpdateCallsToA {

static int num_updates = 0;

pointcut updates(A a):
target(a) && call(public * update*(..));

after(A a): updates(a) { // advice
num_updates++; // update was just performed

}
}

The above code defines an aspect that just counts
number of calls to methods whose name begins w
“update” on objects of typeA. The “pointcut” definition
specifies where the aspect code will tie together with t
main application code. The exact code (“advice”) will exe
cute after each call to an “update” method.

2.2.3. XDoclet.XDoclet is a widely used, open-source
extensible code generation engine [21]. XDoclet is ofte
used to automatically generate wrapper code (especia
EJB-related) given the source of a Java class. XDoc
works by parsing Java source files and meta-data (anno
tions inside Java comments) in the source code. Outpu
generated by using XDoclet template files that conta
XML-style tags to access information from the sourc
code. These tags effectively define a low-level aspect la
guage. For instance, tags includeforAllClassesInPack-

age , forAllClassMethods , methodType , etc. XDoclet
comes with a collection of predefined templates for com
mon tasks (e.g. EJB code generation). Writing new tem
plates allows arbitrary processing of a Java file at th
syntax level. Creating new annotations effectively exten
the Java syntax in a limited way.

3. Our Framework

3.1. Overview

The GOTECH framework offers the programmer a

annotation language1 for describing which classes of the
original application need to be converted into EJBs an

t

alias1

alias2
4

9

1 8

0

Figure 2. Changes introduced after the execution
of foo, both for NRMI and for a local call. Even
changes to now unreachable (from t) data are
reproduced correctly.

2

tree

H
on

the
-

w
3.
-
ot
-
se
y
-
i-

in
to

is
A
nd
rk
r-
ic-
ss
to-
s
or
ss
s
d
e

to-
ons

-
g
n-
y-
s

re.
how (e.g. where on the network they need to be placed and
what distribution semantics they support). The EJBs are
then generated and deployed in anapplication server: a
run-time system taking care of caching, distribution, per-
sistence, etc. of EJBs. The result is a server-side applica-
tion following the J2EE specification—the predominant
server-side standard.

The importance of using EJBs as our distribution sub-
strate is dual. First, it is the most mature technology for
server-side development, and as such it has practical inter-
est. Second, it has a higher technical complexity than mid-
dleware such as RMI. Thus, we show that our approach is
powerful enough to handle near-arbitrary technical com-
plications—our aspectization task is significantly more
complex than that of [14] in terms of low-level interfacing.

Converting an existing Java class to conform to the EJB
protocol requires several changes and extensions. An EJB
consists of the following parts:
• the actual bean class implementing the functionality
• a home interface to access life cycle methods (creation,

termination, state transitions, persistent storing, etc.)
• a remote interface for the clients to access the bean
• a deployment descriptor (XML-formatted meta-data for

application deployment).
In our approach this means deriving an EJB from the

original class, generating the necessary interfaces and the
deployment descriptor and finally redirecting all the calls
to the original class from anywhere in the client to the
newly created remote interface. The process of adding dis-
tribution consists of the following steps:

1. The programmer introduces annotations in the source

2. XDoclet processes the annotations and generates the
aspect code for AspectJ

3. XDoclet does the EJB generation

4. XDoclet generates the EJB interface and deployment
descriptor

5. AspectJ compiler compiles all generated code
(including regular EJB code and AspectJ aspect code
from step 1) to introduce distribution to the client by
redirecting all client calls to the EJB instead of the
original object.

(The XDoclet templates used in step 4 are among the
pre-defined XDoclet templates and not part of the
GOTECH framework.)

3.2. Framework Specifics

We discuss many of the technical specifics of GOTEC
in this section. Further examples can be found in Secti
4.1., where we present an example application.

3.2.1. Middleware.In our development we used the
JBoss open-source application server. JBoss is one of
most widely used application servers with 2 million down
loads in 2002. Although our approach would work with
other application servers, they would need to someho
integrate NRMI. (An alternative discussed in Section 3.
is to have XDoclet insert the right NRMI code in the appli
cation. This just changes the packaging of the code but n
the need for NRMI, and it is technically much more con
voluted.) We have integrated NRMI in the JBoss code ba
as a middleware option and GOTECH uses it just like an
other client would. We briefly describe this implementa
tion for reference purposes, since it differs from the prev
ously published implementation of NRMI [17].

Our original implementation of NRMI [17] was as a
drop-in replacement for RMI. This required modification
of the Java runtime system, which is undesirable for use
commercial software development. This prompted us
offer a complete, portable re-implementation of NRMI in
JBoss. Fortunately, the JBoss server architecture
designed to be highly modular and extensible [13].
remote invocation goes through a sequence of client a
server interceptors. An interceptor performs some wo
with an Invocation object and passes it to the next inte
ceptor in the chain. What interceptors are used for a part
ular remote method invocation is specified in the JBo
configuration type for each type of request/response pro
col such as JRMP, IIOP, HTTP, or SOAP. NRMI wa
added simply by providing a client and a server intercept
and adding them to the chain of interceptors in the JBo
configuration file. Thus, NRMI was implemented in JBos
without having to modify any standard JDK classes an
without having to understand the inner workings of th
JBoss server.

3.2.2. GOTECH Annotations.In our approach, the pro-
grammer needs to provide annotations to guide the au
mated transformation process. Some of these annotati
are EJB-specific (i.e. processed by existing XDoclet tem
plates). Additionally, we added annotations for makin
remote calls use NRMI. Integrating copy-restore sema
tics required an extension of the JBoss-specific deplo
ment descriptor. For instance, the following annotation
will make a parameter passed using call-by-copy-resto
(This is a per-method annotation.)

1. The annotations are introduced in Java source comments as “JavaDoc
tags”. We use the term “annotation” instead of the term “tag” as
much as possible to prevent confusion with the XDoclet “tags”, i.e.
the XDoclet aspect-language keywords, likeforAllClass-
Methods .

ic
on
ng

ig-
tar-
ted

ne
ct
ol
s

e-
his
he
/**
* @ejb:interface-method view-type="remote"
* @jboss:method-parameters copy-restore="true"
*/

Note that without invoking GOTECH the comments
remain completely transparent to the original application.

3.2.3. GOTECH XDoclet Templates.After the program-
mer supplies all the necessary information we can use
XDoclet to generate files. The first task XDoclet is used
for is creating the source code for the client aspect. The
generated aspect’s role is to redirect all method calls to the
original objects to now be performed on the appropriate
EJB. Additionally, the original object should only be
referred to through an interface and its creation should be
done by a distributed object factory instead of through the
operatornew. (We ignore direct field reference for now, but
it could be handled similarly using AspectJ constructs.) A
simplified (shorter XML tags, eluded low-level details)
fragment of our XDoclet template appears in Figure 3. The

template file consists of plain text, in this case a bas
AspectJ source file structure, and the XDoclet annotati
parameters, whose value is determined by runni
XDoclet.

For ease of reference we have split the template in F
ure 3 in three parts. Part I defines that the aspect is per-
get, i.e. that a unique instance of the aspect will be crea
every time a target object (i.e. an instance of classclass-

Name, which is derived from thename parameter we saw
earlier) is created. The other conditions in Part I determi
that the interception of the construction of a target obje
should only occur if this takes place outside the contr
flow of the Aspect itself. Note that the template use
XDoclet’s ability to access class information (<class-

Name/>) in addition to user-supplied annotations.
Part II of the template shows the code that will be ex

cuted for the creation of a new instance of the aspect. T
is the code that takes care of the remote creation of t
EJB using a remote object factory mechanism.

public aspect GOTECH_ <className/> WrapperAspect
pertarget(target(<className/>)

&& (!cflow(within(GOTECH_ <className/> WrapperAspect)))) {

// Part I above: per-target aspect that captures object creation.

private <classTagValue tagName="ejb:bean" paramName="interface-name"/> ep;

GOTECH_<className/> WrapperAspect() {
try {

<classTagValue tagName="ejb:bean" paramName="name"/> Home sh;
javax.naming.InitialContext initContext = new javax.naming.InitialContext();
String JNDIName = " <classTagValue tagName="ejb:bean" paramName="jndi-name"/> ";
Object obj = initContext.lookup(JNDIName);
sh = (<classTagValue tagName="ejb:bean" paramName="name"/> Home)

javax.rmi.PortableRemoteObject.narrow(obj,
<classTagValue tagName="ejb:bean" paramName="name"/> Home.class);

ep = sh.create();
} catch (Exception e) { ... }

}

// Part II above: Intercepting object creation. A remote object factory is called. All access is through an interface.
Object around() : target(<className/>)

&& call(* *(..))
&& (!cflow(within(GOTECH_ <className/> WrapperAspect)))

{
try {

Method meth = ep.getClass().getMethod(thisJoinPoint.getSignature().getName(),
((org.aspectj.lang.reflect.MethodSignature)

thisJoinPoint.getSignature()).getParameterTypes());
Object result = meth.invoke(ep, thisJoinPoint.getArgs());
return result;

} catch (Exception e) { ... }
}

// Part III above: Intercepting method calls.
}

Figure 3. Simplified fragment of XDoclet template to generate the aspect code. Template parameters are
shown emphasized. Their value is set by XDoclet based on program text or on user annotations in the
source file.

nd
l.
of
ts.
re

-
of

for
f-
re-
f

s
tJ

to

.
h
s
lly
,
t

f
.
re
].
te
t
r-
is

ete
e
the
the
f
y
g
r
ith
ke

e
n
-

Finally, Part III makes the generated aspect code cap-
ture all method calls (call(* *(..))) to objects of class
className unless the calls come from within the Aspect
itself.

The next task for XDoclet is to transform the existing
class into a class conforming to the EJB protocol. To do
this, we need to make the class extend theSessionBean

interface. Additionally, all parameters of methods of an
EJB must implement interfaceSerializable : a Java
marker interface used to designate that the parameter’s
state can be “pickled” and transported to a remote site. We
do this by creating an aspect that when run through
AspectJ will make the parameter types implement inter-
faceSerializable . The template file for this transforma-
tion is not shown, but the functionality is not too complex.

The last task where we employ XDoclet is the genera-
tion of the home and remote interface as well as the
deployment descriptors. XDoclet has predefined templates
for this purpose. The only extension has to do with the
copy-restore semantics and generating the right deploy-
ment descriptor to use NRMI. Note that this step needs to
iterate over all methods of a class and replicate them in a
generated interface, while adding athrows RemoteExcep-

tion clause to every method signature. This is a task that
Soares et al. [14] had to perform manually in their effort to
aspectize distribution with AspectJ. A simplified fragment
of the XDoclet template for iterating over the methods
appears below:
<forAllMethods>

<ifIsInterfaceMethod interface="remote">
public <methodType/> <methodName>

(<parameterList/>)
<exceptionList append=

"java.rmi.RemoteException"/> ;
<ifIsInterfaceMethod>

</forAllMethods>

3.3. Discussion of Design

Our approach uses a combination of AspectJ, NRMI
and XDoclet in order to add distribution to existing appli-
cations. Each tool has unique advantages and greatly sim-
plifies our task. Of course, in terms of engineering choices,
there are alternative approaches:
• instead of our three tools, we could have a single, spe-

cial-purpose tool, like D [11], JavaParty [12] or AdJava
[6] that will rewrite existing Java code and introduce
new code and meta-data. (None of these tools deals with
the EJB technology, but they are representatives of
domain-specific tools for distribution.) We strongly pre-
fer the GOTECH approach over such a “closed” soft-
ware generator approach. The first reason is the use of
widely available tools (AspectJ, XDoclet) that allow
exposing the logic of the rewrite in terms of templates.

Templates are significantly easier to understand a
maintain than the source code of a compiler-level too
The second advantage of our approach is the use
inobtrusive annotations inside Java source commen
The original Java program can be used just like befo
when no addition of distribution functionality is
required.

• we could have XDoclet generate all the code, com
pletely replacing both NRMI and AspectJ. In the case
NRMI, this would mean that XDoclet will act as an
inliner/specializer: the NRMI logic would be added to
the program code, perhaps specialized as appropriate
the specific remote call. Conceptually, this is not a di
ferent approach (the copy-restore semantics is p
served) but in engineering terms it would add a lot o
complexity to XDoclet templates. Similar argument
apply to the use of XDoclet to replace AspectJ. Aspec
allows manipulations taking Java semantics in
account—e.g. thecflow construct mostly used for rec-
ognizing calls under the control flow of another call (i.e
while the latter is still on the execution stack). Althoug
the emulation of this construct with a run-time flag i
not too complex conceptually, it does require essentia
replicating the functionality of AspectJ in a low-level
inconvenient, and hard-to-maintain way. XDoclet is no
designed for such complex program manipulations.
Finally, one could ask whether a combination o

AspectJ and NRMI without XDoclet would be sufficient
Unfortunately, this approach would suffer a more seve
form of the drawbacks identified by Soares et al. [14
These drawbacks include needing to write the remo
interface code by hand, not being able to work withou
availability of source code, etc. The problem is exace
bated in our case because our target platform (EJBs)
more complex and because we are attempting compl
automation. To automate the construction of EJBs, w
need to generate the remote and home interfaces from
original class, as well as generate non-code artifacts (
deployment descriptor meta-data in XML form). None o
these activities could be automatically handled b
AspectJ. In general, low-level generation, like iteratin
over all methods and replicating them (with mino
changes) in a new class or interface, is impossible w
AspectJ. The same is true for “destructive” changes, li
adding athrows clause to existing methods.

4. Applying the Framework

4.1. Example Application

In this section we present an example of applying th
GOTECH framework to convert a scientific applicatio
into a distributed application interacting with an applica

it
w-

o
he

is
ed
-

g

n

le
e-

l-
f a
ot
of
nd
s a

y-
pe-

to
tion server. The original application is a thermal plate sim-
ulator. Its back-end engine performs the CPU-intensive
computations and its front-end GUI visualizes the results.
(The back-end engine can also be configured to receive
input from real heat sensors.)

The distribution scenario we want to accomplish is to
separate the back-end simulation functionality from the
rest of the application. and to place it on a powerful remote
server machine. There are several benefits gained by this
distribution scheme. First, it takes advantage of the supe-
rior computing power of a remote server machine. Second,
multiple clients can share the same simulation server.
Finally, if real heat sensors are used, the user does not have
to be in the same physical location with the sensors to run
the experiment.

The kind of distribution we examine is very similar to
the distribution scenario of the Health Watcher application
by Soares et al. [14]. (We sought to replicate the experi-
ment of Soares et al. and re-engineer the Health Watcher
system, but unfortunately the code is proprietary and was
not made available to us.) The distribution scenario for
Health Watcher was one where the GUI was running
remotely from the core application and used a facade class
to communicate with it. Near-identical issues are raised
with our thermal plate simulator. Note, however, that,
unlike Soares et al., we concentrate only on distribution
and do not concern ourselves with persistence aspects.

A simplified UML diagram for the original version of
the thermal plate simulator is shown in Figure 4. We have
laid out the class diagram so that the front-end and back-
end are clearly visible. The hierarchy under interface
Plate contains the types of the objects that form the con-
necting link between the application’s front-end and back-

end. The graphical front-end creates aPlate object and
several visual component objects reference it and query
to obtain the necessary data when performing their dra
ing operations. ThePlate object gets modified by being
sent as a parameter to thediffuse method in theSimula-

tion class. Once thediffuse method returns having mod-
ified its Plate parameter, the front-end is signaled t
repaint itself. The visual components can access t
updated data of thePlate object and redraw. Note that the
main computation logic of the thermal plate simulation
not distributed—the results are the only data transferr
over the network for remote display and simulation con
trol.

Accomplishing the outlined distribution takes two
steps:
• Converting simulation classes into EJBs and deployin

them in an application server.
• Changing the client code to interact with an applicatio

server and EJBs instead of plain Java objects.
Notice that making simulation classes remote whi

preserving the original execution semantics requires sp
cial handling for remote method parameters. ThePlate

object that participates in a complicated aliasing (i.e. mu
tiple referencing) scenario now becomes a parameter o
remote call to an EJB. If a copy-restore mechanism is n
provided by the application server, then the process
bridging the differences between local (by-reference) a
remote (by-copy) parameter passing semantics become
tedious and complicated task. The use of NRMI (cop
restore semantics) completely eliminates the need for s
cial purpose code to reproduce the back-end changes
thePlate object inside the front-end.

DLatticePoint

...

FLatticePoint

...

LatticePoint

recompute()
...

OPlate

...

APlate

...

Plate

...

PlateRenderer2D

paintComponent()

GuiPlate
Simulation

diffuse(Plate)

Observer

update()

AbstractSimulation

...

SimpleSimulation

...

Figure 4. UML class diagram of the Thermal Plate Simulator functionality

Front-end Back-end

y

-
al.
nd

e
v-
th
y
an

al
py
on
the

d
ke

ote

ng
o-
n

l-

t,
he

-
c-
it
gu-
e
in
ed

rs

ot
ry
ed
In-order for GOTECH to perform the required changes,
we add some XDoclet-specific tags. Below are all the tags
that are needed to convert a plain classlattice.SimpleS-

imulation into a stateless session Enterprise Java Bean.
/**

* @ejb:bean name="SimpleSimulation"
* display-name="SimpleSimulation Bean"
* type="Stateless"
* transaction-type="Container"
* jndi-name="ejb/test/SSim"
*/

package lattice;
class SimpleSimulation {
...
/**
 * @ejb:interface-method view-type="remote"
 * @jboss:method-parameters copy-restore="true"

*/
public void diffuse (Plate plate) { ... }

...
}

The tags entered inlattice.SimpleSimulation will
convert the class into an EJB and will also change all its
clients consistently. XDoclet generates the home and
remote interface, as well as the bean class, all derived from
the original source code forSimpleSimulation . For exam-
ple, the generated code for the home interface of theSim-

pleSimulation EJB (slightly simplified) is:
package simulations;
// [Redundant import statements removed]
/**

* Home interface for SimpleSimulation.
* @xdoclet-generated at [date] [time]
*/

public interface SimpleSimulationHome
extends javax.ejb.EJBHome

{
public static final String COMP_NAME =

"java:comp/env/ejb/SimpleSimulation";
public static final String JNDI_NAME =

"ejb/SimpleSimulation";

public simulations.SimpleSimulation create()
throws javax.ejb.CreateException,

java.rmi.RemoteException;
}

XDoclet also generates the non-code artifacts (deploy-
ment descriptor in XML) and an aspect that is supplied to
AspectJ. AspectJ performs the client modifications based
on the generated aspect. Recall how the aspect code gener-
ated by the template of Figure 3 will change all object cre-
ation (new SimpleSimulation()) to calls to a remote
object factory and all method calls (e.g.
sim.diffuse(plate);) to calls to a remote interface.

Upon completion, GOTECH has generated a new EJB,
deployed it in the application server, and modified the cli-
ent code to interact with the new bean. The new distributed

application can be used right away without requiring an
additional configuration.

4.2. Advantages and Limitations

4.2.1. Advantages of our approach.Despite the simplic-
ity of applying GOTECH, the resulting code is feature-by
feature analogous to that written manually by Soares et
[14]. We discuss each element of the implementation a
perform a comparison.

Making the object remote.With GOTECH, this step is
quite simple. A new remote interface is created from th
original class using XDoclet. Soares et al. identified se
eral problems when trying to perform the same task wi
AspectJ, even though their original application alread
supported reference to the relevant objects through
interface. Specifically, Soares et al. could not add aRemo-

teException declaration to the constructor of their
“facade” class (which is analogous to ourSimpleSimula-

tion class) using AspectJ. In our approach, the origin
class does not need to be modified: a slightly altered co
forms the bean part of the EJB. It is easy to add excepti
declarations when the new class gets created (see
exceptionList append statement in Section 3.2.).

Serializing types.Soares et al. needed to write by han
(listing all affected classes!) the aspect code that will ma
application classes extend thejava.io.Serializable

interface so they can be used as parameters of a rem
method. In their paper, they acknowledge:

This might indeed be repetitive and tedious, suggesti
that either AspectJ should have more powerful metapr
gramming constructs or code analysis and generatio
tools would be helpful for better supporting this deve
opment step.
Indeed, our approach fulfills this need. Using XDocle

we create automatically the aspect code to make t
parameter types implementjava.io.Serializable .

Client call redirection. The code introduced by the gen
erated aspect of Figure 3 (part III) does a similar redire
tion as with the technique of Soares et al. That is,
executes a call to the same method, with the same ar
ments, but with a different target (a remote interfac
instead of the original local reference). Nevertheless,
the Soares et al. technique this code had to be introduc
manually for each individual method. These autho
admit:

... [T]his solution works well but we lose generality and
have to write much more tedious code. It is also n
good with respect to software maintenance: for eve
new facade method, we should write an associat
advice....

s,
nd

or
ere
r
e.
ri-
y
ill
ce,
al
a-
uto-
h
d

3.
t in
.

the
d
cli-
not
t
ly,
a

e

of
te
by
u-
ter

ur
nt
ns,
.)
m
rt
t
le
r-
an
at
n.
We should note that it is not really XDoclet or NRMI
that give us this advantage over the Soares et al. approach.
Instead, our aspect code of Figure 3 (part III) uses Java
reflection to overcome the type incompatibilities arising
with a direct call. This technique is also applicable to the
Soares et al. approach.

Updating Remotely Changed Data.NRMI offers a very
general way to update local data after a remote method
changes them. Our approach is not only more general than
the one used by Soares et al. but also more efficient. Spe-
cifically, Soares et al. admit the need to “synchronize
object states”. They perform this task by trapping every
call to an update method, storing the affected objects in a
data structure, and eventually iterating over this data struc-
ture on the remote site and reproducing all the introduced
changes. NRMI is a more general version of this tech-
nique, applicable to a large class of applications. The
Health Watcher system of Soares et al. is one of them: the
system is “non-concurrent” (as characterized by the
authors) and the two sites do not need to always maintain
consistent copies of data: it is enough to reproduce
changes introduced by a remote call. Soares et al.
acknowledge both the need for automation and the fact
that the structure of state synchronization in Health
Watcher is general:

... it would be helpful to have a code analysis and gener-
ation tool that would help the programmer in imple-
menting this aspect for different systems complying to
the same architecture of the Health Watcher system.
Additionally, NRMI is more efficient than capturing all

calls to update methods. Instead of intercepting every
update call, NRMI allows the remote call to proceed at full
speed and only after the end of its execution it collects the
changed data. (To do this, before execution of the remote
call, NRMI needs to store pointers to all data reachable by
parameters. This is not costly, since these data are trans-
ferred over the network anyway.) Soares et al. admit the
inefficiency of their approach, although they argue it does
not matter for the case of Health Watcher.

4.2.2. Limitations.Currently the GOTECH framework
suffers from some engineering limitations. We outline
them below. Some of these limitations are shared by the
approach of Soares et al.—assuming that this approach is
applied to multiple applications. Recall, however, that our
templates only automate some tedious tasks. Although
these templates are not application-specific, they also do
not attempt complete coverage for all Java language fea-
tures. In general, it is up to the programmer to ensure that
the GOTECH process is applicable to the application.

Entity Bean support. So far we have only concentrated
on distributing the computation of an application. Thu
we only have templates for generating Session Beans a
not Entity Beans. Entity Beans are commonly used f
representing database data through an object view. Th
is no further technical difficulty in producing templates fo
Entity Beans, but their value is questionable in our cas
First, we are not aware of an example where adding dist
bution to an existing application requires creating an
Entity Beans. Second, the Entity Bean generation w
have more constraints than Session Beans—for instan
Entity Beans should support identity operations (retriev
by primary key) since they are meant for use with dat
bases. These operations usually cannot be supplied a
matically—the original class will have to support suc
operations, or a fairly complex XDoclet annotation coul
supply the needed information.

Conditions for applying rewrite. Our aspect code con-
trolling where we apply indirection in the original code is
currently coarse grained. Consider again Part I of Figure
The generated aspect code is applied everywhere excep
points in the execution under the control flow of the EJB
This roughly means that our approach assumes that
desired distributed application is split into a client site an
a server site, and the server site never calls back to the
ent. On the server site, the calls to the existing class are
redirected. The positive side-effect of this rule is tha
server-side objects communicate with each other direct
thus suffering no overhead. Future versions could have
finer grained control over when the indirection should b
applicable.

Exceptions, construction, field access.There are some
more minor engineering issues with the current state
our templates. For instance, the handling of remo
method exceptions is generic and cannot be influenced
the programmer at this stage. This is just a matter of reg
lar Java programming: we need to let user code regis
exception handlers which will get called from thecatch

clauses of our generated code. Another shortcoming of o
template of Figure 3 is that it only supports zero-argume
constructors. (This is fine for stateless Session Bea
which by convention have no-argument constructors
There is a simple rewrite that can alleviate the proble
and we plan to use it. We also currently have no suppo
for adding indirection to direct field access from the clien
object to the remote object. This should be quite feasib
with AspectJ, and we intend to add this capability. Neve
theless, direct access to fields of another object may me
that the two objects are tightly coupled, suggesting th
perhaps they should not be split in the distributed versio

ed
d
il-
r
to
th
ject

-
:
ct-
t-
-
of

n.
d
n

is
n

n
s-
n

er
r-

ed
ay
ill

J-
s
on
e

ed

ch
-
e
s.
ls

but
m-

ke
rs
er-
Note that all of these issues are relatively easy to fix.
Since GOTECH templates are easy to inspect and change,
application programmers can even incorporate this func-
tionality on a per-application basis.

Finally, since performance is an important concern, we
should emphasize that it is not an issue for the GOTECH
framework. For the most part, GOTECH just generates the
code that a programmer would otherwise add by hand.
Additionally, in the only case where something is done
automatically (when using NRMI) the mechanism is quite
optimized [17]. In general, however, for a given set of dis-
tribution and caching decisions, the constant computa-
tional overheads of a distribution mechanism like ours are
relatively unimportant. These overheads are small relative
to the inherent cost of communication (including network
time and middleware, e.g., EJB, overheads). These costs
are not important if only few objects are accessed
remotely. On the other hand, if many objects are accessed
remotely, any distribution mechanism will suffer.

5. Related Work

We will separate related work into directly related work
and indirectly related work. Directly related work includes
other tools that help the programmer in adding distribu-
tion, but without taking away control and responsibility of
the distribution process from the programmer. Such tools
are “distributed programming aids”: they help do the
tedious tasks that the programmer would otherwise need to
do manually and that would “pollute” the code describing
the application logic. Nevertheless, the programmer is still
responsible for ensuring that the tools do the right job for
the application at hand.

Indirectly related work includes mostly application par-
titioning tools and Distributed Shared Memory systems.
Such tools offer a higher-level interface. Their user does
not necessarily program the distributed application, but
rather offers hints to improve its performance. These tools
have a higher correctness responsibility: they attempt to
correctly distributeany application although they usually
result in loss of efficiency and are applicable in fewer situ-
ations than the “distributed programming aids”.

5.1. Comparison with Directly Related Work

Many domain-specific languages have been proposed
to aid distributed programming, and some of them [8][11]
were key examples in the early steps of Aspect Oriented
Programming. Each of the domain-specific languages for
distribution offers its own advantages. For example, D [11]
and Doorastha [4] concentrate on allowing fine-grained
control over how data get passed to remote sites: both by-
copy and by-reference semantics can be selected and

classes can describe which of their fields get pass
remotely. JavaParty [12] is a higher-level tool than D an
Doorastha, offering generality and enabling object mob
ity, but without giving the programmer much control ove
the distribution process. The FarGo [7] system is similar
JavaParty but with less emphasis on generality wi
respect to language features and more emphasis on ob
movement as a group.

Compared to such domain-specific tools for distribu
tion, the GOTECH framework offers several advantages
• it is an easy to evolve tool, based on widely used aspe

oriented infrastructure (AspectJ and XDoclet). Inspec
ing and changing the functionality of our XDoclet tem
plates is much easier than changing the code for any
the above domain-specific tools.

• it offers NRMI, which is a unique way to support a
remote call semantics that is closer to local executio
NRMI is applicable to many common scenarios an
eliminates the need for explicitly updating data whe
changes are introduced by remote calls.

• GOTECH targets EJBs as a distribution substrate. Th
is a more complex, industrial-strength technology tha
the middleware used by the above systems.

5.2. Indirectly Related Work

There are many tools that attempt to offer distributio
capabilities to existing programs. Such tools include Di
tributed Shared Memory (DSM) systems and applicatio
partitioning tools. DSM systems [1][2][3][20] offer an
abstraction of shared memory to applications running ov
a network of machines. In order to obtain acceptable pe
formance, DSMs employ user annotations and relax
semantics: rigorously defined assumptions about the w
the application updates shared data that if violated w
result in incorrect execution.

Partitioning systems (like Pangaea [15], our own
Orchestra [16], and Addistant [18]) are similar to DSM
but emphasize offering a shared memory abstracti
through rewrites of the application. The benefit is that th
re-written application can be executed on an unmodifi
runtime system (e.g. a regular Java VM).

Both DSMs and partitioning systems operate at a mu
higher level than tools like GOTECH. They strive for cor
rect distributed execution of all applications and give th
programmer much less control over distribution choice
Therefore, just like very high level languages, these too
are valuable for the cases where they are applicable,
these cases are a small part of the general distributed co
puting landscape. In contrast, GOTECH does not ta
away control from the programmer, but instead offe
assistance for generating tedious code that would oth
wise be intertwined with the application logic.

l
ek,
”,

l,

n

,

is
n

,

e

)

-

le

a,
h

:

d
f

,
n

Finally, other researchers have examined the suitability
of aspect-oriented techniques for different domains. For
example, Kienzle and Guerraoui [10] examined the
suitability of aspect-oriented tools for separating
transaction logic from application logic. Separating trans-
action processing from application logic is very hard, and
possible only under very strict assumptions about the
application. These findings of Kienzle and Guerraoui are
consistent with longtime observations of the database
community.

6. Future Work and Conclusions

We presented the GOTECH framework: an approach to
aspectizing distribution concerns. GOTECH relieves the
programmer from performing many of the tedious tasks
associated with distribution. GOTECH relies on NRMI: a
middleware implementation that makes remote calls
behave much like local calls for a large class of uses (e.g.
single-threaded access to client data and no memory of
past call arguments on the server). Additionally, GOTECH
only depends on general-purpose tools and offers an easy
to evolve implementation, easily amenable to inspection
and change. Compared with the closest past approaches,
GOTECH is significantly more convenient and general.

In high-level terms, GOTECH is also interesting as an
instance of a collaboration of generative and aspect-ori-
ented techniques. The generative elements of GOTECH
are very simple exactly because AspectJ handles much of
the complexity of where to apply transformations and how.
On the other hand, AspectJ alone would not suffice to
implement GOTECH.

There are several directions of future work, both in
improving the framework and in providing more mature
support for the conversion of plain objects to EJBs with
different tools. For instance, part of the upcoming work on
the JBoss application server includes bytecode engineer-
ing at class load time to retrofit existing classes so that
they become EJBs. This approach can be applied both to
distribution and to persistence concerns and is of high
industrial value. Since NRMI is already part of JBoss, this
bytecode engineering work can result in a replication of
the GOTECH capabilities at load-time. Another promising
direction for more mature use of GOTECH includes devel-
oping analysis tools that formalize the preconditions for
the applicability of the approach and ensure they are met
by a specific application.

Availability and Acknowledgments
All source code for the GOTECH framework and the

thermal plate simulator application is publicly available.
This work was supported by the NSF (under Grants

0220248 and 0238289) and by the Yamacraw Foundation.

References
[1] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a
Single System Image of a JVM on a Cluster”, in Proc.ICPP’99.
[2] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Cerie
Jacobs, Koen Langendoen, Tim Ruhl, and M. Frans Kaasho
“Performance Evaluation of the Orca Shared-Object System
ACM Trans. on Computer Systems, 16(1):1-40, February 1998.
[3] John B. Carter, John K. Bennett, and Willy Zwaenepoe
“Implementation and performance of Munin”,Proc. 13th ACM
Symposium on Operating Systems Principles, pp. 152-164,
October 1991.
[4] Markus Dahm, “Doorastha—a step towards distributio
transparency”,JIT, 2000. See
http://www.inf.fu-berlin.de/~dahm/doorastha/ .
[5] Edsger W. Dijkstra, “On the role of scientific thought”,
EWD 447, August 1974. Also inSelected Writings on
Computing: A Personal Perspective, Springer-Verlag, 1982.
[6] Mohammad M. Fuad and Michael J. Oudshoorn, “AdJava—
Automatic Distribution of Java Applications”, 25thAustralasian
Computer Science Conference (ACSC), 2002.
[7] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit
“Dynamic Layout of Distributed Applications in FarGo”,Int.
Conf. on Softw. Engineering (ICSE) 1999.
[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chr
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier and Joh
Irwin, “Aspect-Oriented Programming”,European Conference
on Object-Oriented Programming (ECOOP), 1997.
[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten
Jeffrey Palm and William G. Griswold, “An Overview of
AspectJ”, European Conference on Object-Oriented
Programming (ECOOP), 2001.
[10] Joerg Kienzle and Rachid Guerraoui, “AOP: Does It Mak
Sense? The Case of Concurrency and Failures”,European
Conference on Object-Oriented Programming (ECOOP,
Malaga, June 2002.
[11] Cristina Videira Lopes and Gregor Kiczales, “D: A
Language Framework for Distributed Programming”, PARC
Technical report, February 97, SPL97-010 P9710047.
[12] Michael Philippsen and Matthias Zenger, “JavaParty
Transparent Remote Objects in Java”,Concurrency: Practice
and Experience, 9(11):1125-1242, 1997.
[13] Francisco Reverbel and Marc Fleury, “The JBoss Extensib
Server”,ACM Middleware 2003.
[14] Sergio Soares, Eduardo Laureano, Paulo Borb
“Implementing Distribution and Persistence Aspects wit
AspectJ”,OOPSLA 2002.
[15] Andre Spiegel, “Automatic Distribution in Pangaea”,CBS
2000, Berlin, April 2000. See also
http://www.inf.fu-berlin.de/~spiegel/pangaea/
[16] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra
Automatic Java Application Partitioning”,European Conference
on Object-Oriented Programming (ECOOP), Malaga, June
2002.
[17] Eli Tilevich and Yannis Smaragdakis, “NRMI: Natural and
Efficient Middleware”, Int. Conf. on Distributed Computer
Systems (ICDCS), 2003. Extended version available from
http://www.cc.gatech.edu/~yannis .
[18] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, an
Kozo Itano, “A Bytecode Translator for Distributed Execution o
‘Legacy’ Java Software”,European Conference on Object-
Oriented Programming (ECOOP), Budapest, June 2001.
[19] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall
“A note on distributed computing”, Technical Report, Su
Microsystems Laboratories, SMLI TR-94-29, Nov. 1994.
[20] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for
Heterogeneous Computing”,Concurrency: Practice and
Experience, 9(11):1213-1224, 1997.
[21] www.xdoclet.org

	Aspectizing Server-Side Distribution
	Eli Tilevich ��������Stephan Urbanski��������Yannis Smaragdakis
	College of Computing , Georgia Institute of Technology
	Atlanta, GA 30332
	{tilevich, stephan, yannis}@cc.gatech.edu
	Abstract
	1 . Introduction
	2 . Background
	2.1. �Challenges of Distribution
	2.1.1. Semantics
	2.1.2. Performance
	2.1.3. Conventions

	2.2. The Elements of our Approach
	2.2.1. NRMI
	Figure 1 . A tree data structure t and two aliasing references to its internal nodes.
	Figure 2 . Changes introduced after the execution of foo, both for NRMI and for a local call. Eve...

	2.2.2. AspectJ
	2.2.3. XDoclet

	3 . Our Framework
	3.1. �Overview
	1. The programmer introduces annotations in the source
	2. XDoclet processes the annotations and generates the aspect code for AspectJ
	3. XDoclet does the EJB generation
	4. XDoclet generates the EJB interface and deployment descriptor
	5. AspectJ compiler compiles all generated code (including regular EJB code and AspectJ aspect co...

	3.2. �Framework Specifics
	3.2.1. Middleware
	3.2.2. GOTECH Annotations
	3.2.3. GOTECH XDoclet Templates
	Figure 3 . Simplified fragment of XDoclet template to generate the aspect code. Template paramete...

	3.3. �Discussion of Design

	4 . Applying the Framework
	4.1. �Example Application
	Figure 4 . UML class diagram of the Thermal Plate Simulator functionality

	4.2. �Advantages and Limitations
	4.2.1. Advantages of our approach
	Making the object remote
	Serializing types
	Client call redirection
	Updating Remotely Changed Data

	4.2.2. Limitations
	Entity Bean support
	Conditions for applying rewrite
	Exceptions, construction, field access.

	5 . Related Work
	5.1. �Comparison with Directly Related Work
	5.2. �Indirectly Related Work

	6 . Future Work and Conclusions
	Availability and Acknowledgments
	References
	[1] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Cl...
	[2] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M...
	[3] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Mun...
	[4] Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www....
	[5] Edsger W. Dijkstra, “On the role of scientific thought”, EWD 447, August 1974. Also in Select...
	[6] Mohammad M. Fuad and Michael J. Oudshoorn, “AdJava— Automatic Distribution of Java Applicatio...
	[7] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit, “Dynamic Layout of Distributed Applications ...
	[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Ma...
	[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and William G. Griswol...
	[10] Joerg Kienzle and Rachid Guerraoui, “AOP: Does It Make Sense? The Case of Concurrency and Fa...
	[11] Cristina Videira Lopes and Gregor Kiczales, “D: A Language Framework for Distributed Program...
	[12] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Co...
	[13] Francisco Reverbel and Marc Fleury, “The JBoss Extensible Server”, ACM Middleware 2003.
	[14] Sergio Soares, Eduardo Laureano, Paulo Borba, “Implementing Distribution and Persistence Asp...
	[15] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also h...
	[16] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioning”,...
	[17] Eli Tilevich and Yannis Smaragdakis, “NRMI: Natural and Efficient Middleware”, Int. Conf. on...
	[18] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator ...
	[19] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Te...
	[20] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Pr...
	[21] www.xdoclet.org

