
in
Binary Refactoring: Improving Code Behind the Scenes

Eli Tilevich, Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{tilevich, yannis}@cc.gatech.edu

such as C++, Java, and C# offer built-in refactoring support
u

in
to
e

re
ry
th
g
a

n

.4

,

it
s

t
h
b
a
e
e

is
e
y
g

ce
ry
ity
or

e
e
se
nd
lit
art
d
is
E
es
e

fit.
re
y
”
ll

a
e

r
r
s

t,

h

ABSTRACT
We present Binary Refactoring: a software engineering techniq
for improving the implementation of programs without modifying
their source code. While related to regular refactoring
preserving a program’s functionality, binary refactoring aims
capture modifications that are often applied to source cod
although they only improve the performance of the softwa
application and not the code structure. We motivate bina
refactoring, present a binary refactoring catalogue, describe
design and implementation of BARBER—our binary refactorin
browser for Java, and demonstrate the usefulness of bin
refactoring through a series of benchmarks.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, a
reengineering; D2.3 [Software Engineering]: Coding Tools
and Techniques—Object-oriented programming; D.3
[Programming Languages]: Processors—Optimization

General Terms
Performance, Languages.

Keywords
Refactoring, adaptation, optimization, software evolution
maintenance, and bytecode engineering.

1. INTRODUCTION
The process of changing a software system that improves
internal structure without altering its external behavior i
called refactoring. Traditionally, refactoring has entailed
restructuring the source code of a program to make it easier
understand, maintain, and enhance, thereby improving t
program’s design. Refactoring has been actively explored
software engineering researchers and some of their ideas h
successfully migrated to programming practice. For instanc
several modern programming IDEs for mainstream languag
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies ar
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

ed

a

d

ar
s

e

e

,

e

ry

d

s

o
e
y
ve
,
s

the form ofrefactoring browsers.

In this paper we propose the concept ofbinary refactoringas a
valuable software engineering technique. Binary refactoring
the application of refactoring transformations to a softwar
application without affecting its source code. Thus, binar
refactoring transformations are semantics-preservin
(assuming correct application) and intended for performan
optimization. Nevertheless, it is more appropriate to see bina
refactoring as a technique that enhances maintainabil
without sacrificing performance, rather than as a technique f
improving performance. The raison d’être of binary
refactoring is not that current programs need mor
optimization but that programmers already apply cod
structure transformations for performance reasons, yet the
transformations unnecessarily pollute the source code a
affect its maintainability. For instance, classes are often sp
not because of design reasons but to exploit locality: one p
of the object may need to be stored or transmitte
independently of the rest. This source-code refactoring
common in server-side applications (e.g., with J2E
technology) in which objects need to be stored in databas
and transmitted over the network. With binary refactoring, th
class structure in the program can remain intact but asplit
class refactoring can produce the same performance bene
As another example, source code modifications often a
applied just to reduce indirection cost (e.g., b
devirtualization, manual inlining, or the “remove middle man
source refactoring). In contrast, with binary refactoring a
such transformations can be codified and applied through
refactoring browser without affecting the application sourc
code.

Clearly, binary refactoring is closely related both to regula
software refactoring and to annotation-guided compile
optimization. Nevertheless, we believe that our work make
novel contributions:

• We introduce binary refactoring as a general concep
worthy of careful study.

• We catalogue several useful refactorings, many of whic
(e.g., “split class”, “glue classes”) are much more
complex and larger-scale than usual annotation-guid
optimizations in standard compilers.

• We concretely demonstrate binary refactoring with
reference implementation. BARBER, our binary
refactoring browser for Java, is a tool that we have foun
very appealing in our own software development work.

• We apply BARBER to several small and large
benchmarks to showcase its effects. Although it is cle
that binary refactoring can improve a program’

e
ect.
s

d
ds

g

o.
ld
ed

ng
the
g

ay

ch
r

en
ir
ds
s a
em
are

ar
ols
e:
to
te
t

n
his
t
in

e
e

he

y
ry

st
s
e,

.,

ns
he

e
lly
y
y
rm
f
of
performance, it is occasionally surprising to quantify the
improvement achieved with little effort.

The rest of this paper is organized as follows. Section 2
introduces the motivation for binary refactoring. Section 3
presents our refactoring catalogue. Section 4 discusses how
binary refactoring fits into the software development process.
Section 5 describes the design, implementation, and evaluation
of our binary refactoring browser. Section 6 outlines related
work, and Section 7 concludes.

2. MOTIVATION
“Premature optimization is the root of all evil”

C.A.R. Hoare

The motivation behind binary refactoring is offered by two
common observations in software projects:

• programmers are trained to optimize their programs
relative to facts that they statically know to be true (run-
time invariants).

• run-time invariantsare not necessarilydesign invariants:
properties that always hold in the current version of the
application are often not part of the long-term design
throughout the application lifetime.

The consequence of these observations is that many program
changes intended as performance optimizations actually
conflict with an application’s extensibility and maintainability.
Such program changes are being performed all the time in
actual projects, sometimes even without realizing their long-
term implications.

As an extended example, consider an orders processing system
implemented in Java. (We use Java as an example language
throughout this paper.) One of the application’s classes is class
Customer . (For a concrete instance, see classCustomer in the
open source JFreeReport Library—
http://www.jfree.org/jfreereport/ . We later use this
class in one of our experiments.) The implementation of this
class may be quite mature and match the design intention.
Nevertheless, some changes may become necessary due to the
way Customer objects are used. Imagine that our application
is deployed in a server-side environment: its functionality is
accessed remotely over the internet. Good structuring of Java
server-side applications (e.g., using the 3-tiered J2EE
conventions) dictates separating the application presentation
logic, business logic, and storage component. In this model,
Customer objects often need to be copied over the network.
Imagine a remote method that accepts aCustomer parameter
and uses it to calculate a shipping rate. Such a method likely
uses only a few fields ofCustomer . If we could pass only the
required fields to the remote method, then the cost of network
communication would be reduced and the remote method
would take less time to invoke. We could change the signature
of the remote method to take several parameters instead of the
single Customer , but that would violate the encapsulation
principle: we do not want to use an object’s fields
independently of the object itself. Instead, a common way to
address this problem is to split up the class into two classes so
that one of the partitions ends up containing only the fields
used by remote calls.

This partitioning of theCustomer class is an example of a
source-level transformation that is dictated entirely by
performance concerns. From a design perspective, the split is

likely not desirable: the two partitions are always in one-to-on
correspondence and they are conceptually the same obj
Furthermore, the partitioning is brittle with respect to change
of the functionality of remote methods: if a remote metho
needs to access more fields in the future, the partitioning nee
to change.

In contrast to the practice of splitting theCustomer class
manually, we propose that thesplit class binary refactoring
offers a convenient solution to this problem. This refactorin
enables flexible splitting of a single class into multiple
partitions as required by a given application scenari
Furthermore, the directions specifying how the splitting shou
be done and to what classes it should apply are describ
externally from the application’s source code, thus preservi
a clean design. A binary refactoring browser tool processes
input for the split class refactoring and applies the refactorin
to the entire application: both the class and its clients m
change as a result of the split class refactoring.

We would be amiss not to mention up front that much resear
has gone into optimizing this special case of “split class” fo
distributed computing. Various approaches have be
proposed for speeding up remote calls by splitting up the
object parameters (i.e., sending to the server only the fiel
used by remote calls). As an example, the D [12] system use
language framework approach, and the Doorastha [5] syst
uses special code-level annotations. Yet these approaches
special-purpose and attempt to solve only this particul
instance of the problem. Consequently, special-purpose to
such as D and Doorastha are rarely used in practic
programmers avoid introducing extra dependencies just
address a single optimization task. Finally, since Java remo
calls [18] use serialization [17] for passing complex objec
structures between different address spaces, thetransient
keyword can be used to indicate a field that is not part of a
object's persistent state and should not be serialized. T
solution works well to reduce network communication, bu
still introduces some overhead. (See also our experiments
Section 5.2.) As a result, programmers still largely perform
this optimization manually by splitting their classes in th
source code. Using binary refactoring would achieve the sam
performance benefits, but without making any changes to t
source code.

3. REFACTORING CATALOGUE
In this section, we present a collection of common binar
refactorings. To begin, we should ask what constitutes a bina
refactoring. Not all regular software refactoring
transformations are suitable to be binary refactorings. Mo
regular refactorings deal explicitly with source code entitie
and modify an application’s design and structure. For instanc
the majority of refinements in Fowler’s catalogue [8] (e.g
“pull up field”, “push down method”, “hide method”,
“introduce assertion”, etc.) concern source code modificatio
that by definition affect the subsequent maintenance of t
application.

In contrast, a binary refactoring is not reflected in the sourc
code. Despite the name, binary refactoring may not rea
occur at the binary code level, and in fact low-level binar
representations are most likely unsuitable for binar
refactoring transformations. Nevertheless, we use the te
“binary” to signify that the refactoring is not applied as part o
the programming process, but as part of the process
building/compiling the application. Binary refactoring could

n
ther.
,

ss

d
n
y

to
he
g
as
nt
e

an
s
or

s.
y

n
e
ss

es
s at
es
se
]
n
ion
lds
nd

he

ed
ion
er
e

ion

a
n
is
e
.
is

s

even apply at the source code level, as long as it is invisible to
the programmer—i.e., it does not affect themaintained version
of the source code. Consequently, the refactoring is done to
improve performance and not source code structure. Binary
refactorings are semantics-preserving, but typically only under
strict assumptions that are to be ensured by the user. These
assumptions may be violated while the application source code
evolves—the programmer is responsible for maintaining a
refactoring specification together with the source code.

Our subsequent list of binary refactorings is meant to be
representative, rather than exhaustive. We describe five
refactorings in detail and outline a few more. We distinguish
two main categories. These arerefactorings to improve
locality (such as “split class” and “glue classes”) and
refactorings to remove indirection (such as “inline method,”
“remove delegate,” and “remove visitor”). Whenever a binary
refactoring corresponds to a well-known source refactoring,
we keep the established name.

3.1 Structural Refactorings for Locality

3.1.1 Split Class.

General Description.

Split a single class into multiple partition classes, preserving
the functionality of the original class, possibly only under a
specific application scenario. Make all the clients of the
original class use the partition classes instead.

Purpose and Applicability.

The split class refactoring provides a systematic mechanism
for modifying the internal representation of objects by
partitioning them into distinct entities that exploit locality,
thereby improving performance. This refactoring is applicable
primarily in the application scenarios in which one part of the
object needs to be stored or transmitted independently of the
rest. Additionally, certain storage and network transmission
mechanisms can provide better performance when handling an
object in its entirety rather than some subset of its fields.
Splitting an object provides a set of smaller objects that can be
used by such mechanisms. Another application for splitting
classes is improving cache locality. Consider a class with some
frequently accessed fields and some infrequently accessed
ones. By breaking up objects, we allow fields of different
partitions to be allocated non-contiguously. As a result, a good
allocation policy (e.g., one clustering together objects of the
same size) will place related fields of different objects in the
same caching unit (e.g., processor cache line or virtual
memory page) thus allowing much tighter packing of the
frequently accessed fields.

Specifics and Variations.

Conceptually, the process of splitting a class is quite
straightforward and involves two steps. First, replace all the
instances of creating an object of the original class with
creating the corresponding objects of its partition classes.
Second, make all the clients of the original class use the
partition classes instead.

In general, because split class is applicable in a variety of
application scenarios, it comes in many different flavors and

variations, defined primarily by how the rest of the applicatio
accesses the partition classes and how they access each o
We find it useful to differentiate the splits based on direction
serializability, and security attributes.

Thedirection attribute defines how the partition classes acce
each other. A unidirectional split identifies “the primary
partition” class, using it instead of the original class an
accessing all other partitions through it. The primary partitio
class also contains all of the methods of the original class. B
contrast, a multidirectional split treats all the partitions
uniformly, enabling them to access each other and also
contain any subset of the methods of the original class. (T
multidirectional split is generally not a semantics-preservin
transformation: an object no longer has a unique identity
different parts of the code can be directly accessing differe
partitions. The user is responsible for ensuring that th
refactoring can be applied.) The links between partitions c
be implemented either intrusively, with partition classe
containing references to each other as data members,
externally, using external mapping data structure
Additionally, intrusive partition references can be optionall
marked astransient , allowing partitions to be serialized
individually, thus implementing theserializability attribute.

The security attribute defines whether the encapsulatio
properties of the original class are preserved in th
implementation of the partition classes. Because only the cla
itself can access itsprivate fields, this invariant changes to
include all other partition classes as well, after the split tak
place. In a safe language like Java that checks access right
run-time, implementing the desired security semantics requir
a creative solution. For instance, in our implementation we u
a solution similar to that proposed by Bhowmik and Pugh [4
for the Java inner classes rewrite. At load time, one partitio
class obtains a secret key and passes it to the other partit
class. When objects of one partition class need to access fie
from the other, they call a public method that also receives a
checks the secret key.

3.1.2 Glue Classes

General Description.

Merge two classesFrontEnd andBackEnd whose objects are
always in one-to-one correspondence into a single class. T
refactoring is applicable when each object of classBackEnd is
accessed only by a single object of classFrontEnd .

Purpose and Applicability.

By merging two closely related classes that are always us
together, we get the advantage of removing access indirect
and, more importantly, merging member data for bett
locality. For instance, the refactoring is typically applicabl
when the source code design employs theBridge design
pattern. The Bridge design pattern “decouples an abstract
from its implementation so that the two can vary
independently” [9]. Nevertheless, often the abstraction has
single implementation, known statically. The implementatio
may be fixed for the current version (yet the design pattern
used for future extensibility) or the implementation may b
fixed for a certain hardware platform or build configuration
The canonical example [9] demonstrating the Bridge pattern
one of a window abstraction with two possible flavor
(IconWindow /TransientWindow) and two possible

s
.,

ze
n

ts.
ds
ill

e

For
e

ct,
le
ts
t

e
ere
te.

re

s

er,
an
a

ry
ts

es
not
s,
n

d
e
ate

or
es
n
an
implementations for different windowing toolkits. Yet, the
windowing toolkits do not change during application runtime,
although the flexibility to switch toolkits is desirable in the
application source code. Theglue classesrefactoring can be
used to merge the current window implementation with each
abstraction flavor, in order to obtain performance benefits
without changing the source code.

Specifics and Variations.

The resulting class has the union of the data members and
methods of both glued classes. The client interface remains
that of classFrontEnd , which is accessed by clients as before.
The construction interface ofFrontEnd expands to accept any
BackEnd construction parameters. Clients should construct
objects of the two classes using the common constructor
chaining idiom:

new FrontEnd(..., new BackEnd([params]), ...)

This gets replaced with a single call to the expanded
FrontEnd constructor. TheBackEnd constructor is inlined
(see theinline methodrefactoring) for correct initialization.
Methods of classBackEnd can also be inlined/devirtualized at
their call sites inside classFrontEnd —the assumptions of the
glue classesrefactoring ensure that the target of the method
call is statically known.

3.2 Refactorings to Remove Indirection

3.2.1 Inline/Devirtualize Method

General Description.

a. Replace an indirect (virtual) method call with a direct
(static) one.

or

b. Replace a method call with the adapted body of the callee
(inlining).

Purpose and Applicability.

An indirect (dynamic) dispatch is costlier than a direct (static)
one. The true purpose of an indirect dispatch is to enable
polymorphic behavior. However, when no polymorphism is
present, an indirect dispatch can be replaced with a direct one
or the call target can be inlined. Although standard compiler
optimizations (e.g., inline caching [6]) are very effective in
eliminating the double indirection cost, they still do not
usually attain the performance of inlined code (see our later
experiments) and they can benefit from user-supplied
information on what methods to devirtualize/inline.

Clearly the refactoring is low-level and should be applied very
sparingly. Nevertheless, several common coding patterns can
benefit from the inlining/devirtualization refactoring. Object-
oriented software development promotes a coding style that
results in the proliferation of a large number of very small
methods. Take, for example, the practice of declaring all
member fields in a class to be private and providing a pair of
accessor/mutator methods as unique access points for each
field. These methods simply return or modify the value of their
respective field but result in an indirect dispatch. When the
dynamic type of an object is known statically, it is beneficial to
inline accessor and mutator method calls. (Note that

sophisticated optimizing compilers do perform thi
optimization but only under clear enabling conditions—e.g
when the method is never overridden.)

Specifics and Variations.

Inlining has the standard trade-off of expanding the code si
and reducing locality. Thus, too aggressive inlining ca
actually hurt performance.

In Java, static methods are applied to classes, not objec
Thus, the static method resulting from devirtualization nee
to accept an extra argument: the object the method code w
act on.

If the refactoring is applied above the level of a secur
runtime, such as the Java VM, inlining code will require
weakening the encapsulation properties of the target class.
instance, private fields will need to be made public to b
accessed directly by external code.

3.2.2 Remove Delegate

General Description.

Change client code so that instead of calling a delegate obje
it calls the target object directly. The refactoring is applicab
when there are multiple clients per delegate and the clien
statically know which delegate is getting called, but no
necessarily what is the target object.

Purpose and Applicability.

This refactoring is similar toglue classes. It differs, however,
in its purpose and mechanism. The purpose ofremove delegate
is to remove indirection rather than to enhance locality. Th
delegate class is not glued with the client class because th
are multiple client classes, all accessing the same delega
Instead the delegate object still exists but its fields a
accessed directly inside client code (theinline/devirtualize
methodrefactoring is applied to all calls of delegate method
inside all refactored clients in turn).

A common reason to applyremove delegateis when the code
is structured using design patterns such as Proxy, Adapt
Bridge, Composite, etc. These design patterns introduce
extra object between the client and the implementation of
concept. Typically, the extra level of indirection is necessa
because there are two degrees of run-time variability. Clien
do not statically know which delegate they get (all delegat
support the same abstract interface) and delegates do
statically know which target object they call. Nevertheles
occasionally the dynamic type of a delegate is statically know
in the current version of the application or in the current buil
configuration or by some of the clients but not all. In all thes
cases, it is beneficial to eliminate the overhead of the deleg
using binary refactoring.

3.2.3 Remove Visitor

General Description

Eliminate the overheads resulting from the use of the Visit
design pattern [9]. The refactoring is applicable when the typ
of visited objects and visitors are known statically. This is a
example of a composite refactoring that the programmer c

or
s,
r
ct
d.
a
all
r the

g
al

ry
e
r
e

an
e

e

fi-
er

ger
r

is

ot
g
st

is
r: it
are
en
es.
s:
ng
us,

rce
n
ly

ly

y
e

re,
.
of
ely
express concisely because of the underlying design pattern and
effect its implementation by automatically determining and
applying a series of simpler (e.g.,devirtualize and inline
method) refactorings.

Purpose and Applicability

A common object-oriented solution to the problem of
providing an extensible machinery for expressing operations
on the elements of an object structure without modifying their
source code is the Visitor design pattern [9]. That is, Visitor
enables the programmer to express a new operation without
changing the code of the classes on which it operates. The key
to extensibility is the use of polymorphism in the
implementation of the pattern, which references both visited
objects and visitors through their respective superclasses. This
results in a complex double dispatching structure that usually
hinders performance. In the cases when the types of the visited
classes and the visitors are known statically, the runtime
overhead of double dispatching can be eliminated by replacing
indirect calls with direct ones or by inlining the visitors’ code
in the visited classes.

Specifics and Variations

Traditional implementations of the Visitor design pattern come
in several different flavors, with some of them being more
amenable to binary refactoring than others. For example,
programmers can choose multiple approaches to traversing the
visited objects. One of the options is to have the calling
program keep all the visited objects in a simple structure such
as an array, passing the visitor to each of them in a loop. A
more common approach though, particularly for Composite [9]
structures, is for the visited objects to provide their own
traversal strategy by calling theaccept methods on the
objects that they contain.

How much of the overhead of double dispatching can be
eliminated depends on whether polymorphism is used in
dispatching theaccept methods of the visited objects. If the
exact type of all the visited objects is known statically, the
code in the visit methods can be inlined in the visited
objects, thereby completely eliminating all the overhead of the
double dispatching in the pattern’s implementation.

More commonly in practice, the type of the visitor is known
statically, yet the type of the visited objects truly varies
polymorphically. In this case, only half of the indirection
overhead can be removed. For instance, in a compiler
implementation, we may know exactly when aTypeCheck
visitor is applied to the root of a syntax tree. Once a
TypeCheck visitor is used on the root element type, it will
only pass theTypeCheck visitor to components of the syntax
tree. In this case, binary refactoring can replace the generic
accept methods with specialized versions for each visitor and
devirtualize thevisit methods in the visitor classes.

3.3 Other Binary Refactorings
Many more optimizations can be recast as binary refactorings.
The ideal candidate optimization is one that cannot be
performed well without user-supplied knowledge and affects
the application structurally—i.e., it is reflected at the level of
the interface between classes, rather than being entirely
internal to a class.

Thus, for instance, refactorings can be introduced f
removing the indirection overhead of many design pattern
when the target of an indirect call is known statically. Fo
example, in addition to the Visitor design pattern, the Abstra
Factory is usually one in which indirection can be remove
(Gamma et al. [9] observe: “Normally a single instance of
ConcreteFactory class is created at run-time.”) Note that in
these cases, keeping the design pattern is advantageous fo
long-term maintainability and extensibility of the application
(e.g., the application may need to support multiple windowin
systems) yet in any particular build configuration the actu
type of objects involved in the pattern is statically known.

Many low-level optimizations can also be presented as bina
refactorings. (Nevertheless, the lower the level of th
optimization, the more sparingly it should be applied.) Fo
instance, a possible refinement would be “replac
polymorphism with conditional”, replacing polymorphic calls
with a dynamic check of the type of the dispatch object and
inline execution of the potential call targets. This parallels th
polymorphic inline caching optimization [10] in traditional
compilers, but with user-supplied information that guide th
transformation.

4. DISCUSSION
“Rules of Optimization: Rule 1: Don’t do it.

Rule 2 (for experts only): Don’t do it yet.”
M.A. Jackson

“More computing sins are committed in the name of ef
ciency (without necessarily achieving it) than for any oth

single reason — including blind stupidity.”
W.A. Wulf

We are all aware of the stern warnings against being too ea
to optimize software. Optimization is often responsible fo
obfuscating programs, limiting their maintainability, and
hindering their generality. Nevertheless, binary refactoring
orthogonal to the question ofwhen to optimize. An
optimization approach using binary refactoring does n
advocate more optimization. Instead, binary refactorin
dictates that, when optimization is necessary, it is often be
done without polluting the application source code. In th
sense, binary refactoring has a certain aspect-oriented flavo
advocates expressing aspects of an application that
traditionally encoded in source code separately and th
composing them back with the application behind the scen
At first, this optimization approach may seem dangerou
assumptions that affect the correctness of the resulti
program are expressed separately from the source code. Th
subtle errors can be introduced and inspection of the sou
code is not sufficient to explain application behavior when a
erroneous refactoring is applied. Debugging may be similar
hindered—a common pitfall of automatic program
transformations.

Nevertheless, we believe that binary refactoring is strict
superior to the alternatives,as long as it is not viewed as an
excuse to apply optimization more eagerly or less carefull.
Without binary refactoring, the same assumptions would b
reflected in the application source code structure. Furthermo
the assumptions would be neither explicit nor localized
Instead, binary refactoring allows the concise expression
static knowledge of the application structure as a separat

s
t
t.

in
e
t
n
n
y
y
of

vel.
n
f
gs
to
te

of
is

ng

ly
,

re,
o
s
d
a
d

e
m

e
y

ic
e
of
va
maintainable entity: the refactoring specification. When
assumptions change, the refactoring specification should be
updated to reflect them. This change is significantly easier
than editing the source code. For instance, undoing aglue
classesrefactoring by editing the refactoring specification is
much easier than separating two classes and changing their
clients manually.

The explicit, programmer-guided nature of binary refactoring
also alleviates issues relating to debugging. Debugging should
occur at the level of the maintained application source code. If
an error is introduced only due to the use of a binary
refactoring transformation, then the programmer needs to
inspect the refactoring specification and re-examine whether
the correctness assumptions are satisfied. Even without
explicit debugging support for binary refactoring, the problem
is manageable. The refactoring specification should be short
and relatively easy to inspect. Furthermore, the programmer
explicitly introduces the new behavior and will not be
surprised by it.

5. BINARY REFACTORING BROWSER
(BARBER)

We demonstrate binary refactoring concretely with BARBER
(the Binary Application Refactoring BrowsER), our reference
implementation of a binary refactoring browser for Java.
BARBER “grooms” existing programs for optimized
execution. We first describe the structure and some
implementation specifics of BARBER, and then showcase the
effects of binary refactoring through a series of small and large
benchmarks. BARBER can be downloaded from
http://j-orchestra.org/barber .)

5.1 Structure
Our intention was to make the structure of BARBER
straightforward in order to maximize usability. BARBER is an
extensible framework in which binary refactorings can be
added and share useful support functionality. Currently the
system implements several variants of thesplit class, remove
delegate, remove visitor, and inline/devirtualize method
refactorings. Figure 1 shows the user view of BARBER
schematically. Because binary refactoring can be thought of as
a new activity in the software development chain, we have
provided support for using BARBER as a task in the popular
ANT build tool [2] for Java. Specifically, the BARBER task is
a separate build step that runs after all the standard build steps
have been completed. In addition, depending on the target
environment for a given build configuration, different sets of
binary refactorings can be applied to the same source code
base.

As input, BARBER accepts a configuration file that specifies a
collection of binary refactorings in XML format. This input
file contains all the necessary parameters for the specified
refactorings such as the file system location of the original
application classes. The type of a given binary refactoring
determines the exact set of input parameters that a
configuration file must provide. For example, Figure 2 shows a
fragment of a BARBER XML file that specifies the parameters
of a split class binary refactoring. The fragment starts by
describing the refactoring type along with its direction,
security, and transiency attributes, which indicate that this
particularsplit classis unidirectional, secure, and serializable,
respectively. (For a detailed explanation of each of these

attributes see Section 3.1.1.) After that, theCLASS_TO_SPLIT
tag provides a fully-qualified name of the class to be split a
acc.Customer . The member fields’ names that follow nex
are placed by convention into the primary partition of the spli
Since member fields of the same class have unique names
Java, providing only the fields’ names is sufficient. Th
compilation unit definition, containing all the classes tha
participate in this refactoring, completes the configuratio
fragment. Since listing all the classes in a large compilatio
unit individually can be a tedious task, we are currentl
working on providing support for defining groups of classes b
the means of wildcard patterns, similar to the ones
directory-based tasks in ANT [2].

After BARBER finishes parsing the input XML file, all
subsequent operations are performed at the bytecode le
Before effecting the refactorings specified by a give
configuration, BARBER performs some syntactic checking o
the input application classes to ensure that the refactorin
would make sense. (Currently such checks are limited
checking whether all entities exist and have an appropria
type. An interesting future work direction would be to try to
identify complex enabling conditions, such as uniqueness
reference, or patterns of instantiation and use.) If the check
successful, BARBER then applies the refactorings, produci
a modified set of binary Java classes.

Currently we are exploring the possibilities of offering
BARBER as an Eclipse [7] plug-in. Being able to specify
binary refactorings through a GUI-based tool would not on
completely eliminate the need for editing XML files by hand
but would also provide greater flexibility in integrating the
technique into the development process. Furthermo
operating within the context of an IDE would make it easier t
provide additional support for the programmer, such a
automatically discovering beneficial binary refactorings an
verifying preconditions for their successful application vi
static and dynamic analyses. Finally, having integrate
BARBER into a popular IDE such as Eclipse would facilitat
the task of exploring the benefits of the technique in mediu
to large software projects via case studies.

We have found BARBER very appealing in our own softwar
development work. It enables an interesting level of flexibilit
in fine-tuning applications. We employed BARBER in the
context of developing J-Orchestra [19], an automat
partitioning system for Java programs. By using BARBER, w
have successfully improved the performance both of some
the J-Orchestra runtime components and of the binary Ja

.class

.class

original
bytecodes

modified
bytecodes

XML
input
file

BARBER

Figure 1. Using BARBER

is

t

ce
g
es,
s
be
of
it
ned
e
e
e
the
ces
ve

t
a
.
n
en
ses
e

d
nt

of
s
he

its
of
classes that J-Orchestra generates. We quantify some of these
improvements in one of the benchmarks in Section 5.2.

5.2 Experiments

We have used BARBER on a series of micro and macro
benchmarks. The measurements are on a 2.4GHz Pentium 4
machine, running Sun JDK 1.4. Note that the experiments
described aim at demonstrating, rather than validating, binary
refactoring. Since our main argument is one of usability, it
cannot be validated or refuted with program performance
measurements. Nevertheless, these measurements are
interesting for quantifying the effect of some binary
refactoring transformations in specific settings.

Our first microbenchmark demonstrates the benefits of the
split classrefactoring in the example discussed in Section 2:
reducing the amount of data transferred across different
address spaces in a remote method call. The scenario consists
of an instance of classCustomer passed to a remote method
call that uses only some of the fields of the class. Specifically,
the remote method invocation uses the Customer’s id and
postal code to determine a shipping rate. To make the scenario
more realistic, we used an actualCustomer class from the
open source JFreeReport Library (jfree.org/jfreereport).
Among the trivial changes that we made to the class prior to
using it in our benchmark was adding along id field to the
existing sevenString fields, and marking the class as
Serializable .

The split class binary refactoring for this experiment was
effected by instructing BARBER to splitCustomer into two
partitions in such a way that one of them would contain only
the two fields used by the remote method call with the other
one containing the rest of the fields. In this way, the first
partition could be used in the remote method call, significantly
reducing the amount of transferred data. To isolate the
improvements due to reduced serialization from those due to
reduced network communication time, we placed the client and
the server on the same machine. Table 1 shows the results of
running the original and optimized versions of the benchmark.
(Each remote call is repeated 10^5 times. In all experiments—
except for the SPEC JVM 98 raytracer benchmark, which has
its own test settings—we “warm” the JVM with the tested code

but different inputs before measuring, to ensure that the code
compiled.)

A reader familiar with the specifics of Java Serialization migh
wonder if using thetransient keyword would not be a better
way to avoid transferring unused data in a remote call. Sin
Java remote calls [18] use serialization [17] for passin
complex object structures between different address spac
the transient keyword can be used to indicate a field that i
not part of an object's persistent state and should not
serialized. While marking fields of a class as transient is one
the binary refactorings supported by BARBER, using “spl
class” has the advantage that the fields are not even exami
during serialization. This is important in configurations wher
the bottleneck is not the transfer time of the data but th
computational overhead of serialization. (This is actually th
case in a common server-side execution scenario: when
serialization takes place between two different address spa
that exist on the same machine.) As a simple example, we ha
used a classRecord consisting of a hundred integer fields, ou
of which only every tenth field needs to be serialized. Using
class with that many fields might seem a little contrived
However, if we consider that Java Serialization involves a
exhaustive traversal of an entire object graph, serializing ev
a simple class that has object fields and/or has superclas
could easily involve going through as many and mor
primitive fields. We created 50K objects of classRecord and
measured the total time it takes to write them to a disk file an
read them back into memory. Table 2 shows that transie
fields still impose a significant computation overhead.

Another area in which “split class” can be beneficial is in
exploiting locality. Consider a “number-crunching”
application that operates on a collection of records, each
which containing ten integer fields, with only one of the field
used by a computation. A simple benchmark program is t
following:

class NumericRecord {
 int _field0;
 int _field1;
 ...
 int _field10;

}
...
NumericRecord[] records; //declared somewhere
for (int i = 1; i < numRecords; ++i) {
 records[i-1]._field0 += records[i]._field0;
}

If the for loop presented above is repeated several times,
performance would be greatly affected by the effectiveness

...
<REFACTORING>
<SPLIT_CLASS DIRECTION_TYPE="UNIDIRECTIONAL"

SECURITY_TYPE="SECURE"
TRANSIENCY_TYPE="SERIALIZABLE">

<CLASS_TO_SPLIT>acc.Customer</CLASS_TO_SPLIT>
<FIELD_TO_SPLIT>_id</FIELD_TO_SPLIT>
<FIELD_TO_SPLIT>_zipCode</FIELD_TO_SPLIT>
<COMPILATION_UNIT>
<CLASS_NAME>acc.Customer</CLASS_NAME>
<CLASS_NAME>acc.Invoice</CLASS_NAME>
<CLASS_NAME>acc.InvoiceInfo</CLASS_NAME>
<CLASS_NAME>acc.Main</CLASS_NAME>

 </COMPILATION_UNIT>
 </SPLIT_CLASS>
</REFACTORING>

Figure 2. BARBER XML Input File for Split Class

Table 1. Speeding up remote method calls.

Baseline
(ms)

Split class
(ms)

Speedup

27062 22984 1.18

Table 2. Speeding up serialization.

Using
“transient”
fields (ms)

Using
“split

class” (ms)
Speedup

1218 1078 1.13

g
a

,
am
t in
y
er

Ms,
ld

er
ch
)

do-
a

the
for
e
%
.)

of
s

ly
e
ts
the processor’s cache. Splitting the record in such a way so
that it would contain only the fields used in the repeated
computation could allow more records to fit in the cache
(allocators tend to cluster objects of the same type or size)
thereby improving the overall performance. In this
microbenchmark, we created a 100K records and repeated the
for loop five times. The split created a partition containing a
single filed _field0 . Table 3 shows the results. Even though
this optimization is quite low-level, it can have a significant
pay off for the sophisticated programmer.

One of the most-widely used and well-understood
optimizations in the arsenal of optimizing compilers and,
recently, JIT compilers has been method inlining and
“devirtualization.” The first optimization refers to replacing a
method call in the body of the caller with the actual code of the
callee, and the second one replaces virtual and interface
method calls that are dispatched indirectly with direct calls.
Despite the common wisdom stating that these optimizations
should not be applied by hand, in some well-known cases,
hand-annotation can achieve performance not reached
automatically. We have applied a combination of the
aforementioned refactorings to the multithreaded raytracer
benchmark from the SpecJVM‘98 suite. We ran this
benchmark under both Sun’s JDK 1.3 and JDK 1.4, to see the
effect that a more sophisticated JIT technology has on low-
level optimizations. Table 4 and Table 5 show the results.

There are two elements worth pointing out in this benchmark.
First, the optimal points were reached for slightly different
configurations in the two JDK platforms. Furthermore, the best
performance for JDK 1.3 was achieved with a combination of
inlining and devirtualization. 14 methods in 4 different classes
were inlined but 3 other methods were just converted to static
methods without inlining, to avoid code blowup. The second
interesting (although hardly surprising) point is that under JDK

1.4 the improvement is small: a ~3% speedup for inlinin
methods. Trying to improve the performance with
configuration mixing inlining and devirtualization did not
yield any fruit. An improvement of 3% is significant for
automatic optimizations, but it is a low payoff for an
optimization activity that requires programmer intervention
and as a result is brittle with respect to changes in the progr
and the runtime system. This seems to be a clear argumen
favor of letting low-level optimizations be determined entirel
by sophisticated compilers, rather than through programm
annotations. Nevertheless, note that less sophisticated JV
not featuring any advanced JIT compilation capabilities, cou
still greatly benefit from low-level refactorings. Such JVMs
are often used in environments with limited processing pow
(e.g., embedded systems). This is exactly a domain in whi
many “optimization sins” (of the form described in Section 4
are routinely committed in software development!

To measure the benefits of theremove visitorrefactoring, we
created a composite structure, consisting of a classNode that
implements Visitable interface and contains aList of
Visitable objects, each of which could be either aLeaf or
anotherNode. The accept method in Node implements the
object traversal strategy in this composite structure.

class Visitable {
 abstract void accept (Visitor visitor);
}

class Leaf implements Visitable {...}

class Node implements Visitable {
 //in JDK 1.5 one could use generics
 List /*Visitable*/ _elems;

 void accept (Visitor visitor) {
 visitor.visit (this);
for(Iterator it = _elems.iterator();

 _elems.hasNext();) {
 Visitable visitable = (Visitable)it.next();
 visitable.accept (visitor);
}

 }...
}

We have also created a factory class that generates a pseu
random composite structure after being parameterized with
random seed, the composite’s depth and breadth, and
percentage of leaves. We measure the total time it takes
two different visitors to visit the generated structure. (Th
numbers in Table 6 are for a depth of 26, breadth of 4 and 72
leaves but are representative of other configurations as well

This benchmark reflects the common case, in which the type
visitor is known statically, but the type of visitable objects i
not: exact types of objects in theList of Visitable s in class
Node vary at run-time. Therefore, the refactoring could safe
remove only one level of indirection. The benefits would b
even more pronounced if all the types of the visited objec
were known statically.

Table 3. Improving caching performance.

Baseline
(ms)

“Split
class” (ms)

Speedup

47 16 2.93

Table 4. Speeding up SpecJVM Raytracer
in JDK 1.3

Base
line
(ms)

Inline
method

(ms)

Inline
method
speed-

up

Inline
method +
Devirt.

method (ms)

Inline
method
+Devirt.
method
speedup

3,782 3,141 1.20 3,031 1.25

Table 5. Speeding up SpecJVM Raytracer
in JDK 1.4

Base
line
(ms)

Inline
method

(ms)

Inline
method
speedup

Inline
method +
Devirt.
method

(ms)

Inline
method
+Devirt.
method
speedup

2,781 2,703 1.03 no further
benefit

n/a

Table 6. Improving caching performance.

Baseline
(ms)

“Remove
Visitor”

(ms)
Speedup

7016 6593 1.06

tic
s
s,
g
e

el
y
e

e
h.
er
ch

e
ble
at

he
et
e
o
JIT

nt
d
r-
of
sis
g

nd

t-
f a
are

ls
e
m.
of

at
m

g
s
ce
y:
g
le
ly,
ry
re,
ce
d
g

In our final benchmark, we measure the benefits of using
binary refactoring in the context of J-Orchestra [19], our
automatic partitioning system for Java programs. J-Orchestra
rewrites the bytecodes of a Java program running on a single
machine, to convert it into a distributed program, running
across multiple machines. To enable remote execution, J-
Orchestra heavily utilizes the Proxy pattern [9], generating
proxy classes in source code form and then compiling them
into bytecode. Proxies hide the actual location of objects,
enabling both local and remote execution. In some cases
(especially when dealing with system classes) the
complications of working with standard distribution
middleware requires applying the Proxy pattern multiple
times. That is, a client holds an instance of a proxy to a proxy
and each method call results in a double delegation. This
incurs significant performance overhead when a proxy’s
holder and its destination are co-located in the same address
space. Then the proxy indirection can be removed using the
“remove delegate” binary refactoring. In principle, J-Orchestra
could output the specialized code in the first place.
Nevertheless, the proxies are generated in source code form
while the target classes are in bytecode form. Hence, although
the optimization could be integrated in J-Orchestra instead of
using BARBER, the implementation would need to be a
bytecode transform, essentially identical to the BARBER
refactoring. In our microbenchmarks on the overhead of the J-
Orchestra indirection, the effect of this optimization ranged a
lot (depending on the amount of work performed per method
and the opportunities for JIT optimization) but the refactoring
speedup ranged from none to 1.20 for different methods.

6. RELATED WORK
Binary refactoring is related both to regular software
refactoring and to annotation-guided compiler optimization.
These are large and diverse research areas, so our presentation
is limited to closely related or representative work.

Binary refactoring is not the first attempt of providing higher-
level optimizations for object-oriented programs. In an
approach closely related to ours, Tourwe and De Meuter
[22][23] use an open compiler for removing higher-level
design abstraction by performing architectural transformations
based on programmer-supplied annotations. In their work, they
concentrate on removing the overheads resulting from dynamic
dispatch in common design patterns, such as Visitor [9]. The
approach uses logic-based transformation and declaration
annotation languages to parameterize a code generator that
transforms higher-level design patterns into more efficient
representations. Our work differs in the presentation (we cast
the problem in a refactoring framework); in the application
(we use a refactoring browser tool and XML specifications
instead of a logic-based transformation language); and in the
concrete transformations (we identify and evaluate quite
different and more complex refactorings—Tourwe and De
Meuter concentrate on the Visitor pattern). In terms of
methodology, our approach is black-box, while that of Tourwe
and De Meuter is more white-box: we do not assume that the
programmer will write transformations but that these will be
supplied ready-made in a binary refactoring browser.

A similarly closely related line of work is that of automatic
program specialization [15]. Automatic specialization is a
form of partial evaluation that accepts programmer-supplied
invariants and propagates them throughout the program in an
attempt to specialize code with respect to known types and

values. The exact arguments used in favor of automa
program specialization over standard compiler optimization
can also be used in favor of binary refactoring. Nevertheles
compared to automatic specialization, our binary refactorin
work also identifies higher-level transformations that affect th
class hierarchy directly, such assplit classand glue classes.
Furthermore, by drawing the analogy to source-lev
refactoring, we establish a clear and familiar methodolog
regarding the use of binary refactoring in the softwar
development process.

Much work has been done in the domain of just-in-tim
compilation to improve the performance of dynamic dispatc
Modern JVMs employ a sophisticated arsenal of compil
optimizations, and especially stress fast dynamic dispat
using traditional inline caching techniques [6][10] and
variations suited to Java’s dynamic loading model [1]. A
common criticism of all speculative devirtualization
optimizations, however, is that they never achieve th
performance of static calls because they do not easily ena
inlining and the subsequent intra-procedural optimizations th
this entails. (Inline caching techniques need to guard t
execution of the code with a conditional, in case the targ
object is not of the expected type.) Thus, devirtualize/inlin
binary refactorings can still improve performance relative t
automatic techniques, and can also do so regardless of the
compilation capabilities of the JVM.

An overview of software refactoring can be found in a rece
survey by Mens and Tourwe [13]. Both source-level an
binary refactoring are not automatic but rather programme
initiated and driven activities. That is, despite the success
several research projects aimed at providing program analy
tools for discovering and suggesting possible refactorin
opportunities [16][17][21], it is always the programmer who
decides which changes would improve the program a
ensures that they would not alter its external behavior.

Binary refactoring can be loosely qualified as an aspec
oriented technique (i.e., treating the runtime performance o
program as a separate aspect). However, our refactorings
not supported by traditional AOP tools [11]. In fact, such too
do not allow the programmer any control over th
implementation specifics of weaving aspects into a progra
Furthermore, AOP is concerned with changing the behavior
a program by linking it with a cross-cutting concern. In
contrast, when modifying code, binary refactoring aims
maintaining the original execution semantics of a progra
even though possibly only under specific assumptions.

7. CONCLUSIONS
We presented binary refactoring: a technique for introducin
optimizing transformations in object-oriented program
without affecting the maintained version of the program sour
code. The argument for binary refactoring is one of usabilit
we believe that performing program optimizations usin
binary refactoring results in safer and more maintainab
programs than manually changing the source code. Certain
further work is needed to assess the benefits of bina
refactoring in the software development process. Therefo
we hope that the idea of binary refactoring and our referen
implementation will stimulate interest that will prompt us an
others to continue this research further, hopefully evolvin
binary refactoring into a valuable addition to the working
programmer’s toolset.

r
y

,
4).

s

n.

r

8. ACKNOWLEDGMENTS
This research was supported by the NSF through grants CCR-
0238289 and CCR-0220248, and by the Georgia Electronic
Design Center.

9. REFERENCES
[1] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber,

“Efficient Implementation of Java Interfaces: Invokeinterface
Considered Harmless”, in Proc.Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), 2001.

[2] The Apache ANT Project. On-line at
http://ant.apache.org/ .

[3] E. Casais. “Automatic reorganization of object-oriented
hierarchies: A case study”,Object-Oriented Systems,
1(2):95–115, 1994.

[4] A. Bhowmik and W. Pugh, “A Secure Implementation of
Java Inner Classes”, PLDI 99 poster session.

[5] M. Dahm, “Doorastha—a step towards distribution
transparency”,JIT 2000. Seehttp://www.inf.fu-

berlin.de/~dahm/doorastha/ .

[6] L. P. Deutsch and A. M. Schiffman, “Efficient
Implementation of the Smalltalk-80 System”,ACM
Symposium on Principles of Programming Languages
(POPL), 1984.

[7] The Eclipse Foundation. On-line at
http://www.eclipse.org .

[8] M. Fowler, “Refactoring: Improving the Design of Existing
Programs”, Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[10] U. Hölzle, C. Chambers, and D. Ungar, “Optimizing
Dynamically-Typed Object-Oriented Languages with
Polymorphic Inline Caches”,European Conference on
Object-Oriented Programming (ECOOP), 1991.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and
W. G. Griswold, “An Overview of AspectJ”,European

Conference on Object-Oriented Programming (ECOOP),
2001.

[12] C. V. Lopes and G. Kiczales, “D: A Language Framework fo
Distributed Programming”, PARC Technical report, Februar
97, SPL97-010 P9710047.

[13] T. Mens and T. Tourwe, “A Survey of Software Refactoring”
IEEE Trans. on Software Engineering 30(2): 126-139 (200

[14] W.F. Opdyke, “Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks,” PhD
thesis, Univ. of Illinois at Urbana-Champaign, 1992.

[15] U. P. Schultz, J. L. Lawall, C. Consel, “Automatic program
specialization for Java”, ACM Trans. Program. Lang. Syst.
25(4): 452-499 (2003).

[16] M. Streckenbach, G. Snelting, “Refactoring Class Hierarchie
with KABA”, OOPSLA 2004.

[17] Sun Microsystems, Java Object Serialization Specification.

[18] Sun Microsystems, Remote Method Invocation Specificatio

[19] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic
Java Application Partitioning”,European Conference on
Object-Oriented Programming (ECOOP) 2002.

[20] F. Tip, A. Kiezun, and D. Baeumer. “Refactoring for
generalization using type constraints”, InProc. 18th
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’03), pages 13–26,
2003.

[21] F. Tip, G. Snelting, and R. Johnson, “Program analysis for
object-oriented evolution”, Technical report, Dagstuhl
Seminar Report 03091, 2003.

[22] T. Tourwe and W. De Meuter, “Optimizing Object-Oriented
Languages Through Architectural Transformations”, In
Proceedings of the 8th International Conference on Compile
Construction, pp 150-164, Springer-Verlag, 1999.

[23] T. Tourwe and W. De Meuter, “An Open Compiler Using
Meta-Level Information for Improving the Efficiency of
Object-Oriented Programs”,OOPSLA 1998 Workshop on
Reflective Programming in C++ and Java, Vancouver,
Canada, 1998.

	Binary Refactoring: Improving Code Behind the Scenes
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. Motivation
	3. Refactoring Catalogue
	3.1 Structural Refactorings for Locality
	3.1.1� Split Class.
	3.1.2� Glue Classes

	3.2 Refactorings to Remove Indirection
	3.2.1� Inline/Devirtualize Method
	3.2.2� Remove Delegate
	3.2.3� Remove Visitor

	3.3 Other Binary Refactorings

	4. Discussion
	5. Binary Refactoring Browser (BARBER)
	5.1 Structure
	5.2 Experiments

	6. Related Work
	7. Conclusions
	8. Acknowledgments
	9. References

