
Efficient and Effective Handling of Exceptions in Java
Points-To Analysis

George Kastrinis and Yannis Smaragdakis

Dept. of Informatics, University of Athens, Greece
{gkastrinis,smaragd}@di.uoa.gr

Abstract. A joint points-to and exception analysis has been shown to yield ben-
efits in both precision and performance. Treating exceptions as regular objects,
however, incurs significant and rather unexpected overhead. We show that in a
typical joint analysis most of the objects computed to flow in and out of a method
are due to exceptional control-flow and not normal call-return control-flow. For
instance, a context-insensitive analysis of the Antlr benchmark from the DaCapo
suite computes 4-5 times more objects going in or out of a method due to ex-
ceptional control-flow than due to normal control-flow. As a consequence, the
analysis spends a large amount of its time considering exceptions.
We show that the problem can be addressed both effectively and elegantly by
coarsening the representation of exception objects. An interesting find is that, in-
stead of recording each distinct exception object, we can collapse all exceptions
of the same type, and use one representative object per type, to yield nearly iden-
tical precision (loss of less than 0.1%) but with a boost in performance of at least
50% for most analyses and benchmarks and large space savings (usually 40% or
more).

1 Introduction
Points-to analysis is a fundamental static program analysis. It consists of computing a
static abstraction of all the data that a pointer variable (and, by extension, any pointer
expression) can point to during program execution. Points-to analysis is often the basis
of most other higher-level client analyses (e.g., may-happen-in-parallel, static cast elim-
ination, escape analysis, and more). It is also inter-related with call-graph construction,
since the values of a pointer determine the target of dynamically resolved calls, such as
object-oriented dynamically dispatched method calls or functional lambda applications.

An important question regarding points-to analysis (as well as client analyses based
on it) concerns the handling of exceptions, in languages that support exception-based
control flow. The emphasis of our work is on Java—a common target of points-to anal-
ysis work—but similar ideas are likely to apply to other languages, such as C# and
C++. This is an important topic because exceptional control flow cannot be ignored for
several client analysis (e.g., information leak or other security analyses) and if handled
crudely it can destroy the precision of the base points-to analysis.

In the past, most practical points-to analysis algorithms have relied on conservative
approximations of exception handling [19, 20]. The well-known points-to analysis li-
braries S [19] and P [18] both model exception throwing as an assignment
to a single global variable for all exceptions thrown in a program. The variable is then



read at the site of an exception catch. This approach is sound but highly imprecise be-
cause it ignores the information about what exceptions can propagate to a catch site.
For clients that care about exception objects specifically (e.g., computing which throw
statement can reach which catch clause), precise exception handling has been added on
top of a base points-to analysis [7–9]. Fu and Ryder’s “exception-chain analysis” [8] is
representative. It works on top of S, with its conservative modeling of exceptions,
but then performs a very precise analysis of the flow of exception objects. However,
this approach has a high computational overhead. Furthermore, the approach does not
recover the precision lost for the base points-to results for objects that do not represent
exceptions.

Based on the above, the D framework [2] (which is also the context of our work)
has introduced a joint points-to and exception analysis [1]. D expresses exception-
analysis logic in modular rules, mutually recursive with the points-to analysis logic:
Exception handling can cause variables to point to objects (of an exception type), can
make code reachable, etc. Points-to results are, in turn, used to compute what objects
are thrown at a throw statement. The exception analysis logic on its own is “as precise
as can be” as it fully models the Java semantics for exceptions. Approximation is only
introduced due to the static abstractions used for contexts and objects in the points-to
analysis. Thus, exception analysis is specified in a form that applies to points-to analy-
ses of varying precision, and the exception analysis transparently inherits the points-to
analysis precision. The result is an analysis that achieves very high precision and perfor-
mance for points-to results, while also matching the precision of techniques specifically
for exception-related queries, as in the Fu and Ryder exception-chain analysis.

The motivation for our work is that, despite the benefits of the D approach,
there is significant room for improvement. The joint points-to and exception analysis
performs heavy work for exception objects alone. An indicative metric is the following:
Consider the number of objects pointed to by method parameters or its return value vs.
the objects thrown and not caught by the current method or by methods called by it.
The former number represents the objects that flow into or out of each method due to
normal control-flow, while the latter shows the objects that flow out of the method due
to exceptions. Our experiments show that the latter number is often several times larger
than the former. (We present full results later.) This is counterintuitive and suggests that
the analysis performs unexpectedly much work on exceptions alone.

To address this issue we observe that most client analyses do not care about excep-
tion objects specifically. They do, however, care about the impact of exceptions to the
rest of the points-to and call-graph facts. For instance, the effectiveness of a client anal-
ysis such as static cast elimination is not impacted in practice by the few optimization
opportunities that lie inside exception handlers or that involve objects of an exception
type. But the analysis is impacted by code possibly executed only because of exception
handling, or variables that point to extra objects as a result of an exception handler’s
execution. In other words, we would like precise handling of exceptions only to the ex-
tent that they impact the precision of the base points-to analysis, even if the information
over exception objects themselves is less precise. (Note that this is very different from
the S or P handling of all exceptions through a single global variable: That ap-



proach does adversely impact the precision and performance of the base analysis—e.g.,
it more than doubles the number of edges of a context-sensitive call-graph [1, Fig.12].)

Therefore, our approach consists of coarsening the representation of exception ob-
jects in two ways. First, we treat exception objects context-insensitively, even for an
otherwise context-sensitive analysis.1 Second, we merge exception objects and repre-
sent them as a single object per-dynamic-type. The per-type treatment is important for
maintaining precision, since the main purpose of an exception object is to trigger ap-
propriate exception handling code (i.e., a catch clause keyed on the type of the object
caught).

We find that this approach is both easy to specify and implement, as well as
highly effective. For instance, for a 1-object-sensitive analysis we obtain a 60% av-
erage speedup for the “antlr” benchmark and a 225% average speedup for the “eclipse”
benchmark of the DaCapo suite (with similar speedups for other benchmarks) just by
employing the “merge exception objects per-type” idea. This speedup is accompanied
by significant space savings in the analysis. Crucially, the performance increase does
not entail any loss of precision for results unrelated to exception objects. All precision
metrics of the analysis remain virtually identical. Namely, the numbers of call-graph
nodes and edges, methods that can be successfully devirtualized, and casts that can be
statically eliminated remain the same up to at least three significant digits.

In summary, the contributions of our work are as follows:

• We give a concise and general model of flow-insensitive, context- and field-sensitive
points-to analyses and call-graph construction for a language with exceptions. Al-
though a joint exception and points-to analysis has been formulated before [1], it was
expressed by-example. In contrast, we give a small, closed set of rules and definitions
of input domains. That is, we present all the relevant detail of the analysis in a closed
form, assuming a simplified intermediate language as input.
• We present measurements demonstrating that the impact of exceptions on points-to

analysis performance metrics is significant. A points-to analysis that tries to model
exceptions precisely ends up spending much of its time and space computing results
for exception-based control-flow.
• We define on top of our model two simple ways to coarsen the representation of ex-

ception objects without affecting any other aspect of the points-to or exception logic.
• We show that our approach is very effective in practice, yielding both significant

speedup and space savings. Our technique is the default in the upcoming version of
the D framework as it gains performance without adversely impacting precision.

In the following sections we define an abstraction of context-sensitive points-to
analysis and enhance it with exception handling logic (Section 2), present our tech-
nique in this abstract model (Section 3), detail its performance in a series of experiments
(Section 4), and discuss related work in more detail (Section 5).

1 Context-sensitivity is a general approach that achieves tractable and usefully high precision in
points-to analyis. It consists of qualifying local program variables, and possibly (heap) object
abstractions, with context information: the analysis collapses information (e.g., “what objects
this method argument can point to”) over all possible executions that result in the same context,
while separating all information for different contexts.



2 Background: Model of Points-To Analysis

We next present a model of context-sensitive, flow-insensitive points-to analysis algo-
rithms, as well as the enhancement of the model for computing exception information
in mutual recursion with the analysis. Interestingly, the logical formalism that we use
in our model is quite close to the actual implementation of the analysis in the D
framework, under simplifications and omissions that we describe.

2.1 Base Points-To Analysis

We model a wide range of flow-insensitive points-to analyses together with the asso-
ciated call-graph computation as a set of customizable Datalog rules, i.e., monotonic
logical inferences that repeatedly apply to infer more facts until fixpoint. Our rules do
not use negation in a recursive cycle, or other non-monotonic logic constructs, resulting
in a declarative specification: the order of evaluation of rules or examination of clauses
cannot affect the final result. The same abstract model applies to a wealth of analy-
ses. We use it to model a context-insensitive Andersen-style analysis, as well as several
context-sensitive analyses, both call-site-sensitive [25, 26] and object-sensitive [23].

The input language is a simplified intermediate language with a) a “new” instruction
for allocating an object; b) a “move” instruction for copying between local variables;
c) “store” and “load” instructions for writing to the heap (i.e., to object fields); d) a
“virtual method call” instruction that calls the method of the appropriate signature that
is defined in the dynamic class of the receiver object. This language models well the
Java bytecode representation, but also other high-level intermediate languages. (It does
not, however, model languages such as C or C++ that can create pointers through an
address-of operator. The techniques used in that space are fairly different—e.g., [12,
13].) The specification of our points-to analysis as well as the input language are in line
with those in the work of others [10, 21], although we also integrate elements such as
on-the-fly call-graph construction and field-sensitivity.

Specifying the analysis logically as Datalog rules has the advantage that the specifi-
cation is close to the actual implementation. Datalog has been the basis of several imple-
mentations of program analyses, both low-level [2,17,24,29,30] and high-level [5,11].
Indeed, the analysis we show is a faithful model of the implementation in the D
framework [2]. Our specification of the analysis (Figures 1-2) is an abstraction of the
actual implementation in the following ways:

– The implementation has many more rules. It covers the full complexity of the lan-
guage, including rules for handling reflection, native methods, static calls and fields,
string constants, implicit initialization, threads, and a lot more. The D imple-
mentation currently contains over 600 rules in the common core of all analyses,
as opposed to the dozen-or-so rules we examine here. (Note, however, that these
dozen rules are the most crucial for points-to analysis. They also correspond fairly
closely to the algorithms specified in other formalizations of points-to analyses in
the literature [22, 28].)

– The implementation also reflects considerations for efficient execution. The most
important is that of defining indexes for the key relations of the evaluation. Further-
more, it designates some relations as functions, defines storage models for relations



(e.g., how many bits each variable uses), designates intermediate relations as “ma-
terialized views” or not, etc.

V is a set of variables H is a set of heap abstractions
M is a set of methods S is a set of method signatures (including name)
F is a set of fields I is a set of instructions (e.g., invocation sites)
T is a set of class types N is the set of natural numbers
HC is a set of heap contexts C is a set of contexts
A (var : V, heap : H, meth : M) FA (meth : M, i : N, arg : V)
M (to : V, from : V) AA (invo : I, i : N, arg : V)
L (to : V, base : V, fld : F) FR (meth : M, ret : V)
S (base : V, fld : F, from : V) AR (invo : I, var : V)
VC (base : V, sig : S, invo : I) TV (meth : M, this : V)
HT (heap : H, type : T) LU (type : T, sig : S, meth : M)
IM (instr : I, meth : M) S (type : T, superT : T)
VPT (var : V, ctx : C, heap : H, hctx : HC)
CG (invo : I, callerCtx : C, meth : M, calleeCtx : C)
FPT (baseH : H, baseHCtx : HC, fld : F, heap : H, hctx : HC)
IPA (to : V, toCtx : C, from : V, fromCtx : C)
R (meth : M, ctx : C)
R (heap : H, ctx : C) = newHCtx : HC
M (heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C

Fig. 1. Our domain, input relations, output relations, and constructors of contexts.

Figure 1 shows the domain of our analysis (i.e., the different sets that comprise the
space of our computation), its input relations, the intermediate and output relations, as
well as two constructor functions, responsible for producing new objects that represent
contexts. We explain some of these components below:
• The input relations are standard and correspond to the intermediate language for our

analysis. For instance, the A relation represents every instruction that allocates a
new heap object, heap, and assigns it to local variable var inside method meth. (Note
that every local variable is defined in a unique method, hence the meth argument is also
implied by var but included for conciseness of later rules.) There are input relations
for each instruction type (M, L, S and VC) as well as input relations en-
coding the type system and symbol table information. For instance, LU matches
a method signature to the actual method definition inside a type.
• The main output relations of our points-to analysis and call-graph computation are

VPT and CG. The VPT relation links a variable (var) to a
heap object (heap). (A heap object is identified by its allocation site.) Both the variable
and the heap object are qualified by “context” elements in our analysis: a plain context
for the variable and a heap context for the heap object. Similarly, the CG
relation qualifies both its source (an invocation site) and its target (a method) with
contexts. Other intermediate relations (FPT, IPA, R)
correspond to standard concepts and are introduced for conciseness and readability.
• The base rules are not concerned with what kind of context-sensitivity is used. The

same rules can be used for a context-insensitive analysis (by only ever creating a
single context object), for a call-site-sensitive analysis, or for an object-sensitive anal-
ysis, for any context depth. These aspects are completely hidden behind constructor



functions R and M, following the usage and naming convention of earlier
work [28]. R takes all available information at the allocation site of an object
and combines it to produce a new heap context, while M takes all available infor-
mation at the call site of a method and combines it to create a new context. (Hence,
the name “M” refers to merging contexts and is unrelated to the idea of merging
exception objects per-type, which we discuss later in this paper.) These functions are
sufficient for modeling a very large variety of context-sensitive analyses.2 Note that
the use of such constructors is not part of regular Datalog and can result in infinite
structures (e.g., one can express unbounded call-site sensitivity) if care is not taken.

IPA (to, calleeCtx, from, callerCtx)←
CG (invo, callerCtx, meth, calleeCtx),
FA (meth, i, to), AA (invo, i, from).

IPA (to, callerCtx, from, calleeCtx)←
CG (invo, callerCtx, meth, calleeCtx),
FR (meth, from), AR (invo, to).

R (heap, ctx) = hctx,
VPT (var, ctx, heap, hctx)←

R (meth, ctx), A (var, heap, meth).
VPT (to, ctx, heap, hctx)←

M (to, from), VPT (from, ctx, heap, hctx).
VPT (to, toCtx, heap, hctx)←

IPA (to, toCtx, from, fromCtx),
VPT (from, fromCtx, heap, hctx).

VPT (to, ctx, heap, hctx)←
L (to, base, fld), VPT (base, ctx, baseH, baseHCtx),
FPT (baseH, baseHCtx, fld, heap, hctx).

FPT (baseH, baseHCtx, fld, heap, hctx)←
S (base, fld, from), VPT (base, ctx, baseH, baseHCtx),
VPT (from, ctx, heap, hctx).

M (heap, hctx, invo, callerCtx) = calleeCtx,
R (toMeth, calleeCtx),
VPT (this, calleeCtx, heap, hctx),
CG (invo, callerCtx, toMeth, calleeCtx)←

VC (base, sig, invo),
VPT (base, callerCtx, heap, hctx), HT (heap, heapT),
L (heapT, sig, toMeth), TV (toMeth, this).

Fig. 2. Datalog rules for the points-to analysis and call-graph construction.

2 Explaining the different kinds of context-sensitivity produced by varying R and M
is beyond the scope of this paper but is fully covered in past literature [28]. To give a single
example, however, a 1-call-site-sensitive analysis with a context-sensitive heap has C = HC =

I (i.e., both the context and the heap context are a single instruction), R (heap, ctx) = ctx
and M (heap, hctx, invo, callerCtx) = invo. That is, when an object is allocated, its (heap)
context is that of the allocating method, and when a method is called, its context is its call-site.



Figure 2 shows the points-to analysis and call-graph computation. The rule syntax
is simple: the left arrow symbol (←) separates the inferred fact (i.e., the head of the
rule) from the previously established facts (i.e., the body of the rule). For instance,
the very last rule says that if the original program has an instruction making a virtual
method call over local variable base (this is an input fact), and the computation so far has
established that base can point to heap object heap, then the called method is looked up
inside the type of heap and several further facts are inferred: that the looked up method is
reachable, that it has an edge in the call-graph from the current invocation site, and that
its this variable can point to heap. Additionally, the M function is used to possibly
create (or look up) the right context for the current invocation.

2.2 Adding Exceptions

We can now easily add exception handling to our input language and express a precise
exception analysis via rules that are mutually recursive with the base points-to analysis
rules. The algorithm is essentially that of [1] but stated more concisely: we hide excep-
tion handler lookup details by assuming a more sophisticated input relation C.

T (instr : I, e : V) C (heapT : T, instr : I, arg : V)
TPT (meth : M, ctx : C, heap : H, hctx : HC)

Fig. 3. Datalog input and output relations for the exception analysis

TPT (meth, ctx, heap, hctx)←
T (instr, e), VPT (e, ctx, heap, hctx),
HT (heap, heapT), ¬C (heapT, instr, ), IM (instr, meth).

TPT (meth, callerCtx, heap, hctx)←
CG (invo, callerCtx, toMeth, calleeCtx),
TPT (toMeth, calleeCtx, heap, hctx),
HT (heap, heapT), ¬C (heapT, invo, ), IM (invo, meth).

VPT (arg, ctx, heap, hctx)←
T (instr, e), VPT (e, ctx, heap, hctx),
HT (heap, heapT), C (heapT, instr, arg).

VPT (arg, callerCtx, heap, hctx)←
CG (invo, callerCtx, toMeth, calleeCtx),
TPT (toMeth, calleeCtx, heap, hctx),
HT (heap, heapT), C (heapT, invo, arg).

Fig. 4. Datalog rules for the Exception analysis

Figure 3 presents the input and output relations for our analysis. The input relations
enhance the language-under-analysis with catch and throw instructions, with Java-like
semantics. The T (i,e) relation captures throwing at instruction i an expression
object that is referenced by local variable e. The C (t,i,a) relation connects an in-
struction i that throws an exception of dynamic type t with the local variable a that will
be assigned the exception object at the appropriate catch-site. Although C does not
directly map to intermediate language instructions, one can compute it easily from such



low-level input. Furthermore, hiding the definition of C allows modeling of excep-
tion handlers at different degrees of precision—e.g., a definition of C may or may
not consider exception handlers in-order.

Figure 4 shows the exception computation, in mutual recursion with the points-
to analysis. Two syntactic constructs we have not seen before are “ ”, meaning “any
value”, and “¬”, signifying negation. The relation we want to compute is T-
PT, which captures what exception objects a method may throw at its callers. As
can be seen, VPT is used in the definition of TPT and vice versa.

3 Coarsening the Representation of Exceptions

Although a precise joint points-to and exception analysis algorithm offers significant
benefits [1], we next show that there is large room for improvement. The analysis ends
up spending much of its time and space computing exception flow. We propose ideas
for coarsening the representation of exception objects to address this issue and yield
more efficient analyses, without sacrificing precision.

3.1 Motivation

Consider the size of the TPT relation for an analysis. This represents the
total flow of objects out of methods due to exceptions. For a context-sensitive analysis,
this number is a good metric of the work performed by the analysis internally for rea-
soning about exceptions. It is interesting to compare this number with a similar metric
over the VPT relation, namely the subset of VPT facts that concern
variables that are either method arguments or return values. This represents the total
flow of objects in and out of methods due to normal call and return sequences.

Table 1 shows the results of comparing these two measures for several different
analyses: insensitive, call-site sensitive, object-sensitive, and type-sensitive [28], with
a context-sensitive heap. The results are over five of the benchmarks in the DaCapo
benchmark suite, analyzed with Oracle JDK 1.6. (A full description of our experimental
setting can be found in the next section.) Entries with a dash instead of a number did
not terminate within the time allotted (90mins).

For the context-insensitive analysis (first results column), the ratio can be under-
stood in intuitive terms: the antlr ratio of 0.22, for instance, means that, on average,
4.5 times more objects are possibly thrown out of a method than passed into it or re-
turned through regular call and return sequences. This is a counterintuitive result. Hu-
man reasoning about how a method interacts with its callers is certainly not dominated
by exception objects. Therefore, we see that the joint points-to and exception analy-
sis perhaps pays a disproportionate amount of attention (and expends much effort) on
exceptions.

3.2 Coarse Exceptions

To reduce the cost of reasoning about exception objects, we propose two simple ap-
proaches for coarsening the representation of exception objects. The first is to represent



insens 1obj+H 2obj+H 1type+H 1call+H

an
tlr

objs passed 697 - 10,440 3,955 17,486
objs thrown 3,123 - 164,392 20,783 44,118

ratio .22 - .06 .19 .40

bl
oa

t objs passed 829 - - 5,681 46,952
objs thrown 4,112 - - 32,905 78,593

ratio .20 - - .17 .60

ec
lip

se objs passed 637 15,750 - 6,570 18,690
objs thrown 4,064 138,361 - 37,634 42,140

ratio .16 .11 - .17 .44
lu

in
de

x objs passed 383 8,473 - 3,328 8,413
objs thrown 2,544 60,897 - 18,928 25,297

ratio .15 .14 - .17 .33

xa
la

n objs passed 668 - - 7,480 18,895
objs thrown 3,876 - - 41,351 43,376

ratio .17 - - .18 .44

Table 1. Objects on method boundaries compared to exception objects thrown by a method (mea-
sured in thousands)

exception objects context-insensitively. This is a rather straightforward idea—even in
context-sensitive analyses, several different kinds of objects (e.g., string constants) are
more profitably represented context-insensitively. Even before our current work, the
D framework had the ability to represent exceptions context-insensitively with the
right choice of flags. The second approach consists of not just omitting context for ex-
ception objects, but also merging the objects themselves, remembering only a single
representative per (dynamic) type. That is, all points-to information concerning excep-
tion objects is merged “at the source”—all objects of the same type become one.

This is a fitting approach for exception objects because it relies upon intuition on
how exception objects are used in practice. Specifically, the intuition is that exception
objects have mostly control-flow significance (i.e., they are used as type labels deter-
mining what exception handler is to be executed) and little data-flow impact (i.e., the
data stored in exception objects’ fields do not affect the precision of an overall points-to
analysis). In other words, an exception object’s dynamic type alone is an excellent ap-
proximation of the object itself. Our measurements of the next section show that this is
the case.

Figure 5 shows the changes to earlier rules required to implement the two ap-
proaches. The original logic of allocating an object is removed and replaced with two
cases: if the allocated object is not an instance of an exception type, then the original
allocation logic applies. If it is, then the object is allocated context-insensitively (by
using a constant context instead of calling the R function to create a new one).
Furthermore, in the case of merging exception objects, the object itself is replaced by
a representative object of its type (arbitrarily chosen to be the object of the same type
with the minimum internal identifier). Note that the definition of an exception type con-
sists of merely looking up all types used in catch clauses—the definition could also be
replaced by the weaker condition of whether a type is a subtype of Throwable.



Commmon core of coarsening logic: object allocation rule is replaced by refined version

CHC (”ConstantHeapCtx”)← True.
ET (t)← C (superT, , ), S (t, superT).

hhhhhhhhhhhhhhhhhh

R (heap, ctx) = hctx,
VPT (var, ctx, heap, hctx)←

R (meth, ctx), A (var, heap, meth).((((((((((((((((((

R (heap, ctx) = hctx,
VPT (var, ctx, heap, hctx)←

R (meth, ctx), A (var, heap, meth),
HT (heap, heapT), ¬ET (heapT).

Additional Rule (over common core) for Context-insensitive treatment

VPT (var, ctx, heap, hctx)←
R (meth, ctx), A (var, heap, meth), HT (heap, heapT),
ET (heapT), CHC (hctx).

Additional Rules (over common core) for merging exceptions by use of representative objects

R (heap, reprH)←
HT (heap, heapT), reprHeap = min<HT (?, heapT)>.

VPT (var, ctx, reprH, hctx)←
R (meth, ctx), A (var, heap, meth), HT (heap, heapT),
ET (heapT), CHC (hctx), R (heap, reprH).

Fig. 5. Changes over the rules of Figures 2 and 4 for the two treatments that coarsen the
representation of exception objects. The object allocation rule is shown striken out to indicate
that it is replaced by a new, conditional version, immediately below. The rules introduce a
constant heap context, CHC, as well as auxiliary relations ET (t : T) and
R (heap : H, reprH : H).



There are some desirable properties of replacing objects with per-type representa-
tives at their creation site. Most importantly, this approach leaves the rest of the analysis
unchanged and can maintain all its precision features. Compared to past approaches to
merging exceptions (e.g., the single-global-variable assignment of S or P) we
can maintain all the precision resulting from considering exception handlers in order,
filtering caught exceptions, and taking into account the specific instructions under the
scope of an exception handler. These have been shown to be important features for the
precision and performance of the underlying points-to analysis. Ignoring the order of
exception handlers, for instance, results in a much less precise context-sensitive call-
graph, with 50% more edges [1, Fig.13].

4 Experiments

We next present the results of our experiments with the two ideas for coarsening the
representation of exception objects. As we will see, our approach yields substantial
performance improvements without sacrificing virtually any precision. This is a rather
surprising result. Given how crucial the handling of exceptions has been for the preci-
sion of the joint points-to and exception analysis, one would expect that representing
exception objects crudely (by merging them per-type) would have serious precision
implications. For comparison, Bravenboer and Smaragdakis attempted a different ap-
proximation: they represented the TPT relation context-insensitively (i.e.,
by dropping the ctx argument) and found this to significantly hurt the precision of the
points-to analysis [1, Sec.5.2], e.g., increasing points-to sets by 10%.3

Our implementation is in the D framework and was run on the LogicBlox Dat-
alog engine, v.3.9.0. We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz
CPU (only one thread was active at a time) and 24GB of RAM. We analyzed the Da-
Capo benchmark programs, v.2006-10-MR2 with JDK 1.6.0 30. The choice of JDK is
highly significant for Java static analysis. Earlier published D results [1, 2, 28] were
for JDK 1.4. We chose to present JDK 1.6 results since it is recent, much larger, and
more representative of actual use. However, results for JDK 1.4 can also be found in the
first author’s M.Sc. thesis, available at http://cgi.di.uoa.gr/˜gkast/MSc_Thesis.
pdf.

There are three primary questions we would like to answer with our experiments:

1. Can we reduce the cost of points-to and exception analysis by coarsening the rep-
resentation of exception objects, without sacrificing precision?

2. Is the “simple” coarsening approach of treating exceptions context-insensitively
sufficient or do we get significant extra benefit from merging exception objects per-
type?

3. Do our techniques address the motivation of Table 1, i.e., produce results that
roughly match human expectations when reasoning about objects that flow in and
out of methods due to exceptions vs. normal call-returns?

3 We repeated several experiments from [1] in our setting for validation but do not report them
here since the results are effectively the same as in that publication.

http://cgi.di.uoa.gr/~gkast/MSc_Thesis.pdf
http://cgi.di.uoa.gr/~gkast/MSc_Thesis.pdf


Tables 2 and 3 show the time and space savings of the coarsening techniques over
a large set of analyses, ranging from context-insensitive to a highly-precise 2-object-
sensitive with a 2-context-sensitive heap (2obj+2H). The analysis variety includes a
mix of call-site-, type-, and object-sensitive analyses. Entries with a dash instead of a
number are due to analyses that did not terminate within 90 mins. Entries with neither
a number nor a dash mean that we did not run the corresponding experiment. (This
only happened for experiments on the full-sensitive treatment of exceptions, which
we omitted because the main trends were already clear from a smaller subset of our
measurements—those for benchmarks and analyses also shown earlier in Table 1.)

As can be seen, the results demonstrate a substantial benefit in the “bottom-line”
performance of the joint analysis from representing exception objects coarsely. Further-
more, the simple approach of dealing with exceptions context-insensitively is clearly in-
sufficient. The advantage of merging objects over merely eliding context can be as high
as a 3.4x boost in performance, and rarely falls below a 50% speedup. Space savings
tell a similar story, to a lesser but still large extent.

The major question we are addressing next is whether these significant performance
improvements entail sacrifices in precision. This requires us to first state the question
appropriately. Since all exception objects of the same type are merged, it makes little
sense to query points-to information for variables holding such objects (e.g., local vari-
ables inside exception handlers). Every such variable will appear to spuriously point to
any object of the same dynamic type. Instead, what we want to do is examine the impact
of merging exception objects on the rest of the points-to analysis. That is, a client anal-
ysis that cares about exception objects themselves should not employ our techniques.
The question, however, is whether an analysis that applies over the whole program will
be affected by the coarse exception representations.

Tables 4 and 5 show precision metrics for our benchmarks and a subset (for space
reasons) of our analyses. We show the size of the computed call-graph, in terms of both
nodes (i.e., methods) and edges, as well as the number of virtual calls that cannot be
statically resolved and casts that cannot be statically be proven safe. (The total number
of reachable virtual calls and casts are given for reference.) From our past experience,
the call-graph metrics are generally excellent proxies for the overall precision of an
analysis, and even tiny changes are reflected on them.

As can be seen, the precision of the program analysis remains virtually unaffected
by the coarse representations of exceptions. This confirms that our merged exception
objects still carry the essence of the information that the rest of the program needs from
them.

The final question from our experiments is whether these two techniques address the
motivating measurements of Section 3.1. Table 6 shows the same metrics of (context-
sensitive) objects passed to/from methods vs. thrown for the analysis using our coarse
representations of exceptions. As can be seen, the handling of exceptions context-
insensitively does not suffice to bring the relative ratio of the metrics close to expected
values, but merging exception objects per-type does. Specifically, for all values of the
“merge” column, the total number of objects passed via calls and returns is several times
higher than the number of objects potentially thrown. Thus, the analysis is allocating



insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H

an
tlr

sens 120 338 - 3207 - 543 400 245 975
insens 111 319 1089 574 2785 334 209 238 543
merge 75 199 899 249 2313 217 121 128 420
sen/ins 1.08 1.06 - 5.58 - 1.62 1.91 1.02 1.79
ins/mer 1.48 1.60 1.21 2.30 1.20 1.53 1.72 1.85 1.29

bl
oa

t

sens 120 1065 - - - 826 1921 426 3403
insens 120 1057 2337 - - 483 553 429 1795
merge 68 432 1727 - - 292 162 208 1496
sen/ins 1.00 1.00 - - - 1.71 3.47 1.00 1.79
ins/mer 1.76 2.44 1.35 - - 1.65 3.41 2.06 1.19

ch
ar

t

sens
insens 240 2932 - - - 1597 699 591 1334
merge 138 1434 - 999 - 1253 256 319 1115
sen/ins
ins/mer 1.73 2.04 - - - 1.27 2.73 1.85 1.19

ec
lip

se

sens 91 314 2243 - - 892 800 230 1099
insens 90 315 800 1059 - 508 348 231 642
merge 52 140 634 623 - 269 187 90 500
sen/ins 1.00 1.00 2.80 - - 1.75 2.30 1.00 1.71
ins/mer 1.73 2.25 1.26 1.69 - 1.88 1.86 2.56 1.28

jy
th

on

sens
insens 96 636 2023 - - - - 237 613
merge 60 129 944 - - 258 768 98 429
sen/ins
ins/mer 1.60 4.93 2.14 - - - - 2.42 1.43

lu
in

de
x

sens 71 838 411 524
insens 67 168 395 391 2247 239 168 133 288
merge 45 86 281 153 1982 142 86 67 195
sen/ins 1.06 2.12 1.82
ins/mer 1.48 1.95 1.40 2.55 1.13 1.68 1.95 1.98 1.47

lu
se

ar
ch

sens
insens 69 185 428 459 3024 262 169 145 302
merge 45 97 299 214 2723 158 87 71 210
sen/ins
ins/mer 1.53 1.90 1.43 2.14 1.11 1.66 1.94 2.04 1.43

pm
d

sens
insens 105 274 567 427 2330 327 213 181 392
merge 66 153 379 188 2076 207 129 100 280
sen/ins
ins/mer 1.59 1.79 1.49 2.27 1.12 1.57 1.65 1.81 1.40

xa
la

n

sens 116 - - - 1091 1214
insens 118 463 1139 - - 579 349 249 672
merge 70 219 836 - - 470 200 126 521
sen/ins 1.00 - 1.88 - - 1.80
ins/mer 1.68 2.11 1.36 - - 1.23 1.74 1.97 1.29

Table 2. Execution time (seconds) for a variety of analyses on various benchmarks



insens 1obj 1obj+H 2obj+H 2obj+2H 1type+H 2type+H 1call 1call+H

an
tlr

sens 649 996 - 4608 - 1433 1228 945 3174
insens 649 996 2560 1536 3686 963 735 945 1740
merge 544 683 2048 978 3072 675 518 661 1433
sen/ins 1.00 1.00 - 3.00 - 1.48 1.67 1.00 1.82
ins/mer 1.19 1.45 1.25 1.57 1.19 1.42 1.41 1.42 1.21

bl
oa

t

sens 460 1126 - - - 1433 2150 1228 5120
insens 461 1126 2457 - - 923 992 1228 3379
merge 363 663 1843 - - 586 505 773 2969
sen/ins 1.00 1.00 - - - 1.55 2.16 1.00 1.51
ins/mer 1.26 1.69 1.33 - - 1.57 1.96 1.58 1.13

ch
ar

t

sens
insens 968 3072 - - - 2764 1536 1945 3276
merge 653 1740 - - - 1945 811 1331 2560
sen/ins
ins/mer 1.48 1.76 - - - 1.42 1.89 1.46 1.27

ec
lip

se

sens 428 748 4505 - - 2048 1945 694 2867
insens 429 748 2048 2252 - 1433 1012 694 1638
merge 300 405 1433 1536 - 679 602 444 1433
sen/ins 1.00 1.00 2.20 - - 1.43 1.92 1.00 1.75
ins/mer 1.43 1.84 1.42 1.46 - 2.11 1.68 1.56 1.14

jy
th

on

sens
insens 604 1228 3584 - - - - 980 1740
merge 472 609 2355 - - 798 1740 601 1331
sen/ins
ins/mer 1.27 2.01 1.52 - - - - 1.63 1.30

lu
in

de
x

sens 346 2252 - - 929 1638
insens 346 496 1126 1126 2764 645 549 508 874
merge 265 317 716 565 2150 399 327 349 684
sen/ins 1.00 2.00 - - 1.87
ins/mer 1.30 1.56 1.57 1.99 1.28 1.62 1.67 1.45 1.27

lu
se

ar
ch

sens
insens 367 517 1228 1228 3379 681 550 548 926
merge 277 334 723 690 2867 424 327 370 722
sen/ins
ins/mer 1.32 1.54 1.69 1.77 1.17 1.60 1.68 1.48 1.28

pm
d

sens
insens 602 817 1536 1331 2969 948 785 814 1331
merge 505 585 1017 839 2457 647 560 631 1126
sen/ins
ins/mer 1.19 1.39 1.51 1.58 1.20 1.46 1.40 1.29 1.18

xa
la

n

sens 614 - - - 2457 2969
insens 614 1331 3174 - - 1638 1126 940 1843
merge 487 710 2252 - - 823 684 659 1536
sen/ins 1.00 - - - 1.50 1.61
ins/mer 1.26 1.87 1.41 - - 2.00 1.64 1.42 1.20
Table 3. Disk footprint (MB) for a variety of analyses on various benchmarks



edges meths v-calls poly v-calls casts fail casts

an
tlr

1o
bj+

H sens - - - - - -
insens 59075 8886 33467 1924 1767 985
merge 59075 8886 33467 1924 1767 985

2o
bj+

H sens 55445 8714 32976 1712 1709 611
insens 55445 8714 32976 1712 1709 611
merge 55445 8714 32976 1712 1709 611

1ty
pe

+H sens 59738 8916 33507 1948 1770 1070
insens 59738 8916 33507 1948 1770 1070
merge 59738 8916 33507 1948 1770 1070

1c
all

+H sens 60797 8961 33631 1985 1778 1037
insens 60797 8961 33631 1985 1778 1037
merge 60797 8961 33631 1985 1778 1037

bl
oa

t

1o
bj+

H sens - - - - - -
insens 65672 10116 31049 2067 2815 1911
merge 65672 10116 31049 2067 2815 1911

2o
bj+

H sens - - - - - -
insens - - - - - -
merge - - - - - -

1ty
pe

+H sens 66697 10150 31089 2137 2818 2045
insens 66697 10150 31089 2137 2818 2045
merge 66697 10150 31089 2137 2818 2045

1c
all

+H sens 70340 10200 31214 2129 2829 2007
insens 70340 10200 31214 2129 2829 2007
merge 70340 10200 31214 2129 2829 2007

ch
ar

t

1o
bj+

H sens
insens - - - - - -
merge - - - - - -

2o
bj+

H sens
insens - - - - - -
merge 59027 12510 31111 1610 2765 1055

1ty
pe

+H sens
insens 79871 16044 39462 2725 3858 2445
merge 79896 16044 39462 2730 3858 2450

1c
all

+H sens
insens 81865 16134 39724 2887 3887 2480
merge 81890 16134 39724 2892 3887 2485

ec
lip

se

1o
bj+

H sens 49279 9408 23505 1386 1984 1092
insens 49279 9408 23505 1386 1984 1092
merge 49282 9408 23505 1386 1984 1092

2o
bj+

H sens - - - - - -
insens 44792 9188 22852 1168 1912 729
merge 44795 9188 22852 1168 1912 729

1ty
pe

+H sens 51161 9452 23634 1438 1987 1198
insens 51161 9452 23634 1438 1987 1198
merge 51162 9452 23634 1438 1987 1198

1c
all

+H sens 52800 9511 23716 1507 2000 1154
insens 52800 9511 23716 1507 2000 1154
merge 52800 9511 23716 1507 2000 1154

Table 4. Metrics concerning precision for a variety of analyses. Jython omitted for space.



edges meths v-calls poly v-calls casts fail casts

lu
in

de
x

1o
bj+

H sens 40004 7876 18263 1110 1521 796
insens 40004 7876 18263 1110 1521 796
merge 40004 7876 18263 1110 1521 796

2o
bj+

H sens - - - - - -
insens 36477 7702 17748 899 1463 496
merge 36477 7702 17748 899 1463 496

1ty
pe

+H sens 40646 7906 18303 1138 1524 889
insens 40646 7906 18303 1138 1524 889
merge 40646 7906 18303 1138 1524 896

1c
all

+H sens 41790 7953 18492 1171 1532 837
insens 41790 7953 18492 1171 1532 837
merge 41790 7953 18492 1171 1532 837

lu
se

ar
ch

1o
bj+

H sens
insens 42977 8526 19556 1289 1622 812
merge 42977 8526 19556 1289 1622 812

2o
bj+

H sens
insens 39352 8344 19048 1071 1564 508
merge 39352 8344 19048 1071 1564 508

1ty
pe

+H sens
insens 43676 8558 19620 1319 1625 927
merge 43676 8558 19620 1319 1625 934

1c
all

+H sens
insens 45071 8626 19857 1352 1643 938
merge 45071 8626 19857 1352 1643 938

pm
d

1o
bj+

H sens
insens 46826 9277 21591 1168 1990 1210
merge 46826 9277 21591 1168 1990 1210

2o
bj+

H sens
insens 42988 9090 21004 942 1,931 846
merge 42988 9090 21004 942 1,931 846

1ty
pe

+H sens
insens 47539 9311 21632 1192 1993 1311
merge 47540 9311 21632 1192 1993 1317

1c
all

+H sens
insens 48895 9371 21843 1240 2003 1273
merge 48895 9371 21843 1240 2003 1273

xa
la

n

1o
bj+

H sens - - - - - -
insens 54033 10511 25683 1857 2042 1055
merge 54038 10511 25683 1858 2042 1055

2o
bj+

H sens - - - - - -
insens - - - - - -
merge - - - - - -

1ty
pe

+H sens 54792 10561 25760 1887 2049 1235
insens 54792 10561 25760 1887 2049 1235
merge 54796 10561 25760 1888 2049 1235

1c
all

+H sens 56658 10613 25891 1966 2059 1203
insens 56658 10613 25891 1966 2059 1203
merge 56666 10613 25891 1967 2059 1203

Table 5. Metrics concerning precision for a variety of analyses (cont’d from Table 4)



insens 1obj+H 2obj+H 1type+H 1call+H
insens merge insens merge insens merge insens merge insens merge

an
tlr

objs passed 697 651 26,867 25,271 6,983 6,079 4,702 4,528 17,236 17,155
objs thrown 3,123 204 14,197 965 23,856 1,730 7,084 428 12,461 822

ratio .22 3.18 1.89 26.16 .29 3.51 .66 10.56 1.38 20.86
bl

oa
t objs passed 829 781 22,633 22,325 - - 5,338 5,167 46,650 46,563

objs thrown 4,112 257 18,697 1,189 - - 10,140 589 20,048 1,251
ratio .20 3.02 1.21 18.76 - - .52 8.76 2.32 37.22

ch
ar

t objs passed 2,315 1,723 - - - 16,739 - 18,721 46,158 41,909
objs thrown 8,331 414 - - - 7,231 - 1,357 19,747 1,371

ratio .27 4.15 - - - 2.31 - 13.79 2.33 30.56

ec
lip

se objs passed 637 539 14,045 16,875 15,234 14,357 6,025 6,471 18,311 18,186
objs thrown 4,064 248 15,983 1,047 36,699 2,612 10,516 593 11,829 777

ratio .15 2.17 .87 16.10 .41 5.49 .57 10.90 1.54 23.40

jy
th

on objs passed 801 479 43,068 35,106 - - - - 19,307 -
objs thrown 3,452 215 20,449 1,025 - - - - 11,288 -

ratio .23 2.23 2.10 34.21 - - - - 1.71 -

lu
in

de
x objs passed 383 339 7,664 7,414 3,525 3,037 3,031 2,881 8,186 8,109

objs thrown 2,544 166 8,953 606 21,401 1,521 6,055 363 7,218 486
ratio .15 2.03 .85 12.21 .16 1.99 .50 7.92 1.13 16.67

lu
se

ar
ch objs passed 429 385 8,085 7,822 4,519 4,010 3,319 3,165 9,005 8,928

objs thrown 2,764 180 9,222 626 19,432 1,435 6,341 379 7,880 528
ratio .15 2.13 .87 12.49 .23 2.79 .52 8.33 1.14 16.90

pm
d objs passed 461 414 9,273 8,949 4,388 3,864 3,500 3,337 10,948 10,867

objs thrown 3,008 198 10,409 695 19,961 1,465 7,100 431 8,529 577
ratio .15 2.09 .89 12.87 .21 2.63 .49 7.73 1.28 18.81

xa
la

n objs passed 668 589 24,618 24,155 - - 6,350 5,821 18,448 18,301
objs thrown 3,876 251 20,765 1,372 - - 11,278 641 12,198 810

ratio .17 2.34 1.18 17.60 - - .56 9.08 1.51 22.59
Table 6. Objects on method boundaries compared to exception objects thrown by a method (mea-
sured in thousands)

its reasoning effort in a way that closely matches what one would expect intuitively,
possibly indicating that large further improvements are unlikely.

5 Related Work

We next discuss in more detail some of the past work in points-to analysis combined
with exceptions.

As mentioned earlier, points-to analysis frameworks S [19] and P [18,20]
both use imprecise exception analysis via assignment of thrown exceptions to a single
global variable. Even if this were to change to distinct per-type variables, it would still
have significant precision shortcomings compared to our approach since the order and
scope of exception handlers would be ignored. The Soot framework also has a separate
exception analysis [16] that is not based on a pointer analysis.

The IBM Research W [6] static analysis library supports several different pointer
analysis configurations. The points-to analyses of W support computing which ex-



ceptions a method can throw (analogously to our TPT relation), but no re-
sults of W’s accuracy or speed have been reported in the literature. W allows
an exception object to be represented by-type (analogously to our coarsening) but it
is unclear how the underlying analysis compares to our joint exception and points-to
analysis. It will be interesting to compare our analyses to W in future work.

Type-based approaches to dealing with exception objects have also been explored
before [14, 15], in the context of a separate exception analysis (i.e., not jointly with a
precise points-to analysis and not in comparison to an object-based exception represen-
tation).

bddbddb is a Datalog and BDD-based database that has been employed for points-to
analysis [29, 30]. The publications do not discuss exception analysis, yet the bddbddb
distribution examples do propagate exceptions over the control-flow graph. One of the
differences between D and bddbddb is that D expresses the entire analysis in
Datalog and only relies on basic input facts. In contrast, the points-to analyses of bddb-
ddb largely rely on pre-computed input facts, such as a call-graph, reducing the Datalog
analysis to just a few lines of code for propagating points-to data. For exception analy-
sis, bddbddb ignores the order of exception handlers and also disables filtering of caught
exceptions. Both of these features are crucial for precision.

Chatterjee et al. analyze the worst-case complexity of fully-precise pointer analysis
with exceptions [3]. This is a theoretical analysis with no current application to practical
points-to algorithms.

Sinha et al. discuss how to represent exception flow in the control-flow graph [27].
One of the topics is handling finally clauses. We analyze Java bytecode, hence the
complex control-flow of finally clauses is already handled by the Java compiler.

Choi et al. suggested a compact intraprocedural control-flow representation that col-
lapses the large number of edges to exceptions handlers [4]. Our analyses are interpro-
cedural and flow-insensitive, so not directly comparable to that work.

6 Conclusions

When analyzing an object-oriented program, exceptions pose an interesting challenge.
If completely ignored, valuable properties of the program are lost and large amounts of
code appear unexercised. If handled in isolation (either before or after points-to analy-
sis) the result is imprecise and the analysis suffers from inefficiency. A joint points-to
and exception analysis offers the answer but has significant time and space cost due
to the precise representation of exception objects. We showed that we can profitably
coarsen the representation of exception objects in such a joint analysis. Precision re-
mains unaffected, for the parts of the analysis not directly pertaining to exception ob-
jects, i.e., for most common analysis clients, such as cast elimination, devirtualization,
and call-graph construction. At the same time, performance is significantly enhanced.
Thus the approach is a clear win and is now the default policy for exception handling
in the D framework.

There are interesting avenues for further work along the directions of the paper.
Our approach is based on standard patterns of use of exception objects. These patterns



can perhaps be generalized to other kinds of objects used as “message carriers”. Fur-
thermore, the question arises of how such patterns translate across languages. Is there
an analogous concept in functional languages that can be exploited to gain scalability?
Also, it remains to be seen whether similar approaches can apply to alias analysis in
C++ in the presence of exceptions.

Acknowledgments. We gratefully acknowledge funding by the European Union under a
Marie Curie International Reintegration Grant and a European Research Council Start-
ing/Consolidator grant. We also gratefully acknowledge the support of the Greek Secre-
tariat for Research and Technology under an Excellence (Aristeia) award. The work in
this paper was significantly aided by pre-existing mechanisms that Martin Bravenboer
has implemented in the Doop framework.

References

1. Bravenboer, M., Smaragdakis, Y.: Exception analysis and points-to analysis: Better together.
In: Dillon, L. (ed.) ISSTA ’09: Proceedings of the 2009 International Symposium on Soft-
ware Testing and Analysis. New York, NY, USA (Jul 2009)

2. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated points-
to analyses. In: OOPSLA ’09: 24th annual ACM SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and Applications. ACM, New York, NY, USA (2009)

3. Chatterjee, R., Ryder, B.G., Landi, W.A.: Complexity of points-to analysis of Java in the
presence of exceptions. IEEE Trans. Softw. Eng. 27(6), 481–512 (2001)

4. Choi, J.D., Grove, D., Hind, M., Sarkar, V.: Efficient and precise modeling of exceptions for
the analysis of Java programs. SIGSOFT Softw. Eng. Notes 24(5), 21–31 (1999)

5. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous checking
of structural program dependencies. In: ICSE ’08: Proc. of the 30th int. conf. on Software
engineering. pp. 391–400. ACM, New York, NY, USA (2008)

6. Fink, S.J.: T.J. Watson libraries for analysis (WALA). http://wala.sourceforge.net
7. Fu, C., Milanova, A., Ryder, B.G., Wonnacott, D.G.: Robustness testing of Java server ap-

plications. IEEE Trans. Softw. Eng. 31(4), 292–311 (2005)
8. Fu, C., Ryder, B.G.: Exception-chain analysis: Revealing exception handling architecture in

Java server applications. In: ICSE ’07: Proceedings of the 29th International Conference on
Software Engineering. pp. 230–239. IEEE Computer Society, Washington, DC, USA (2007)

9. Fu, C., Ryder, B.G., Milanova, A., Wonnacott, D.: Testing of java web services for robust-
ness. In: ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis. pp. 23–34. ACM, New York, NY, USA (2004)

10. Guarnieri, S., Livshits, B.: GateKeeper: mostly static enforcement of security and reliability
policies for Javascript code. In: Proceedings of the 18th USENIX Security Symposium. pp.
151–168. SSYM’09, USENIX Association, Berkeley, CA, USA (2009), http://dl.acm.
org/citation.cfm?id=1855768.1855778

11. Hajiyev, E., Verbaere, M., de Moor, O.: Codequest: Scalable source code queries with Data-
log. In: Proc. European Conf. on Object-Oriented Programming (ECOOP). pp. 2–27. Spinger
(2006)

12. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer analysis for
millions of lines of code. In: PLDI’07: Proc. ACM SIGPLAN conf. on Programming Lan-
guage Design and Implementation. pp. 290–299. ACM, New York, NY, USA (2007)

http://wala.sourceforge.net
http://dl.acm.org/citation.cfm?id=1855768.1855778
http://dl.acm.org/citation.cfm?id=1855768.1855778


13. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: POPL ’09: Proceed-
ings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 226–238. ACM, New York, NY, USA (2009)

14. Jo, J.W., Chang, B.M.: Constructing control flow graph for Java by decoupling exception
flow from normal flow. In: Laganà, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K.,
Gervasi, O. (eds.) ICCSA (1). Lecture Notes in Computer Science, vol. 3043, pp. 106–113.
Springer (2004)

15. Jo, J.W., Chang, B.M., Yi, K., Choe, K.M.: An uncaught exception analysis for Java. Journal
of Systems and Software 72(1), 59–69 (2004)

16. Jorgensen, J.: Improving the precision and correctness of exception analysis in Soot. Tech.
Rep. 2003-3, McGill University (Sep 2004)

17. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.:
Context-sensitive program analysis as database queries. In: PODS ’05: Proc. of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp.
1–12. ACM, New York, NY, USA (2005)

18. Lhoták, O.: Program Analysis using Binary Decision Diagrams. Ph.D. thesis, McGill Uni-
versity (Jan 2006)

19. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin, G. (ed.)
Compiler Construction, 12th Int. Conf. LNCS, vol. 2622, pp. 153–169. Springer, Warsaw,
Poland (April 2003)

20. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using
a BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 1–53 (2008)

21. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of javascript applications in
the presence of frameworks and libraries. Tech. Rep. MSR-TR-2012-66, Microsoft Research
(Jul 2012)

22. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-CFA paradox: Il-
luminating functional vs. object-oriented program analysis. In: Conf. on Programming Lan-
guage Design and Implementation (PLDI). pp. 305–315. ACM (Jun 2010)

23. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to anal-
ysis for Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)

24. Reps, T.: Demand interprocedural program analysis using logic databases. In: Ramakrishnan,
R. (ed.) Applications of Logic Databases. pp. 163–196. Kluwer Academic Publishers (1994)

25. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis. pp. 189–233. Prentice-Hall, Inc., Englewood
Cliffs, NJ (1981)

26. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis, Carnegie Mel-
lon University (May 1991)

27. Sinha, S., Harrold, M.J.: Analysis and testing of programs with exception handling con-
structs. IEEE Trans. Softw. Eng. 26(9), 849–871 (2000)

28. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Understanding object-
sensitivity (the making of a precise and scalable pointer analysis). In: ACM Symposium on
Principles of Programming Languages (POPL). pp. 17–30. ACM Press (Jan 2011)

29. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision diagrams
for program analysis. In: Yi, K. (ed.) APLAS. Lecture Notes in Computer Science, vol. 3780,
pp. 97–118. Springer (2005)

30. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: PLDI ’04: Proc. of the ACM SIGPLAN 2004 conf. on Programming
language design and implementation. pp. 131–144. ACM, New York, NY, USA (2004)


	Efficient and Effective Handling of Exceptions in Java Points-To Analysis

