
cJ: Enhancing Java with Safe Type Conditions

Shan Shan Huang David Zook
College of Computing

Georgia Institute of Technology
ssh,dzook@cc.gatech.edu

Yannis Smaragdakis
Department of Computer and Information Science

University of Oregon
yannis@cs.uoregon.edu

Abstract
cJ is an extension of Java that allows supertypes, fields, andmeth-
ods of a class or interface to be provided only under some static
subtyping condition. For instance, a cJ generic class,C<P>, may
provide a member methodm only when the type provided for pa-
rameterP is a subtype of a specific typeQ.

From a practical standpoint, cJ adds to generic Java classesand
interfaces the ability to express case-specific code. Unlike con-
ditional compilation techniques (e.g., the C/C++ “#ifdef” con-
struct) cJ is statically type safe and maintains the modulartype-
checking properties of Java generic classes: a cJ generic class can
be checked independently of the code that uses it. Just like regular
Java, checking a cJ class implies that all uses are safe, under the
contract for type parameters specified in the class’s signature.

As a specific application, cJ addresses the well-known short-
comings of the Java Collections Framework (JCF). JCF data struc-
tures often throw run-time errors when an “optional” methodis
called upon an object that does not support it. Within the constraints
of standard Java, the authors of the JCF had to either sacrifice static
type safety or suffer a combinatorial explosion of the number of
types involved. cJ avoids both problems, maintaining both static
safety and conciseness.

Categories and Subject DescriptorsD.1.2 [Programming Tech-
niques]: Automatic Programming—program synthesis, program
transformation, program verification; D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.13 [Software Engi-
neering]: Reusable Software—Reusable libraries; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors

General Terms Design, Languages

Keywords aspect-oriented programming, meta-programming,
language extensions

1. Introduction
Generic types increase the expressiveness and safety of a program-
ming language. Since the introduction of Java and C#, researchers
have worked on adding genericity mechanisms that were subse-
quently integrated into the base languages themselves [3, 15, 31].
From a language design standpoint, modern genericity mechanisms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD 07 March 12-16, 2007, Vancouver, BC, Canada
Copyright © 2007 ACM 1-59593-615-7/07/03. . . $5.00.

offer a good tradeoff between expressiveness and separate checka-
bility. For instance, Java generics have limited expressiveness com-
pared to undisciplined mechanisms, such as C++ template classes,
yet offer the ability to detect static errors (e.g., type errors) without
having to provide a specific type parameter that triggers theerror.

This paper proposes cJ: an extension of Java that adds more ex-
pressiveness to its genericity mechanism without sacrificing any of
the Java type-checking guarantees. Specifically, we add to Java the
ability to place type-conditions on methods, fields, or supertypes.
This is best illustrated with a small example. Consider the follow-
ing generic cJ class:

class C<X> {
X xRef;
...
<X extends DataSource>?
void store() { ... xRef.getConnection() ... }

}

In this example, the member methodstore is declared in a
type-instantiation of generic classC, only when the type argument
for X is a class (or interface) that implements (resp., extends) in-
terfaceDataSource. The<...>? syntax is cJ’s type-conditional
construct. One can read this syntax as “static-if”, or just “if”. The
call xRef.getConnection() is well-typed only because typeX is
guaranteed to be a subtype ofDataSource and, consequently, to
provide thegetConnection method.

cJ is translated by erasure, reducing to regular Java in a back-
ward compatible manner. This allows us to solve a well-recognized
problem in the Java Collections Framework (JCF), the standard
Java data structures library. Currently, JCF data structures support
two main common interfaces (Collection andMap), regardless
of optional behavior, such as whether the data structure is mod-
ifiable or not, and whether the data structure has variable size
or not. Classes that do not support the corresponding operations
throw UnsupportedOperationExceptions when the operations
are called at run-time. The design of the JCF is an instance ofsacri-
ficing static type safety in favor of conciseness. cJ solves this prob-
lem, maintaining both type safety and conciseness of expression.

Interestingly, cJ can be thought of as a language that allows
cross-cutting [17] at the level of types. cJ type conditionsare used
to define many implicit types from a single class definition. In the
above example, the single definition of classC can be thought of
as defining the implicit typesC<subtype-of-DataSource> and
C<not-DataSource>. Thus, with cJ type conditionals, one can
add orthogonal “aspects” or “dimensions” to an existing type hier-
archy. Our re-implementation of the JCF provides a vivid demon-
stration of this feature. Beginning from a simple subtypinghierar-
chy, we introduce variation based on whether a data structure sup-
ports content modification or size variability. The definitions of the
various collections (e.g., theList, Collection, Map, andSet in-
terfaces) are as simple as in plain Java, yet a much richer type hi-
erarchy is produced by modifying each type with attributes chosen

from a separate type hierarchy (with types such asModifiable,
DeleteOnly, and Resizable). Thus, whereas traditional AOP
tools allow the expression of cross-cutting features at thelevel of
methods, cJ supports separation of concerns at the type level. Type
hierarchies can be specified separately to represent orthogonal con-
cerns, and cJ allows their composition to form richer, derived hi-
erarchies. Writing general code that exploits these derived hier-
archies can be done through a natural extension of the Java vari-
ance/wildcards mechanism (e.g., “? extends T” clauses).

Although Java was chosen as the platform for our ideas, the
cJ approach is far from Java-specific. The same programming and
type-checking framework can be applied to other languages.Yet
Java is a good representative of modern OO languages and integrat-
ing with it demonstrates clearly both the benefits and the intricacies
of our approach.

Concretely, our work makes the following contributions:

• cJ allows expressing highly variable generic classes concisely.
Compared to standard OO mechanisms, cJ allows a single
generic class to express the functionality of an exponential
number of regular Java classes.

• cJ offers full type safety, analogous to that of the base Java
language. A cJ generic class is checked separately from its uses.
The type system ensures that the class is type-correct underany
consistent combination of outcomes of the type-conditionals.

• Other research work [7, 19, 20, 22] has targeted the problem of
type-safe conditional declarations. Nevertheless, many of the
past mechanisms are in a simpler context (e.g., no subtyping)
or do not allow some of the cJ features (e.g., conditional sub-
typing). None of the past research dealt with the integration
of conditional members and subtypes with (use-site) variance,
or provided a backward compatible, erasure-based translation.
Overall, cJ is distinguished by its power and its smooth integra-
tion in a modern language.

• cJ solves the static type safety issues of the JCF. We are
not aware of other language proposals that address this well-
publicized need without sacrificing conciseness.

The rest of the paper is organized as follows. We first give an
informal introduction to the cJ language extensions. This serves as
background for the motivating examples of Section 3 and the JCF
case study. In Section 4, we present interesting ways in which the
cJ extensions interact with variance in Java. We then analyze the
cJ implementation in Section 5. Section 6 formalizes cJ and subse-
quently we discuss related work (Section 7) and our conclusions.

2. cJ Language Introduction
We next give an informal overview of cJ’s syntax and semantics, to
prepare the ground for our motivating examples. A formal descrip-
tion of the language is laid out in Section 6.

2.1 cJ Basics and Examples

cJ is a conservative extension of Java—we assume Java 5, with
support for generics and variance (“wildcards”) [3, 29] in the base
language. cJ adds to Java the ability to change a type’s structure
depending on static type conditions. The language providesa type-
conditional construct. The following is a simple example showing
the use of a type-conditional:
class Foo<T> {
<T extends Bar>?
int i;

}

In the above example,<T extends Bar>? is a type-conditional.
The declaration immediately following it, “int i;”, exists only if
Foo is parameterized by a subtype ofBar.

Type-conditionals can be used for the declaration of class-or
interface-level methods and fields, as well as for the declaration of
conditional supertypes. For instance, we can have:

class Foo<T>
<T extends Serializable>? implements Serializable
{ ... }

The above classFoo implements interfaceSerializable only
when it is parameterized by a type that also implements (or extends)
Serializable.

Multiple declarations can exist in the same conditional block by
surrounding them in< ... >. For instance:

class Foo<T> {
<T extends Bar>?
< int i;
void meth(T t) { }

>
}

The above is equivalent to preceding each declaration individually
with the type-conditional<T extends Bar>?.

There are two required components to each type-conditional
block. The first is the type condition, defined inside “< ... >?”.
Any syntax that is valid for defining the type parameters of a Java
class is valid here as a type condition: the type conditions have the
standard F-bounded polymorphism form [3], where a type parame-
ter can be referenced by its own bound, e.g., “T extends I<T>”.
Note especially that “extends” is used to express all kinds
of subtyping constraints (including interface conformance) and
that the syntax admits conjunctions of subtyping bounds (e.g.,
“T extends I<T> & J<T>”), as well as bounding multiple pa-
rameters (e.g., “S extends I<S>, T extends J<S>”). Simi-
larly to Java, it isnot valid for a type parameter to appear by it-
self on the right hand side ofextends (i.e. we cannot place lower
bounds on a type parameter). Also note that only type parameters
declared at the class/interface level are allowed in type conditions.
Polymorphic method type parameters are not allowed. The second
required component, the consequent block, immediately follows
the type condition. Declarations within this block exist for the en-
closing type if and only if the type condition is true, after all type
parameters are instantiated. A type-conditioned declaration is syn-
tactically a declaration, hence, type-conditionals can nest.

cJ ensures that all uses of type-conditionals are statically safe.
All code should be well-typed under its enclosing type conditions.
Furthermore, all uses of class or interface members should be
under equivalent or stronger conditions than those employed in the
member’s declaration. For instance, the following use is legal only
if J is a subtype ofI:

class Foo<T> {
<T extends I>?
int i;

<T extends J>?
void incI() { i++; } // legal iff J subtypes I

}

The following code is also legal, as the type conditions are strength-
ened by adding conjunctions:

class Foo<T,U> {
<T extends I>?
int i;

<T extends I, U extends K>?
void incI() { i++; } // legal: stronger condition

<T extends I & J>?
void decI() { i--; } // legal: stronger condition

}

2.2 Restrictions

There are some restrictions that cJ imposes on conditional decla-
rations. These restrictions significantly simplify the translation and
interfacing with existing Java code, as we will discuss in Section 5.
The rule of thumb is that a cJ class (or interface) should be a legal
Java class (interface) if all type conditions are removed.

A cJ class can have at most oneextends clause, regardless of
whether it is under a type-conditional. Of course, a cJ classcan
implement multiple interfaces and any of theimplements clauses
can be conditional.

Declarations that are conflicting per the standard Java rules are
not allowed, even if their type-conditional conditions areexclusive.
For instance, the following is illegal in cJ, even when neither Baz
norBar are a subtype of the other:
interface IFoo<T> {
<T extends Bar>?
void foo(int i);

<T extends Baz>?
int foo(int i); // duplicate definition

}

Furthermore, subtypes are required to define conditional methods
under equivalent or weaker conditions than conflicting methods in
their (possibly conditional) supertypes. For example:
interface ISuper<T,U> {
<T extends Bar>?
void meth1(int i);

<T extends Bar>?
void meth2(Object o);

}

interface ISub<T,U> extends ISuper<T,U> {
<T extends Bar & Baz>?
void meth1(int i); // illegal unless Bar subtypes Baz

void meth2(Object o); // legal: weaker (no condition)
}

The above rules extend to the members of conditional supertypes.
Their type conditions from the perspective of the subtype isthe
conjunction of the subtyping and the membership conditions. (E.g.,
a member under a static conditionP in an interface implemented
under conditionQ should be thought of as being under a condition
P&Q for the purposes of the above discussion.) Our formalism in
Section 6 makes this definition precise.

3. cJ Benefits
Having introduced the cJ language, we can now examine some mo-
tivating examples. We first discuss a small example that demon-
strates how a type-conditional avoids a combinatorial blowup of
the number of classes required in a Java application. Then, we ex-
amine a specific case study: the Java Collections Framework and
its well-known shortcomings with respect to static type safety.

3.1 The Argument for Safety and Conciseness

There are two ways to view the benefits of cJ over regular Java.
In Java, when the contents of a class can vary with respect to
multiple orthogonal concerns, the programmer can either choose
to maintain static type safety and suffer a combinatorial explosion
of the number of classes involved, or sacrifice static type safety in
order to keep the number of classes manageable. cJ achieves both
benefits simultaneously.

The conciseness benefits of cJ are relatively easy to see. When
multiple conditionals capture different axes of variability, a cJ
generic class corresponds to a hierarchy of many different regular
classes. Consider a simple example classC:

class C<X> {
<X extends Serializable>?
public void store() { ... }
...
<X extends Comparable<X>>?
public X getMin() { ... }

}

That is, classC supports methodstore only when type parameter
X is a serializable type. Similarly,C supports methodgetMin only
when type parameterX is a comparable type.

To achieve the same effect with regular Java, the programmer
needs to create separate classes that capture all possible combina-
tions. One possibility would be the following class hierarchy:

class CommonC<X> {
... // the common parts of C

}

class CSer<X extends Serializable> extends CommonC<X> {
public void store() { ... }

}

class CComp<X extends Comparable<X>> extends CommonC<X> {
public X getMin() { ... }

}

class CCompSer<X extends Comparable<X> & Serializable>
extends CSer<X>
{
public X getMin() { ... }

}

The result is four different classes, capturing the same content as
the original cJ class. Method code is replicated:CCompSer cannot
inherit getMin from CComp because it already has a superclass,
CSer. Furthermore,CCompSer is not a subtype ofCComp, hence,
a CCompSer object cannot be used where aCComp is expected,
even though it supports the required methods of aCComp. Such
code replication and subtyping problems can be alleviated by us-
ing delegation techniques and interfaces, but this may require sig-
nificant code reorganization, weakening of encapsulation,and ex-
plicitly maintaining object identity. For instance, to minimize code
length with delegation, the programmer often needs to enable ac-
cess to members of another class, as well as manually ensure a
one-to-one mapping among different sub-objects.

Note that this example deals with only two axes of variability:
whetherX is Comparable and whetherX is Serializable. Still,
the result is undesirable. In the general case, the number ofJava
classes required for a faithful emulation is exponential tothe num-
ber of distinct type-conditionals in the cJ class, assuminga straight-
forward mapping. Overall code length will also be exponentially
greater, unless delegation, with its aforementioned disadvantages,
is used.

In practice, it is unlikely that Java developers would want to deal
with this kind of combinatorial complexity. Instead, they will likely
prefer to provide a single type that captures the union of allpossible
members. In that case, when an “unsupported” method is called, a
run-time error can be signaled in the form of an exception. For
instance, following Java conventions, our earlier exampleis likely
to be written in standard Java as follows:

class C<X> {
public void store()
throws UnsupportedOperationException
{ ... }
...
public X getMin()
throws UnsupportedOperationException
{ ... }

}

This addresses the code size and number-of-types explosionprob-
lem at the expense of sacrificing static type safety. The typechecker
is no longer able to tell under what conditions thestore and
getMin operations would be illegal. A run-time type error is pro-
duced instead, when illegal operations get called.1 Relative to plain
Java, cJ combines the advantages of static type safety and code con-
ciseness.

It is worth noting that the cJ compiler translates its input into
plain Java by following an approach similar to that of the example
above (i.e., a single class is produced, containing all possible mem-
bers). Yet, the cJ type system statically ensures that no exceptions
for unsupported methods are thrown at run-time. We describethe
cJ implementation in Section 5.

Finally, an interesting question on the power of type-
conditionals concerns their value under multiple inheritance. Mul-
tiple inheritance can address the problems of delegation, in that it
allows composing a class modularly without violating object iden-
tity or encapsulation. If Java had multiple inheritance, inaddition
to its bounded generics, the above example could be expressed in
the same amount of code as in cJ. Nevertheless, the main benefit
of type-conditionals is not in minimizing the code length, but in
minimizing the number of explicit types that users need to man-
age. Consider the case of a type hierarchy among typesI1, I2,
..., IN. Type conditionals allow the programmer to create implic-
itly a virtual isomorphic hierarchy by using a single classC<X>
with member and/or supertype declarations conditional onX ex-
tendingI1, I2, etc. The language will automatically ensure that
the two hierarchies have consistent structure. If, for instance,I1
is a subtype ofI5, all methods inC declared conditionally un-
der X extends I1 will be able to access methods declared con-
ditionally underX extends I5. With traditional subtyping mech-
anisms, the user would need to create explicit typesC1, C2, ...,CN
with a subtyping hierarchy reflecting the one ofI1, I2, ...,IN. Re-
lieving the programmer from explicitly managing these types is the
greatest advantage of type-conditionals inany language setting. As
we discuss in the next section, the stated motivation of Javade-
velopers for choosing a type-unsafe solution for the JCF wasnot
avoiding code size explosion but avoiding an explosion in the num-
ber of explicit types that users would need to deal with.

3.2 Case Study: Java Collections Framework

A striking demonstration of the problems presented above can be
found in the Java Collections Framework: the standard Java data
structures library. The JCF supplies types such asCollection,
Set, Map, andList. However, there are other cross-cutting con-
cerns along which to organize these basic data structures. One
such concern is that of “modifiability”: is a data structure mod-
ifiable through its public interface or not? This concept is not
captured via the Java type system in the design of the JCF. In-
stead, any attempt to modify an “unmodifiable” collection results
in the throwing of anUnsupportedOperationException at run-
time. Another similar concern is that of size variability. Some
data structures are modifiable, yet their size cannot change—arrays
are a standard example. An array supports the operations of the
List interface with the exception ofadd or remove, which throw
UnsupportedOperationException. This is a case of circum-
venting the static type system in order to avoid a combinatorial
explosion in the number of types specified in the library. In fact,
six out of the fifteen methods of interfaceCollection in JDK 1.5
are optional and may result in run-time errors.

1 The UnsupportedOperationException is a run-time exception (i.e.,
the compiler does not check that it is always caught or declared) and a
member of the JCF. For the purposes of this paper, we use this exception
type even for code outside the JCF. Any different exception could assume
the same general role.

The above is a well-known issue. The very first “frequently
asked question” in the Java Collections API Design FAQ2 is:

Why don’t you support immutability directly in the core
collection interfaces so that you can do away with optional
operations (andUnsupportedOperationException)?

The design rationale reflected in the answer to this FAQ indirectly
offers a compelling argument for cJ. The developers note:

Clearly, static (compile time) type checking is highly desir-
able, and is the norm in Java. We would have supported it
if we believed it were feasible. Unfortunately, attempts to
achieve this goal cause an explosion in the size of the inter-
face hierarchy ...

Subsequently, the Java Collections API developers proceedto give
an illustration of the kinds of “explosion in size” problemsthat a
type-safe design would encounter, if cross-cutting concerns such as
“modifiable”, “variable-size”, “append-only”, etc., are expressed in
the type system. The Java Collections Design FAQ concludes:

Now we’re up to twenty or so interfaces and five iterators,
and it is almost certain that there are still collections arising
in practice that don’t fit cleanly into any of the interfaces.

The above issue is not specific to the Java Collections Framework.
Other developers of Java data structure libraries have identified the
same shortcomings. Doug Lea (quoted in the JCF FAQ) authoreda
popular Java collections package and remarks:

Much as it pains me to say it, strong static typing does not
work for collection interfaces in Java.

(We invite the reader to consult online the informative FAQ answer,
which we cannot reproduce here in its entirety.)

cJ addresses fully and cleanly the above problem with the JCF.
InterfacesCollection, List, etc. are implemented modularly us-
ing type-conditionals. Specifically, there are three interesting prop-
erties that we capture: whether a collection is modifiable, whether
it supports only deletions, and whether it supports both deletions
and additions (i.e., all size change operations). These cross-cutting
concerns are expressed using (marker) interfacesModifiable,
DeleteOnly andResizable. TheResizable interface is a sub-
type of DeleteOnly—a resizable collection supports operations
such asclear andremove, but alsoadd andaddAll. By combin-
ing these interfaces one can specify different flavors of each col-
lection. This is done through a type parameterM passed to each
collection generic class. For instance, interfacesCollection and
List are implemented as follows:3

interface Collection<E,M> extends Iterable<E,M> {
<M extends Resizable>?
<
boolean add(E o);
boolean addAll(Collection<? extends E, ?> c);
>
<M extends DeleteOnly>?
<
boolean removeAll(Collection<?, ?> c);
void clear();
...
>
boolean contains(Object o);
boolean isEmpty();
... // other methods common to all collections

}

2 http://java.sun.com/j2se/1.5.0/docs/guide/collections/designfaq.html
3 Our re-implementation of the JCF can be found on the cJ website:
http://www.cc.gatech.edu/∼ssh/cj.

interface List<E,M> extends Collection<E,M> {
<M extends Resizable>?
<
void add(int index, E element);
boolean addAll(int index, Collection<? extends E,?> c);
>
<M extends DeleteOnly>?
<
E remove(int index);
...
>
<M extends Modifiable>?
E set(int index, E element);
... // other methods common to all lists

}

(Note that the question-mark symbol is used both in our type-
conditional syntax, and as a wildcard in order to specify vari-
ance in generic operations, per the standard Java syntax.) Con-
crete classes that implement these interfaces (e.g.,ArrayList)
have similarly structured type-conditionals. This implementation
is concise without sacrificing static type safety. The user of
the List interface explicitly selects the desired flavor of the
collection. For instance, a possible type instantiation ofList
is List<Integer,Modifiable>, signifying a modifiable (but
not resizable) list of integers. Another possible instantiation is
List<Integer,Object> (or any type that is not a subtype of
Modifiable in place ofObject) to signify a non-modifiable and
non-resizable list. The programmer cannot accidentally call a set
method on a collection that is statically specified to be unmod-
ifiable. The need for anUnsupportedOperationException is
eliminated.

The JCF case study serves well as a motivating example for the
more powerful cJ features described in later sections. Specifically,
the major question we have not yet addressed is how to write
general code that abstracts over multiple cJ types. There are two
ways to safely abstract over types in the Java type system. One way
is to use interfaces—e.g., we may want to write code that works
with all Comparable objects regardless of whether they are of type
Integer, String, Array, etc. The other way is to use variance—
e.g., we can write code that works with allList<X> objects, as long
as the element type,X, is a subtype of a given type, say,Number.
Both of these valuable mechanisms are straightforwardly extended
and enhanced in cJ.

cJ conditional supertypes enable abstraction using interfaces
even for types that support the corresponding operations only con-
ditionally. For instance, we can have definitions such as:
class ArrayList<X,M>
<X extends Comparable<X>>? implements Comparable<List<X>>
{
<X extends Comparable<X>>?
public int compareTo(List<X> that) { ... }
...

}

The aboveArrayList class implements interfaceComparable
and provides the appropriatecompareTo method only if its param-
eter type is also aComparable.4 Thus, we can use suchArrayList
objects with code accepting anyComparable object—unlike the
original JavaArrayList class.

The second kind of abstraction is quite interesting and practi-
cally valuable in the cJ setting. For instance, how can we write
code that deals uniformly withList objects that support at least
a remove operation, regardless of whether the objects are of type
ArrayList<E,DeleteOnly> or ArrayList<E,Resizable> or
any other compatible subtype and “flavor” combination? Thisis
precisely the role of the question-mark wildcard types thatappeared

4 Our thanks to Phil Wadler for this motivating example.

in our above Java Collections code—e.g., for methodaddAll. The
general approach follows a natural extension of the standard Java
variance mechanism. We discuss this topic in the next section.

4. Subtyping and Variance
cJ type-conditionals turn out to fit very well in the Java typecheck-
ing framework. In particular, the relationships among different in-
stantiations of the same generic cJ class fall out very simply from
the standard rules for variance, with only a small addition.We next
give a bird’s eye view of wildcards and variance in the Java type
system (readers familiar with variance can skip Section 4.1) and
then discuss how these relate to cJ.

4.1 Variance and Wildcards

Here we only give a brief (and simplified) summary of Java wild-
cards as used to implement variance. A thorough treatment can be
found in past literature [12, 29].

Java allows using generic types with a non-specific instantia-
tion, through the wildcard syntax “? extends T”, “ ? super T”
and “?”. For a generic typeC, the meaning of aC<? extends T>
is “C instantiated with any subtype ofT”. For instance, the JCF
Collection interface supports a method:

interface Collection<E> extends Iterable<E> {
...
addAll(Collection<? extends E> c);

}

The wildcard means that if, for instance, we have an object of
type Collection<Number>, we can pass as an argument to its
addAll method an object of typeCollection-of-some-subtype-
of-Number. For instance (assumingInteger subtypesNumber):

Collection<Number> c = new ArrayList<Number>();
Collection<Integer> ci = new ArrayList<Integer>();
... // populate ci
c.addAll(ci);

Similarly, the wildcard syntax “C<? super T>” means “C instan-
tiated with any supertype ofT”, and the syntax “C<?>” means “C
instantiated with anything”.

Wildcards form an elegant way to write highly general code that
can apply to multiple instantiations of generic types. Nevertheless,
to statically ensure that the result is safe (i.e., that the object can
indeed support all the operations that the code wants to perform on
it) several restrictions need to be imposed.

• An object c of type C<? extends T> can only be used to
call methods where the type parameter ofC is in a co-variant
position, i.e., appears only as the return type of a method, if at
all. Also, fields ofc typed as the type parameter ofC can only be
read from, not written to. For instance, given an objectc of type
Collection<? extends E>, we can never invoke a method
such as “boolean add(E o)” on c, because this method is
declared in interfaceCollection<E>, and the type parameter
E appears as an argument type toadd.

• Similarly, an objectc of typeC<? super T> can only be used
to call methods with the type parameter ofC in acontra-variant
position, i.e., it appears only as an argument type to a method, if
at all. Fields ofc typed as the type parameter ofC can be written
to with values typedT, but only read as values of typeObject.

• An object c of type C<?> can only be used to call meth-
ods where the type parameter ofC does not appear at all (bi-
variance). Similarly, the fields ofc typed as the type parameter
of C can only be read asObjects, and not written to.

Next we discuss how a slight extension of the Java variance
rules makes them apply transparently to cJ.

4.2 Variance and Type-Conditionals

We return to the original question regarding type-conditionals and
subtyping. Consider a cJ classC<X>. Can we write code that is
general enough to work type-safely with multiple instantiations of
C<X> (i.e., for multiple values ofX)? Consider the simple example
from Section 3.1:

class C<X> {
<X extends Serializable>?
public void store() { ... }
...
<X extends Comparable<X>>?
public X getMin() { ... }

}

Intuitively, X is used in this example only in order to add more
members to generic classC. Thus, a “stronger”X (i.e., one that will
satisfy more “extends” type conditions) will only result in more
members being added. In other words, if typeS is a subtype ofT
thenC<S> could safely be a subtype ofC<T>—generic classC can
be co-variant in its type parameter.

cJ, just like regular Java, does not automatically relate different
instantiations of a generic class via subtyping. That is, inthe Java
and cJ type systems, an instantiationC<A> is never a subtype of
C for two distinct classesA andB, regardless of the contents of
C or howA andB are related. However, ifA is a subtype ofB, then
C<A> is a subtype ofC<? extends B> andC is a subtype of
C<? super A>. The programmer can use such subtyping relations
to write code that applies to multiple instantiations of a generic
class and the language statically checks that the code is safe, based
on the rules outlined earlier.

cJ enhances the variance rules to deal with type conditions.For
instance, we can have the following method, accepting an argument
of the above typeC:

void export(C<? extends Serializable> c) {
... c.store(); ...

}

That is, theexport method accepts objects of typeC-of-some-
subtype-of-Serializable. The language ensures that the body of
export uses its argumentc correctly. In this case, the call tostore
is statically type safe, since for any subtypeX of Serializable,
typeC<X> will supportstore.

The general rule for interactions between type parameters and
variance is simple:

An occurrence of type parameterX in an<X extends ...>?
type-condition (on either a supertype declaration or a mem-
ber declaration) constitutes a co-variant use.

Enhanced with the above rule, all other rules of the standardvari-
ance framework of Java apply and enable general type safety.

Consider, for instance, aQueue that supports averaging of its
elements if they areNumbers. (This is an artificial example—the
functionality is not part of the Java Collections Framework.):

interface Queue<X> {
<X extends Number>?
X average();
... // other methods

}

Both appearances of type parameterX are in co-variant positions:
either in a type condition, or as a return type. In this case, amethod
can accept objects of typeQueue-of-some-subtype-of-Number and
call average on them safely. For instance, we can have:

void covariant(Queue<? extends Number> q) {
Number a = q.average();

}

We already saw uses of variance in our Java Collections API
case study. Consider the following excerpt from the definition of
Collection<E,M> in Section 3.2:
interface Collection<E,M> extends Iterable<E,M> {
...
boolean addAll(Collection<? extends E, ?> c);
...
boolean removeAll(Collection<?, ?> c);

}

MethodsaddAll andremoveAll in the above use arguments bi-
variant with respect to the second type parameter ofCollection.
That is, these methods can accept any collection, regardless of
whether it is modifiable or not, delete-only or not, etc. Notethat
the above type signatures statically prevent the implementation of
methodsaddAll and removeAll from calling methods such as
add, clear, or set on their argumentc: all these methods are
declared conditionally andc may not support them. Intuitively,
this reflects the intent of the interface for methodsaddAll and
removeAll: they modify the object from which they are invoked,
but not their argument object, from which they only read values to
add or remove.

Overall, cJ type-conditionals are an excellent match for Java
variance. Not only does variance offer a natural abstraction mecha-
nism for conditional types, but also variance and type-conditionals
offer the same kind of benefit in a programming language. Both
mechanisms allow specifying a single classC<X> and having the
type system automatically compute several useful derivative types.
In the case of variance the derivative types areC<? extends T>,
C<? super T> and C<?>, which contain only the co-variant,
contra-variant, and bi-variant methods of the class, with respect
to some typeT. In the case of cJ the derivative types corre-
spond to all possible outcomes of type-conditionals. For instance,
Modifiable-and-DeleteOnly-List is an implicit type produced
from theList<E,M> definition. Each cJ implicit type contains only
the members that exist for this combination of conditions.

5. Implementation
The design of cJ was carefully planned to admit a simpleerasure-
based translation that is backward compatible with Java code. Each
cJ generic class can be translated to a single Java generic class
(which in turn can be translated to a single non-generic Javaclass,
per the standard erasure translation of Java generics). This and other
implementation topics are discussed next.

Erasure. The current cJ compiler is a source-to-source translator
into Java. Nevertheless, exactly the same techniques couldbe used
in a direct-to-bytecode translation. Indeed, the source-to-source
translation has even more transparency requirements and demon-
strates how well cJ fits the Java model.

cJ translates a class (or interface) with type-conditionals into a
Java class (resp., interface) by removing all conditional statements.
This enables a single class to play the role of all possible instantia-
tions. Consider our earlier example:
class C<X> {
<X extends Serializable>?
public void store() { ... }
...
<X extends Comparable<X>>?
public X getMin() { ... }

}

cJ translatesC into a class:
class C<X> {
public void store() { ... }
...
public X getMin() { ... }

}

Note that there is no need for a run-time exception. The cJ type
system ensures statically that unsupported methods can never be
called. (If client code is not compiled with the cJ compiler,there is
no such guarantee. We later discuss how the user can explicitly re-
quest dynamic checks to ensure that these methods are not called.)

Erasure Intricacies. The cJ translation requires a few more steps
than simply removing the type-conditionals. First, the cJ compiler
translates the bodies of conditional methods using type casts that
ensure the appropriate type conditions. Second, it supplies dummy
method bodies to classes implementing (or extending) an interface
(class) with unsupported methods. Lastly, it translates certain type
instantiations into their “raw type” forms, and performs the same
code generation that a plain Java compiler performs in translating
generic code into non-generic code. We demonstrate these transla-
tions via examples.

When translating conditional code, the cJ compiler needs to
maintain known type bounds for each expression. If this is different
from the type the expression would have when conditionals are
eliminated, then casts need to be output. Consider the example from
the Introduction:

class C<X> {
X xRef;
...
<X extends DataSource>?
void store() { ... xRef.getConnection() ... }

}

The call togetConnection is only valid because the typexRef is
known to be a subtype ofDataSource. Thus, the compiler needs
to emit a cast that will ensure this type constraint when the type-
conditional is removed. The cast cannot fail at run-time, asthe cJ
static type checker ensures thestore method is only called when
X is indeed a subtype ofDataSource. The translated code is:

class C<X> {
X xRef;
...
void store()
{ ...((DataSource) xRef).getConnection()... }

}

In the case of interfaces (or abstract classes), our erasuretranslation
means that classes implementing (extending) an interface (abstract
class) may need to be automatically enhanced. Consider a condi-
tional interface method. Erasure removes the type-conditional and
the method will be declared for all instantiations of the interface.
Yet, classes implementing some of these instantiations will not pro-
vide implementations of the method, as the method is undeclared
for the given type parameters. For instance:

interface List<E,M> extends Collection<E,M> {
<M extends DeleteOnly>?
E remove(int index);
...

}

class FixedList<E> implements List<E,Object> {
... // no remove: Object is not subtype of DeleteOnly

}

The translation adds a dummyremove public method in
FixedList. The translated version of the above example is as fol-
lows:

interface List<E,M> extends Collection<E,M> {
E remove(int index);
...

}

class FixedList<E> implements List<E,Object> {
...

public E remove(int index)
throws UnsupportedOperationException
{ throw new UnsupportedOperationException(); }

}

The same translation technique is used for safety: in a naivetrans-
lation scheme, subclasses of a class that has conditional methods
would inherit those methods because of the erasure translation in
the superclass, allowing code not compiled with the cJ compiler to
gain access to those methods. Instead, we ensure that the subclass
overrides the method with a dummy implementation to avoid such
accidental exposure of the superclass functionality. Notethat this
problem is similar to that faced by the designers of GJ [3], and the
solution we adopt is also similar to theirs. For instance, consider
the following class:

class Channel<T> {
<T extends Trusted>?
void disconnect() { ... }

}

Erasure will remove the type-conditional and, thus, exposethe
disconnect method. If the user wants to ensure security he/she
can export only specialized subclasses that explicitly do not imple-
ment theTrusted interface:

class NonsecureChannel extends Channel<Object> { }

The cJ compiler will translate the latter into a class that issafe to
use in an insecure environment, avoiding accidental exposure of the
superclass method:

class NonsecureChannel extends Channel<Object> {
void disconnect()
throws UnsupportedOperationException
{ throw new UnsupportedOperationException(); }

}

This translation technique does not help avoid the accidental expo-
sure of fields, however. To protect a conditional field against unau-
thorized access, a programmer could designate the fieldprivate,
and define getter/setter methods for it. The above translation tech-
nique for methods can then be used to protect the getter/setter meth-
ods from unauthorized uses.

In certain situations, a type instantiation considered legal by
the cJ compiler might not be considered legal by a regular Java
compiler. For example,

class C<X> {
<X extends Enum<X>>?
EnumSet<X> es = null;

}

class EnumSet<X extends Enum<X>> {
...

}

A simple erasure applied to classC<X> would erase the type
condition <X extends Enum<X>>?. However, type instantiation
EnumSet<X> is not compilable using a Java compiler, becauseX
is nowhere declared to be a subtype ofEnum<X>. In these situa-
tions, cJ translates typeEnumSet<X> all the way down to its “raw
type” form,EnumSet. Thus, the translation ofC<X> would be:

class C<X> {
EnumSet es = null;

}

The cJ compiler then needs to perform all the translations that a
regular Java compiler does for expressions of typeEnumSet, e.g.,
generating casts of return types of methods called on this type.

Translation and Backward Compatibility. The interesting aspect
of the cJ translation, as described above, is that it is remarkably

simple and fits very well the existing Java object model. The restric-
tions of the cJ language outlined in Section 2.2 are in place explic-
itly so that an elegant erasure-based translation can be supported.
For instance, ensuring that methods do not conflict, even when they
are under disjoint type conditions, means that we can employthe
erasure-based translation without the need for method renamings.
Similarly, ensuring that overriding methods (in a subclass) are de-
clared under weaker type conditions than the overridden methods
(in the superclass) enables a clean erasure by just removingthe
type-conditionals. It means that a subclass method does not“ac-
cidentally” override a valid superclass method when the subclass
method should not really exist based on its type condition. Trans-
lating all cJ classes and methods one-to-one into Java classes and
methods ensures good interfacing with client code, and evenunsus-
pecting legacy (i.e., standard Java) code.

The cJ translation also includes some transparent special case
handling purely for strong backward compatibility, even atthe
source level. This was motivated by our study of the Java Collec-
tions Framework. The special handling occurs when the cJ com-
piler is invoked in “compatibility mode” and when a type parameter
is usedonly in type-conditionals (and not, for instance, to declare
references). In that case, the cJ compiler treats the parameter as op-
tional. For instance, the cJ compiler can compile legacy Java code
using theCollection<E> interface (and any of the classes imple-
menting it) against the cJ library, which definesCollection as
Collection<E,M>. (Either all optional parameters or none need
to be omitted.) When a type parameter is omitted, the instantiation
is assumed to satisfy all the type-conditionals, and any instantia-
tion with full type parameters is a subtype of it, and vice versa. Our
treatment is directly analogous to “raw types” in the translation of
Java generics [3].

Furthermore, when a type parameter to a class is used only
in type-conditionals (or transitively as a type argument toanother
class that uses this parameter only in type conditionals), then the cJ
compiler removes it from the translated code. This means that the
code generated from the cJ compiler can be used as a regular Java
library, under plain Java compilers. This is best illustrated with an
example. Consider the form of our standardList interface from
the Java Collections API:

interface List<E,M> extends Collection<E,M> {
<M extends Modifiable>?
E set(int index, E element);

<M extends Resizable>?
void add(int index, E element);
...

}

List uses its type parameterM only in type conditions and to
instantiate another type,Collection, where it is also used only in
type conditions.M is never used as an argument or return type of a
method. Therefore, the cJ compiler accepts code that referstoList
with only one type parameter. At the same time, the translation
of the above cJ interface into a plain Java interface eliminates the
second type parameter:

interface List<E> extends Collection<E> {
E set(int index, E element);

void add(int index, E element);
...

}

In short, the cJ compiler compiles old-style Java code even against
new-style (cJ) libraries that use extra type variables for type condi-
tions. Furthermore, the cJ compiler translates new-style (type con-
ditional) library code into Java code that is source-compatible with
existing Java client code, under standard Java compilers.

Clearly, our erasure translation has the same requirementsas
other erasure translations—e.g., that of GJ [3]—for the purpose
of full integration in Java. For instance, the reflection mechanism
needs to change to support cJ-translated code. This is not part of
our current implementation.

6. Formalization
We present the formal syntax and typing rules for a subset of cJ.
Our formalism is an extension of the formalism for Featherweight
GJ (FGJ) with variance, by Igarashi and Viroli [12]. We call our
calculus Featherweight cJ (FCJ). FCJ captures a core subsetof
cJ functionality that allows us to explore the type-safety issues
introduced by type-conditionals, with minimum extra baggage and
duplication of work that has already been done for FGJ [11] and
variance [12]. Our formalism requires that all type parameters
declare upper bounds, which may beObject. Each class must
declare a superclass, which may also beObject. Additionally,
all superclass declarations must be guarded by type-conditionals,
though unconditional superclasses can be expressed by having the
type-conditional be<X extends N>?, where N is X’s declared
upper bound. Similarly, all method declarations must be guarded
by type-conditionals, as well. Conditional fields are not supported
in the formalism, since the issues involving conditional member
declarations are thoroughly represented by conditional methods.
Interfaces are not part of either the original FGJ, or our formalism.
Thus, we only support conditional superclasses. A class declaration
includes a sequence of fields and method declarations. We assume
an implicit constructor for each class, which takes as arguments
expressions that can be used to initialize field values. The method
body is simply an expression.

Note that the variance formalization by Igarashi and Virolidoes
not strictly model the wildcard implementation in Java. Some no-
table differences include the inability in the Igarashi andViroli sys-
tem to access a co-variantly typed field from a contra-variantly in-
stantiated type, yieldingObject as the field’s type. An attempt to
formalize the wildcard mechanism as it is implemented in Java is
presented by Torgersen et al. [28]. However, the Torgersen et al.
formalism has not been proven sound. Thus, we choose to work
with the Igarashi and Viroli formalization here, as a solid basis for
proving the soundness of our type system.5

Notation. For readers unfamiliar with FGJ [11] and the variance
formalism [12], we briefly introduce the notational conventions
used. The meta-variablesC and D range over class names;X, Y,
andZ range over distinct type variables;S, T, U, V, andW range
over types;H, N, O, P, Q, andR range over nonvariable types (fully
instantiated types);f andg range over field names;m ranges over
method names;x ranges over parameter names;d ande range over
expressions; andM ranges over method declarations. Meta-variable
v represents variance annotationso,+, -, and*, for in-variant, co-
variant, contra-variant, and bi-variant, respectively—e.g., +T cor-
responds to? extends T in the full Java syntax. Variance anno-
tations can be placed in front of any non-variable type. In-variant
is the assumed default, and thus,C<oT> is abbreviated toC<T>. A
partial order≤ on variance annotations can be defined as:o ≤ + ≤
*, o≤ -≤ *. v1∨v2 represents the least upper bound ofv1 andv2.

In addition, we use a few shorthand conventions for concise-
ness.X is a shorthand forX1,...,Xn, and similarly,T x is a short-
hand forT1x1,...,Tnxn. When this shorthand is applied to a type
variable or a regular variable (i.e., fields, method arguments), it

5 After the completion of the work presented in this paper, an even more
recent formalization of Java wildcards has been published [4]. This formal-
ization does have a proof of soundness, and should reflect more accurately
the wildcard mechanism in Java. We intend to explore using this formaliza-
tion in the cJ type system in our future work.

represents a sequence with no duplication. We use to denote
an empty sequence. The notation⊳ is the shorthand for keyword
extends, and� is the shorthand for keywordreturn in method
bodies.

We also assume a class tableCT , which maps class namesC to
their declarations. Aprogram is a pair(CT,e) of a class table, and
an expression.

6.1 Syntax

We present the FCJ syntax in Figure 1. The syntax follows closely
the abstract syntax for FGJ with variance [12]. The main difference
is the addition of a type-conditional construct in front of superclass
and method declarations. The type-conditional construct,<X ⊳ R>?,
evaluates to true if, after type parameter instantiation, the types for
X are subtypes ofR. A fully instantiated class has the declared su-
perclass if and only if the type-conditional guarding the superclass
declaration evaluates to true. Otherwise, it extendsObject. Simi-
larly, a method exists for a fully instantiated class if and only if its
type condition evaluates to true.

Syntax:

T ::= X | N

N ::= C<vT>

v ::= o | + | - | *

CL ::= class C<X⊳N> S-if ⊳D<S> {T f; M}

M ::= S-if <Y⊳P> T m (T x) {↑e;}

S-if ::= <X⊳R>?

e ::= x

| e.f

| e.<T>m(e)

| new C<T>(e)

| (T)e

Figure 1. Syntax

6.2 Type System

The main typing rules for FCJ are presented in Figure 2.∆ and
Γ are the two environments used in typing judgments.∆ is a type
environment that ranges over subtyping assumptions of the form
T<:S. WhenX<:N∈ ∆ andN is a non-variable type, for allX, we
say that∆ has non-variable bounds.Γ is a variable environment
that maps a variablex to its typeT.

To support the typing rules, we present some auxiliary defini-
tions in Figure 3, and the definition of “open”(⇑∆) and “close”(⇓∆)
of variant types in Figure 4. These rules and definitions follow
closely the format of those in variance-based FGJ. We assumethe
reader has a certain familiarity with the FGJ formalization, though
not necessarily with the Igarashi and Viroli variance formalism.
To enhance the understanding of our type system, we first high-
light some important additions to FGJ made by Igarashi and Vi-
roli regarding variance. We then delve into the rules and definitions
specifically changed for the inclusion of type-conditionals in cJ.

Background on Variance Formalism. The two most important
additions of the Igarashi and Viroli system over FGJ are the con-
cepts of “open” and “close” (Figure 4). Before any type is used
(i.e., for field or method invocation, or in a subtyping judgment),
it must be “opened” first. Opening a type means that we introduce
a fresh type variable for each co- or contra-variantly defined type.
For example, before we can check the validity of invoking method
m in type C<+T>, we must open this type by introducing a fresh
type variableX into ∆, where∆ ⊢ X <: T. To look for methodm in

C<+T> now means to look form in C<X>. If T occurs anywhere in
m’s type, it is replaced byX, as well.

This “opening” conveniently disallows illegal accesses ofmeth-
ods or fields that we informally described in Section 4. For exam-
ple, suppose that in the definition of classC<X>, we have method
D m (X x) { ... }. The type parameterX appears in a contra-
variant position—as methodm’s argument type. This means that
any co-variantly instantiated typeC<+T> should not be able to in-
voke methodm. This is indeed the case in this formalism: we first
openC<+T> to C<Y>, where∆ ⊢Y<:T. We then check that any in-
vocation ofm passes in an argument of some subtype ofY. However,
Y is simply a type variable with anupper bound ofT. According to
the subtyping rules in Figure 2, no type can be deemed a subtype
of Y (exceptY itself, which is not available before the opening, and
thus cannot be the type of any argument passed tom). Thus, no in-
vocation ofm on an expression of typeC<+T> can be well-typed.
Similarly, had the type parameterX appeared in a co-variant po-
sition in C<X>, e.g., as the return type of a method, an expression
with the contra-variantly instantiated typeC<-T> would not have
been able to invoke that method.

Since “open” introduces new type variables into the type envi-
ronment, it is always paired with a “close” operation, wherethe
newly introduced type variable is closed down to its bound and
removed from the type environment. Closing also re-introduces
variance annotations, using a conservative combination ofthe vari-
ance annotations of the current use context (i.e., the type being
closed) and the surrounding definition context used for the preced-
ing “open”.

Auxiliary Definitions. Functionmtype(∆, m, C<T>) returns the
signature of methodm, in typeC<T>, in the form of<Y⊳P>U→U0.
mtype(∆, m, C<T>) is defined under two rules:

• MT-CLASS says that if methodm is declared in classC<X>
with type-conditional<X⊳R>?, and the type-conditional is sat-
isfied by substituting typesT for type parametersX, i.e.,
∆ ⊢T<:[T/X]R, thenmtype(∆, m, C<T>) is defined.

• MT-SUPER covers the condition when methodm is not
declared in classC<X> at all. In this case, if the type-
conditional for superclassD<S> is satisfied by the substitution
[T/X], thenmtype(∆, m, C<T>) is defined asmtype(∆, m,
[T/X](D<S>)).

Note that we do not need a case for whenm is declared in
C<X>, but the type-conditional guarding it is not satisfied by the
substitution[T/X]. As explained in Section 2.2, the type conditions
on a subclass method must be weaker than the type conditions
guarding the method it overrides in the superclass (this restriction
is formalized in theoverride rule, which we explain later in this
section). Thus, if methodm’s type conditions inC<X> cannot be
satisfied by the assumptions in∆, then its type conditions in the
superclass ofC<X> cannot possibly be satisfied. There is no need to
invoke MT-SUPER in this case.

mbody(∆, m<W>, C<T>) returns a pair,(x, e). x are the pa-
rameters ofm, ande is m’s body.W are the actual types inferred for a
polymorphic methodm. Notembody is similarly defined under the
same two conditions thatmtype is.

fields(∆, C<T>) returns a sequence of fields in classC<T>.
Object has no fields. For all other typesC<T>, fields(∆, C<T>)
returns the sequence of fields declared inC<T>, and, if the type-
conditional guardingC<T>’s superclass,D<S>, is satisfied by the
substitution[T/X], the value offields(∆, [T/X](D<S>)) is returned,
as well.

The predicateoverride(∆, m, <X⊳R>?D<S>, <X⊳H>?<Y⊳P>U
→U0) judges if a methodm, with signature<X⊳H>?<Y⊳P>U→U0

may be defined in a class that has a conditional superclassD<S>,

Expression typing:

∆;Γ ⊢x ∈ Γ(x) (T-VAR)

∆;Γ ⊢e0∈T0 ∆ ⊢bound∆(T0)⇑∆′

C<U>

fields(∆, bound∆(C<U>))=S f Si⇓∆′T

∆; Γ ⊢e0.fi∈T (T-FIELD)

∆;Γ ⊢e0∈T0 ∆ ⊢bound∆(T0)⇑∆′

C<T>

mtype(∆, m, C<T>) =<Y⊳P>U→U0

Y<:Q6∈ ∆′ for any Q ∆ ⊢V ok
∆, ∆′ ⊢V<:[V/Y]P ∆;Γ ⊢e∈S

∆,∆′ ⊢S<:[V/Y]U [V/Y]U0⇓∆′T

∆;Γ ⊢e0.<V>m(e)∈T (T-INVK)

∆ ⊢C<T> ok fields(∆,C<T>) =U f

∆; Γ ⊢e∈S ∆ ⊢S<:U

∆; Γ ⊢new C<T>(e)∈C<T> (T-NEW)

∆;Γ ⊢e0∈T0 ∆ ⊢T ok
∆ ⊢bound∆(T0)<:bound∆(T)

or ∆ ⊢bound∆(T)<:bound∆(T0)

∆; Γ ⊢(T)e0∈T (T-CAST)

∆;Γ ⊢e0∈T0 ∆ ⊢T ok
∆ ⊢bound∆(T0)��<:bound∆(T)

and ∆ ⊢bound∆(T)��<:bound∆(T0)

∆; Γ ⊢(T)e0∈T (T-SCAST)

Method typing:

X<:N⊢R<:N ∆=X<:R, Y<:P ∆ ⊢R, P, T, T0 ok
∆; x : T,this:C<X> ⊢ e0 ∈ S0 ∆ ⊢S0<:T0

CT (C) =class C<X⊳N> <X⊳V>?⊳D<S> {...}
override(∆, m, <X⊳V>?D<S>, <X⊳R>?<Y⊳P>T→T0)

<X⊳R>?<Y⊳P>T0 m (T x) { ↑e0; } OK IN C<X⊳N>
(T-METHOD)

Class typing:

∆1 = X <: N ∆1 ⊢ R <: N ∆1 ⊢ N ok
∆2 = X <: R ∆2 ⊢ R, D<S> ok
∆1 ⊢ T ok M OK IN C<X⊳N>

class C<X⊳N> <X⊳R>?⊳D<S> { T f; M } OK
(T-CLASS)

Subtyping:

∆ ⊢T<:T (S-REFL)

∆ ⊢S<:T ∆ ⊢T<:U
∆ ⊢ S<:U (S-TRANS)

X<:T∈ ∆
∆ ⊢X<:T (S-UBOUND)

T<:X∈ ∆
∆ ⊢T<:X (S-LBOUND)

CT (C)=class C<X⊳N> <X⊳R>?⊳D<S> {...}

∆ ⊢C<T>⇑∆′

C<U>

∆,∆′ ⊢U<:[U/X]R ([U/X]D<S>)⇓∆′T

∆ ⊢C<T> <:T
(S-CLASS)

v ≤ w if wi ≤ -, then ∆ ⊢Ti<:Si

if wi ≤ +, then ∆ ⊢Si<:Ti

∆ ⊢C<vS><:C<wT>
(S-VAR)

Well-formed types:

∆ ⊢Object ok (WF-OBJECT)

X <: T ∈ ∆

∆ ⊢ X ok
(WF-VAR)

CT (C)=class C<X⊳N> <X⊳R>?⊳D<S> { ...}
∆ ⊢T ok ∆ ⊢T<:[T/X]N

∆ ⊢C<T> ok
(WF-CLASS)

Figure 2. Typing Rules

guarded by condition<X⊳R>. The extra complication in this rule
reflects the restrictions described in Section 2.2, and is used in
proving the correctness of our erasure-based translation (Section
6.4). There are two aspects of our translation to consider. Firstly,
recall that our translation scheme erases all type conditionals. After
translation, a classC<X> extends its superclassD<S> uncondition-
ally. Consequently, even if a methodm in C<X> is declared under a
type-conditional that precludes the condition for the superclass, the
type ofm in C<X> still cannot conflict with the type ofm in D<S>.
Secondly, also recall that if a method in a subclass has the same
type signature as a method in a superclass, we require the subclass
method toalways override the superclass method. This means the
type-conditional on the subclass method must be implied by the
type-conditional on the superclass method. This requirement en-
sures that we do not have to dynamically decide whether a class’s
own method implementation should be invoked or it should call
super.m(...).

In order for override to reflect these restrictions, it uses the
functionmtypeuc, which unconditionally recurses up the chain of
superclasses to find a method’s signature.mtypeuc(m, C<T>) re-
turns a pair,(∆′, <Y ⊳ P>U →U0). ∆′ contains subtyping assump-
tions that must be satisfied for methodm to have type<Y⊳P>U →U0.
The second part of the pair ism’s signature as defined in the closest
superclass up the unconditional chain of inheritance.

The override rule uses theimplies notation (as in FGJ [11])
to indicate that the restrictions represented by the consequent of
the implies need to be satisfied only if the antecedent is true. In

this case, the antecedent is:mtypeuc(m, X, D<S>) = (∆′,<Z ⊳
Q>T →T0). This means that methodm is defined in eitherD<S>, or
some conditional superclass ofD<S>. If this antecedent is true, then
the parameter, return types, and bounds on the inferred types must
be the same in the subclass as they are in the conditional superclass.
It must also be true that given all conditions guarding the chain of
conditional superclassesmtypeuc recursed through to findm, and
the condition guardingm itself, the condition guarding the subclass
method is true, as well. This is checked by augmenting∆ with ∆′

andX<:R, and requiring that these are sufficient to showX<:H.
Note that the definition ofoverride is dependent on the subtyp-

ing rules defined in Figure 2. Depending on the specific algorithm
implementing our declarative subtyping rules, it is possible that the
subtyping condition guarding the overriding method,X<:H, cannot
be shown to be true using the assumptions in∆, ∆′, andX<:R.
Consequently, certain valid overriding methods cannot be proven
so. To see this concretely, let∆ =Foo<X><:Baz, whereFoo is
defined as:class Foo<X> <X⊳Bar>?⊳Baz {...}. If we want to
show that∆ ⊢X<:Bar, we need to deconstruct typeFoo<X>, and
infer from Foo<X><:Baz thatX<:Bar must be true, as well. Our
current implementation does not deconstruct types to do such infer-
ence. Subtyping assumptions thrown into∆′ by mtypeuc are only
effective if the type variablesX are not buried inside of constructed
types, such asFoo<X>. We are currently working on a decidable
algorithm for deconstructing types to get more precise subtyping
assumptions. Note that this is a standard point of trade-off: a too
powerful reasoning procedure may well end up being undecidable.

Method type lookup:

CT (C)= class C<X⊳N> <X⊳Q>?⊳D<S>{... M}
<X⊳R>?<Y⊳P>U0 m (U x) {↑e;}∈M ∆ ⊢T<:[T/X]R

mtype(∆, m, C<T>) =[T/X](<Y⊳P>U→U0)
(MT-CLASS)

CT (C)= class C<X⊳N> <X⊳Q>?⊳D<S>{... M}
m is not defined in M ∆ ⊢T<:[T/X]Q

mtype(∆, m, C<T>) = mtype(∆, m, [T/Q]D<S>)
(MT-SUPER)

Method body lookup:

CT (C) = class C<X⊳N> <X⊳Q>?⊳D<S>{... M}
<X⊳R>?<Y⊳P>U0 m (U x) {↑e;}∈M ∆ ⊢T<:[T/X]R

mbody(∆, m<W>, C<T>) = (x, [W/Y][T/X]e)
(MB-CLASS)

CT (C)=class C<X⊳N> <X⊳Q>?⊳D<S>{S f; M}
m is not defined in M ∆ ⊢T<:[T/X]Q

mbody(∆, m<W>, C<T>) = mbody(∆, m<W>, [T/X]D<S>)
(MB-SUPER)

Field lookup:
fields(∆, Object) =

CT (C)=class C<X⊳N> <X⊳R>?⊳D<U> {S f; M }
fields(∆, [T/X]D<U>)=D g ∆ ⊢T<:[T/X]R

fields(∆, C<T>) = D g,[T/X]S f

CT (C)=class C<X⊳N> <X⊳R>?⊳D<U> {S f; M }
∆ ⊢T��<:[T/X]R

fields(∆, C<T>)=[T/X]S f

Unconditional field lookup:

fieldsuc(Object) =

CT (C)=class C<X⊳N> <X⊳R>?⊳D<U> {S f; M }
fieldsuc([T/X]D<U>)=D g

fieldsuc(C<T>) =D g,[T/X]S f

Unconditional method type lookup:

CT (C)= class C<X⊳N> <X⊳Q>?⊳D<S>{... M}
<X⊳R>?<Y⊳P>U0 m (U x) {↑e;}∈M ∆′ =[T/X](X<:R)

mtype
uc

(m, C<T>) = (∆′, [T/X](<Y⊳P>U→U0))
(MTUC-CLASS)

CT (C)= class C<X⊳N> <X⊳Q>?⊳D<S>{... M}
m is not defined in M

mtype
uc

(m, D<S>) = (∆,<Y⊳P>U→U0) ∆′ = ∆, [T/X](X <: Q)

mtype
uc

(m, C<T>) = (∆′, [T/X](<Y⊳P>U→U0))
(MTUC-SUPER)

Valid method overriding:

mtypeuc(m, D<S>) = (∆′, <Z⊳Q>T→T0) implies
[Y/Z](T, T0, Q) = (U, U0, P) and ∆,∆′, X <: R ⊢ X <: H

override(∆, m, <X⊳R>?D<S>, <X⊳H>?<Y⊳P>U→U0)

Bound of type:

bound∆(N) = N
∆(X) = (+, S)

bound∆(X) = bound∆(S)

Figure 3. Auxiliary definitions

A conservative algorithm, on the other hand, will reject some pro-
grams because of its inability to establish the conditions for their
soundness. The latter is typically preferable in practice,since, in
this setting, troublesome programs tend to be highly contrived.

The two rules for unconditional field lookup are only used in
proving the correctness of erasure, using the erasure rulesdetailed
in the accompanying technical report [10]. They are included for
completeness of the auxiliary functions.

Type Rules. Most of the rules presented in Figure 2 are the same
as their variance-based FGJ counterparts. We now go throughthe
ones particular to the type-conditional extensions in FCJ.

T-FIELD and T-INVK: these rules define when a field reference
or a method invocation, respectively, is well-typed. Even though
they look identical to their variance-based FGJ counterparts, they
use functionsfields andmtype, which fully encapsulate the lookup
of conditional supertypes and conditional methods, as previously
explained.

T-METHOD: The interesting change to the T-METHOD rule
from its counterpart in variance-based FGJ is that the environment
∆ (under which the return and parameter types, as well as the body
of the method, expressione0, must be well-typed) is augmented
with the type boundX<:R, which is the type-conditional under
which the method is declared. Intuitively, this says that ifa method
is declared under type-conditional<X⊳R>?, then in the scope of the
body of the method it can be assumed that the type environment∆
supports this bound.

T-CLASS: Note that the conditional superclassD<S> needs to
be proved well-typed under∆ augmented with the type-conditional
condition guarding it.

Open:

∆ ⊢T⇑∅T (O-REFL)

∆ ⊢ S ⇑∆1 T ∆,∆1 ⊢ T ⇑∆2 U

∆ ⊢ S ⇑∆1,∆2 U
(O-TRANS)

X fresh for ∆,C<v1T1,vT,v2T2> v 6= o

∆ ⊢C<v1T1,vT,v2T2>⇑X:(v,T)C<v1T1,oX,v2T2> (O-CLASS)

Close:
∆(X) = (+,T)

X ⇓∆ T (C-PROM)

X�∈dom(∆)

X ⇓∆ X
(C-TVAR)

(wi,T
′
i)=

8

<

:

(vi, Ti) if Ti ⇓∆ Ti

(vi ∨ +, Ui) if Ti ⇓∆ Ui and Ti 6= Ui

(vi ∨ v′i, Ui) if Ti = X and ∆(X) = (v′i, Ui)

C<vT> ⇓∆ C<wT
′
>

(C-CLASS)

Figure 4. Open and Close

6.3 Proof of Soundness

We prove the soundness of our type system by proving subject
reduction and progress properties [30]. Due to space limitations, we
state the theorems here. Interested readers can find the definition
of reduction rules, as well as the full version of the proofs in the
technical report available on the cJ website [10].

Theorem 1 [Subject Reduction]: If ∆; Γ ⊢e∈T and e → e′,
then∆; Γ ⊢e′ ∈S and∆ ⊢S<:T for someS.

Theorem 2 [Progress]: Let e be a well-typed expression.

1. If e hasnew C<T>(e).f as a subexpression, thenfields(∆,
C<T>) = U f, andf = fi.

2. If e has new C<T>(e).m(d) as a subexpression, then
mbody(∆, m, C<T>) = (x, e0) and|x| = |d|.

Theorem 3 [Type Soundness]:If ∅; ∅ ⊢ e ∈ T and e →∗

e′ being a normal form, thene′ is either a valuev such that
∆;Γ ⊢ v ∈ S and ∅ ⊢ S <: T for someS, or an expression
that includes(T)new C<T>(e) where∅ ⊢C<T> ��<: T.

6.4 Proof of Correctness of Erasure

We formalized our erasure implementation by defining an erasure
function that transforms FCJ expressions and types into variance-
based FGJ (FGJv) expressions and types.|T|∆ yields a FGJv type
by erasing a FCJ typeT, and|e|∆,Γ yields an FGJv expression by
erasing an FCJ expressione. We prove the following two theo-
rems6:

Theorem 4 [Erasure Preserves Typing]:For a program(CT, e),
if CT is ok, and∆; Γ ⊢FCJ e ∈ T, then |CT |∆ is ok, and
|∆|∆, |Γ|∆ ⊢FGJ |e|∆,Γ ∈ |T|∆

Theorem 5 [Erasure Preserves Execution Modulo Expansion]:
If ∆; Γ ⊢FCJ e ∈ T ande−→∗

FCJe
′, then there exists some FGJv

expressiond′ such that|e′|∆,Γ ⇒ d′ and |e|∆,Γ −→∗
FGJv

d′,
where⇒ is the expansion function.

Again, we refer readers to the technical report for definition of
the erasure function, expansion function, and proofs of theabove
two theorems.

7. Related Work
cJ is related to several programming language and software en-
gineering concepts. These range from mainstream modularization
techniques to meta-programming and conditional compilation ap-
proaches.

Clearly the idea of a type-conditional is closely related tocondi-
tional compilation, as with the C/C++ preprocessor “#ifdef” con-
struct. Although#ifdef is valuable for configuring large projects,
it addresses very different needs from cJ. Conditional compilation
gives low-level manual control for software configuration.In the
context of a portable language, like Java, an#ifdef statement be-
comes less useful. At the same time, conditional compilation suf-
fers from the lack of any form of safety control. The use of condi-
tional flags may be inconsistent, resulting in invalid configurations
that are not detected until one attempts to select them. There has
been work on adding some safety to conditional compilation by an-
alyzing all configurations of a C program, and there is evidence that
such a heuristic approach may work in several contexts—especially
for refactoring [8]. Nevertheless, cJ offers full static safety guar-
antees, eliminating the problem altogether. Furthermore,the type-
conditions of cJ are structured, richer than mere propositions, and
well-integrated with the Java type system.

Conditional methods have been explored in OO language in
work at least as early as CLU [19]. Nevertheless, CLU does not
support subtyping, so the language context of this work is notably
different. It is, thus, difficult to compare CLU to cJ, where our main
goal is to maintain static type safety, yet, at the same time,main-
tain a clean subtyping hierarchy used for abstraction. Pastwork
on optional methods in Java was also presented by Myers et al.
[22]. This was in the context of a proposal for adding genericity
to Java, and it includes the feature of attachingwhere clauses to

6 For a formal definition of erasure that matches very closely our imple-
mentation, the type rules presented in Figure 2 require minor refinement for
the proofs of these theorems. These differences are inconsequential to the
material in this paper, and are presented in our technical report.

individual methods. The conditions on thewhere clauses, how-
ever, can only be “structural” constraints—i.e., does typeparam-
eter T provide methodvoid foo();. This mechanism does not
support conditional subtyping—e.g., it is not possible to express
that aCollection is Comparable, if the elements it holds are
Comparable. Even more importantly, the work by Myers et al.
does not support type-safe abstraction over classes with conditional
methods, as in the interaction of cJ with variance.

More recently, Emir et al. presented an extension to C# to sup-
port generalized type constraints on methods [7]. This extension
allows both upper and lower bound type conditions on methods.
This is similar to cJ in that methods exist conditionally based on
the instantiation of parametric types. Nevertheless, there are sig-
nificant differences, and in future work we plan to pursue combin-
ing the two approaches. cJ currently does not allow using thetype
parameter of a polymorphic method inside a type conditional—a
crucial feature in Emir et al.’s work. At the same time, cJ hassev-
eral features not found in the generalized type constraintsapproach.
First, cJ supports conditional definitions of fields, as wellas condi-
tional subtyping. Furthermore, the cJ (and Java) form of variance
we examined earlier is a “use-site variance” mechanism as opposed
to the “definition-site variance” supported in Emir et al.’swork.
In addition to being part of standard Java, we believe that use-site
variance is a mechanism better suited for imperative programming
languages in general. In this setting, a single class definition is un-
likely to produce types that are purely co-variant, purely contra-
variant, or purely bi-variant. Instead defining a class willlikely im-
plicitly yield a co-variant part, a contra-variant part, etc. In use-site
variance these subsets of the class functionality are derived auto-
matically from a single definition. In definition-site variance, they
have to be explicitly separated out into distinct interfaces by the
programmer. Thus, we believe use-site variance to be a more user-
friendly system and a natural fit for Java.

In languages with (multi-)methods outside classes, the work on
constraint-based polymorphism in Cecil [20] is related to cJ. Cecil
provides users the ability to add constraints to both methods and
supertypes. The constraints can be subtyping constraints,as well
as structural constraints, requiring a type to provide a particular
method. This is a very different context from that of our work,
however. Furthermore, the Cecil type system does not have an
analogue of our variance approach to abstracting over all objects
with or without some of the conditionally defined members.

Our type-conditional is also related to traditional meta-
programming techniques, which offer mechanisms for programs
to generate other programs. Recent approaches, such as SafeGen
[9] and Genoupe [5] attempt to add safety guarantees to meta-
programming, yet maintain expressiveness. Nevertheless,these ap-
proaches either fail to achieve full safety, or reject programs in a
way that is not transparent to the programmer. Neither mechanism
integrates seamlessly with a programming language, as cJ does.
For instance, SafeGen uses an automatic theorem prover in order
to prove well-formedness properties of every produced program.
Yet this approach is not guaranteed to always produce accurate re-
sults, as the theorem prover may not terminate. Similarly, Genoupe
suffers from potential unsafeties, as its reasoning on the safety of
generated code relies on the equivalence of arbitrarily complex ex-
pressions from the generator source code, which is undecidable
to determine. (Based on the published description, it seemsthat
Genoupe unsoundly estimates the run-time equivalence of expres-
sions based on syntactic similarity.)

It is tempting to find parallels between cJ and advanced OO
modularization mechanisms such as traits [6, 25], mixins [2], or
mixin layers [27]. These approaches vary in expressivenessand
several of them are insufficient for solving the combinatorial ex-
plosion problems identified in Section 3. For instance, C++-based

mixins or mixin layers would still require a large number of com-
positions, with explicit subtyping links added among them,in order
to express the required functionality of the Java Collections Frame-
work. It is possible that a traits-based mechanism could serve to
alleviate many of the problems in the Java Collections Framework
(albeit with a complete rewrite). Nevertheless, there is nosuch
mechanism currently for Java that would tie well with the rest of the
language’s type system (e.g., variance) and execution model. Fur-
thermore, no mixin or traits mechanism offers capabilitiessimilar
to those shown in Section 3.1, i.e., the ability to add extra members
only when a type parameter that is already used for other purposes
has a certain subtyping property.

Type-conditionals in cJ can be viewed as being similar to type-
safe variant records work—e.g., [24]. Nevertheless, variant records
mechanisms typically try to address the problem ofrun-time vari-
ability with static type-safety. cJ is not concerned with changes to
the type of a variable during run-time. Instead, cJ focuses on the
static configurability of components. The techniques used to ensure
static type safety in the case of variant records and in the case of cJ
show this difference clearly: statically safe variant records typically
require the programmer to specify what code will get executed for
any possible type. Indeed, this is the best one can hope when the
object can indeed vary at run-time. In contrast, cJ statically ensures
that the legal operations on an object are fully known.

Configuring generic code is also reminiscent of techniques in
C++ template programming [1, 13]. Fundamentally, C++ templates
offer a powerful (Turing-complete) but unsafe language forcon-
figuring types: there is little static checking capability beyond the
checking of templates after instantiation. Furthermore, there is no
way to guarantee that a template computation will even terminate.
The C++ community has developed ideas on statically validating
the input to a template [21, 26] and the general idea ofconcepts
has emerged and even developed as a language-independent no-
tion [14]. Nevertheless, concept-based techniques concentrate on
validating the type parameters of a generic class, rather than con-
figuring it under static conditions. cJ offers the ability toconfig-
ure classes based on subtyping conditions, without sacrificing static
type safety and with a smooth integration in the base language.

cJ can be viewed as an instance of the aspect-oriented program-
ming paradigm [17], because of its ability to allow a class tobe
configured based on the structure of a different type hierarchy (rep-
resenting a cross-cutting concern). As we demonstrated with the
cJ implementation of the JCF, the cross-cutting concern “modifia-
bility” is separated in the type system from the intrinsic form of a
data structure (e.g., whether it is a list, or a set, or a map).The type
system does maintain concepts such as “modifiable list”, “unmodi-
fiable map”, etc., but these are derived from their componenttypes.
In fact, the cJ reimplementation of the JCF can be compared topre-
vious work that uses AOP to enforce consistency in data structure
and behavior [18, 23]—in the JCF, consistency in the usage ofdata
structures along cross-cutting dimensions is enforced by the cJ type
system. Nevertheless, cJ differs from common aspect-oriented lan-
guages like AspectJ [16] in that separation of concerns in cJis con-
fined to the type level. cJ does not offer any cross-cutting features
at the level of code or method definitions: these are interspersed
throughout traditional Java language components (i.e., classes) and
not collected in a single entity. Thus, what cJ has to offer isorthog-
onal to traditional aspect languages and it is interesting to consider
integrating their advantages in future work.

8. Conclusions
We presented cJ: an extension of Java that allows declaring class
and interface members and supertypes provisionally, undersubtyp-
ing conditions on parameter types. cJ’s power lies in that itallows
the composition of orthogonal type hierarchies concisely (avoid-

ing a combinatorial blowup of the number of declared types) yet
without sacrificing static type safety. Thus, cJ has a cross-cutting
flavor at the level of type hierarchies: the user can define separate
aspects of a type hierarchy independently and combine them using
cJ type-conditionals to form the complete set of expressible types.

We believe that cJ offers an interesting combination of expres-
siveness and safety, together with a smooth integration with a rep-
resentative mainstream OO language. cJ’s ability to solve real prob-
lems is demonstrated by applying it to the Java Collections Frame-
work. cJ addresses the Collection Framework’s well-known short-
comings, eliminating the possibility of run-time errors for unsup-
ported operations without sacrificing conciseness.

Acknowledgments
Phil Wadler and Martin Odersky suggested the need for condi-
tional subtyping and offered many excellent comments that helped
strengthen the paper. Multiple anonymous reviewers also made
very helpful suggestions. We gratefully acknowledge support by
the NSF under Grant CCR-0238289.

References
[1] A. Alexandrescu.Modern C++ Design. Addison-Wesley, 2001.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In N. Mey-
rowitz, editor,Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications / Proceedings
of the European Conference on Object-Oriented Programming, pages
303–311, Ottawa, Canada, 1990. ACM Press.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In C. Chambers, editor,ACM Symposium on Object
Oriented Programming: Systems, Languages, and Applications
(OOPSLA), pages 183–200, Vancouver, BC, 1998.

[4] W.-N. Chin, F. Craciun, S.-C. Khoo, and C. Popeea. A flow-
based approach for variant parametric types. InProceedings of the
2006 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA‘06), volume 41, pages
273–290, New York, NY, USA, 2006. ACM Press.

[5] D. Draheim, C. Lutteroth, and G. Weber. A type system for reflective
program generators. InGenerative Programming and Component
Engineering (GPCE), 2005.

[6] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black.
Traits: A mechanism for fine-grained reuse.ACM Trans. Program.
Lang. Syst., 28(2):331–388, 2006.

[7] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized
constraints for C# generics. InProceedings of the European
Conference on Object-Oriented Programming (ECOOP). Springer,
2006.

[8] A. Garrido and R. Johnson. Analyzing multiple configurations of a C
program. In21st International Conference of Software Maintenance.
IEEE, 2005.

[9] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically safe
program generation with SafeGen. InGenerative Programming
and Component Engineering (GPCE), pages 309–326, 2005.

[10] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhanc-
ing Java with safe type conditions. Technical report, 2006.
http://www.cc.gatech.edu/∼ssh/cj/cjfull.pdf.

[11] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. In L. Meissner, editor,Proceedings of
the 1999 ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA‘99), volume
34(10), pages 132–146, N. Y., 1999.

[12] A. Igarashi and M. Viroli. Variant parametric types: A flexible
subtyping scheme for generics.ACM Trans. Program. Lang. Syst.,
28(5):795–847, 2006.

[13] ISO Standards Committee. ISO/IEC standard 14882: Programming
languages – C++, 1998.

[14] J. J̈arvi, J. Willcock, and A. Lumsdaine. Associated types and
constraint propagation for mainstream object-oriented generics.
In ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), pages 1–19, 2005.

[15] A. Kennedy and D. Syme. Design and implementation of generics
for the .NET Common Language Runtime. InConference on
Programming Language Design and Implementation (PLDI). ACM,
2001.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ.Communications of
the ACM, 44(10):59–65, 2001.

[17] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Akşit and S. Matsuoka, editors,Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[18] P. Lam, V. Kuncak, and M. Rinard. Crosscutting techniques in
program specification and analysis. InAOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented software
development, pages 169–180, New York, NY, USA, 2005. ACM
Press.

[19] B. Liskov. CLU Reference Manual. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1983.

[20] V. Litvinov. Constraint-based polymorphism in Cecil:Towards
a practical and static type system. InOOPSLA ’98 Conference
Proceedings, volume 33(10), pages 388–411, 1998.

[21] B. McNamara and Y. Smaragdakis. Static interfaces in C++. In C++
Template Programming Workshop, Oct. 2000.

[22] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for
Java. InConference Record of POPL ’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
132–145, New York, NY, 1997.

[23] D. J. Pearce and J. Noble. Relationship aspects. InAOSD’06:
Proceedings of the 5th International Conference on Aspect-oriented
Software Development, pages 75–86, New York, NY, USA, 2006.
ACM Press.

[24] D. Rémy. Type checking records and variants in a natural extension
of ML. In Symposium on Principles of Programming Languages
(POPL), pages 77–88. ACM Press, 1989.

[25] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InEuropean Conference on Object
Oriented Programming (ECOOP). Springer LNCS 2743, 2003.

[26] J. Siek and A. Lumsdaine. Concept checking: Binding parametric
polymorphism in C++. InC++ Template Programming Workshop,
Oct. 2000.

[27] Y. Smaragdakis and D. Batory. Implementing layered designs with
mixin layers. InProceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 550–570. Springer-Verlag
LNCS 1445, 1998.

[28] M. Torgersen, E. Ernst, and C. P. Hansen. Wild fj. InFOOL 2005:
Foundations of Object-Oriented Languages, Long Beach, California,
2005. ACM Press.

[29] M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, and
N. Gafter. Adding wildcards to the Java programming language. In
OOPS track of the Symposium on Applied Computing (SAC), 2004.

[30] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness.Information and Computation, 115(1):38–94, 1994.

[31] D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the
.NET common language runtime. In31st Symposium on Principles
of Programming Languages (POPL). ACM, 2004.

