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Abstract

cJ is an extension of Java that allows supertypes, fieldsneath-
ods of a class or interface to be provided only under somé stat
subtyping condition. For instance, a cJ generic classy, may
provide a member methatlonly when the type provided for pa-
rameterP is a subtype of a specific tye

From a practical standpoint, cJ adds to generic Java classes
interfaces the ability to express case-specific code. @ntibn-
ditional compilation techniques (e.g., the C/C+#ifdef” con-
struct) c¢J is statically type safe and maintains the modiyiae-
checking properties of Java generic classes: a cJ genass can
be checked independently of the code that uses it. Justdikdar
Java, checking a cJ class implies that all uses are safer thele
contract for type parameters specified in the class’s sigeat

As a specific application, c¢J addresses the well-known short
comings of the Java Collections Framework (JCF). JCF data-st
tures often throw run-time errors when an “optional” mettisd
called upon an object that does not support it. Within thestraimts
of standard Java, the authors of the JCF had to either sacstfitic
type safety or suffer a combinatorial explosion of the nurife
types involved. cJ avoids both problems, maintaining badtics
safety and conciseness.

Categories and Subject DescriptorsD.1.2 [Programming Tech-
niques]: Automatic Programming—program synthesis, program
transformation, program verification; D.1.Brpgramming Tech-
niques]: Object-oriented Programming; D.2.1%dftware Engi-
neering]: Reusable Software—Reusable libraries; D.3R¥of
gramming Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors

General Terms Design, Languages

Keywords aspect-oriented programming,
language extensions

meta-programming,

1. Introduction

Generic types increase the expressiveness and safety af@apr-
ming language. Since the introduction of Java and C#, rekees
have worked on adding genericity mechanisms that were subse
quently integrated into the base languages themselve$[311.
From a language design standpoint, modern genericity nméstha
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offer a good tradeoff between expressiveness and sepaetka:
bility. For instance, Java generics have limited expressgs com-
pared to undisciplined mechanisms, such as C++ templadeeda
yet offer the ability to detect static errors (e.g., typeesy without
having to provide a specific type parameter that triggerethar.

This paper proposes cJ: an extension of Java that adds more ex
pressiveness to its genericity mechanism without saagr@ieny of
the Java type-checking guarantees. Specifically, we adaltothe
ability to place type-conditions on methods, fields, or stypes.
This is best illustrated with a small example. Consider k-
ing generic ¢J class:

class C<X> {
X xRef;

<X extends DataSource>?
void store() { ... xRef.getConnection() ...

}

In this example, the member methedore is declared in a
type-instantiation of generic classonly when the type argument
for X is a class (or interface) that implements (resp., extenmds) i
terfaceDataSource. The<...>? syntax is ¢J's type-conditional
construct. One can read this syntax as “static-if”, or just The
call xRef . getConnection() is well-typed only because typeis
guaranteed to be a subtypemftaSource and, consequently, to
provide thegetConnection method.

cJ is translated by erasure, reducing to regular Java inla bac
ward compatible manner. This allows us to solve a well-racaeg
problem in the Java Collections Framework (JCF), the stahda
Java data structures library. Currently, JCF data strastsupport
two main common interface€§llection andMap), regardless
of optional behavior, such as whether the data structureod-m
ifiable or not, and whether the data structure has varialde si
or not. Classes that do not support the corresponding opesat
throw UnsupportedOperationExceptions when the operations
are called at run-time. The design of the JCF is an instansaaxi-
ficing static type safety in favor of conciseness. ¢J solkissrob-
lem, maintaining both type safety and conciseness of egjmes

Interestingly, ¢J can be thought of as a language that allows
cross-cutting [17] at the level of types. ¢J type conditiaresused
to define many implicit types from a single class definitiontHe
above example, the single definition of classan be thought of
as defining the implicit types<subtype-of-DataSource> and
C<not-DataSource>. Thus, with cJ type conditionals, one can
add orthogonal “aspects” or “dimensions” to an existingetyyier-
archy. Our re-implementation of the JCF provides a vivid dem
stration of this feature. Beginning from a simple subtypireyrar-
chy, we introduce variation based on whether a data streisuyp-
ports content modification or size variability. The defimits of the
various collections (e.g., theist, Collection, Map, andSet in-
terfaces) are as simple as in plain Java, yet a much richerhiyp
erarchy is produced by modifying each type with attributessen



from a separate type hierarchy (with types suchMegifiable,
DeleteOnly, and Resizable). Thus, whereas traditional AOP
tools allow the expression of cross-cutting features atetiel of
methods, cJ supports separation of concerns at the tyde Tgpe
hierarchies can be specified separately to represent amlabdgon-
cerns, and cJ allows their composition to form richer, datihi-
erarchies. Writing general code that exploits these dérivier-
archies can be done through a natural extension of the Java va
ance/wildcards mechanism (e.g?, ‘éxtends T" clauses).

Although Java was chosen as the platform for our ideas, the

cJ approach is far from Java-specific. The same programmidg a
type-checking framework can be applied to other languages.
Java is a good representative of modern OO languages agditite
ing with it demonstrates clearly both the benefits and thécities
of our approach.

Concretely, our work makes the following contributions:

* ¢J allows expressing highly variable generic classes sefhyci

Type-conditionals can be used for the declaration of class-
interface-level methods and fields, as well as for the datitar of
conditional supertypes. For instance, we can have:
class Foo<T>
<T extends Serializable>? implements Serializable

{...}

The above clas§oo implements interfacSerializable only
whenitis parameterized by a type that also implements (eneis)
Serializable.

Multiple declarations can exist in the same conditionathloy
surrounding themig ... >. Forinstance:

class Foo<T> {
<T extends Bar>?
< int i;
void meth(T t) { }
>
}

Compared to standard OO mechanisms, cJ allows a single The above is equivalent to preceding each declarationighatity

generic class to express the functionality of an exponkentia
number of regular Java classes.

.

language. A cJ generic class is checked separately frorséts u
The type system ensures that the class is type-correct angler
consistent combination of outcomes of the type-condit@na

Other research work [7, 19, 20, 22] has targeted the probfem o
type-safe conditional declarations. Nevertheless, mdrnhe
past mechanisms are in a simpler context (e.g., no subtyping
or do not allow some of the cJ features (e.g., conditionat sub
typing). None of the past research dealt with the integnatio
of conditional members and subtypes with (use-site) vadan
or provided a backward compatible, erasure-based tramslat
Overall, cJ is distinguished by its power and its smoothgrae
tion in a modern language.

cJ offers full type safety, analogous to that of the base Java block. The first is the type condition, defined inside . .

with the type-conditionadT extends Bar>?.

There are two required components to each type-conditional
>77,
Any syntax that is valid for defining the type parameters chzal
class is valid here as a type condition: the type conditi@vetihe
standard F-bounded polymorphism form [3], where a typermara
ter can be referenced by its own bound, e.9.,€xtends I<T>".
Note especially that éxtends” is used to express all kinds
of subtyping constraints (including interface conformgnand
that the syntax admits conjunctions of subtyping boundg.,(e.
“T extends I<T> & J<T>"), as well as bounding multiple pa-
rameters (e.g., S' extends I<S>, T extends J<S>"). Simi-
larly to Java, it isnot valid for a type parameter to appear by it-
self on the right hand side efktends (i.e. we cannot place lower
bounds on a type parameter). Also note that only type pasmet
declared at the class/interface level are allowed in typelitions.

cJ solves the static type safety issues of the JCF. We are Polymorphic method type parameters are not allowed. Thensec

not aware of other language proposals that address this well required component, the consequent block, immediatelpvis|

publicized need without sacrificing conciseness.

The rest of the paper is organized as follows. We first give an
informal introduction to the cJ language extensions. Taises as
background for the motivating examples of Section 3 and @fe J
case study. In Section 4, we present interesting ways inhwihie
cJ extensions interact with variance in Java. We then aadlyz
cJ implementation in Section 5. Section 6 formalizes cJ ahde-
guently we discuss related work (Section 7) and our conmhssi

2. c¢J Language Introduction

We next give an informal overview of cJ's syntax and semantic
prepare the ground for our motivating examples. A formatdps
tion of the language is laid out in Section 6.

2.1 cJBasics and Examples

the type condition. Declarations within this block exist fbe en-
closing type if and only if the type condition is true, aftdrtgpe
parameters are instantiated. A type-conditioned dedter# syn-
tactically a declaration, hence, type-conditionals cast.ne

¢J ensures that all uses of type-conditionals are statisafe.
All code should be well-typed under its enclosing type ctinds.
Furthermore, all uses of class or interface members shoeld b
under equivalent or stronger conditions than those emplayée
member’s declaration. For instance, the following usegdallenly
if Jis a subtype of:
class Foo<T> {

<T extends I>?7
int i;

<T extends J>7
void incI() { i++; } // legal iff J subtypes I

cJ is a conservative extension of Java—we assume Java 5, witht

support for generics and variance (“wildcards”) [3, 29]le base
language. cJ adds to Java the ability to change a type’ststeuc
depending on static type conditions. The language prowddgse-
conditional construct. The following is a simple example showing
the use of a type-conditional:
class Foo<T> {

<T extends Bar>?

int 1i;
}
In the above exampl&T extends Bar>? is a type-conditional.
The declaration immediately following itiht i;”, exists only if
Foo is parameterized by a subtypeBar.

The following code is also legal, as the type conditions aength-
ened by adding conjunctions:

class Foo<T,U> {
<T extends I>?
int i;

<T extends I, U extends K>7
void incI() { i++; } // legal: stronger condition
<T extends I & J>7

void decI() { i--; } // legal: stronger condition



2.2 Restrictions

There are some restrictions that ¢J imposes on conditiceaad
rations. These restrictions significantly simplify thetskation and
interfacing with existing Java code, as we will discuss iot®a 5.
The rule of thumb is that a cJ class (or interface) should legal |
Java class (interface) if all type conditions are removed.

A cJ class can have at most osetends clause, regardless of
whether it is under a type-conditional. Of course, a ¢J ctass
implement multiple interfaces and any of theplements clauses
can be conditional.

Declarations that are conflicting per the standard Java are
not allowed, even if their type-conditional conditions arelusive.
For instance, the following is illegal in cJ, even when neiitiaz
norBar are a subtype of the other:
interface IFoo<T> {

<T extends Bar>?
void foo(int i);

<T extends Baz>?

int foo(int i);
}
Furthermore, subtypes are required to define condition#hoals
under equivalent or weaker conditions than conflicting roé¢hin
their (possibly conditional) supertypes. For example:
interface ISuper<T,U> {

<T extends Bar>?

void methi(int i);

// duplicate definition

<T extends Bar>?
void meth2(0Object o);
}

interface ISub<T,U> extends ISuper<T,U> {
<T extends Bar & Baz>?
void methil(int i); // illegal unless Bar subtypes Baz

void meth2(0Object o); // legal: weaker (no condition)
}
The above rules extend to the members of conditional supesty
Their type conditions from the perspective of the subtypthés
conjunction of the subtyping and the membership conditi(sg.,

class C<X> {
<X extends Serializable>?
public void store() { ... }

<X extends Comparable<X>>?
public X getMin() { ... }
}

That is, clas€ supports methodtore only when type parameter
X is a serializable type. Similarlg supports methogetMin only
when type parametéris a comparable type.

To achieve the same effect with regular Java, the programmer

needs to create separate classes that capture all posmibibéna-
tions. One possibility would be the following class hiefgre

class CommonC<X> {
. // the common parts of C

}

class CSer<X extends Serializable> extends CommonC<X> {
public void store() { ... }
}

class CComp<X extends Comparable<X>> extends CommonC<X> {
public X getMin() { ... }
}

class CCompSer<X extends Comparable<X> & Serializable>
extends CSer<X>
{
public X getMin() { ... }
}

The result is four different classes, capturing the saméectras
the original cJ class. Method code is replicateCbompSer cannot
inherit getMin from CComp because it already has a superclass,
CSer. FurthermoreCCompSer is not a subtype o€Comp, hence,
a CCompSer object cannot be used whereC8omp is expected,
even though it supports the required methods @fCamp. Such
code replication and subtyping problems can be alleviatedsb
ing delegation techniques and interfaces, but this mayiregig-
nificant code reorganization, weakening of encapsulatod, ex-
plicitly maintaining object identity. For instance, to rimitize code
length with delegation, the programmer often needs to enabl

cess to members of another class, as well as manually ensure a
one-to-one mapping among different sub-objects.

Note that this example deals with only two axes of variafilit
whetherX is Comparable and whetheK is Serializable. Still,
the result is undesirable. In the general case, the numbdavaf
classes required for a faithful emulation is exponentiahtsonum-

3. cJ Benefits e o . L
N . ber of distinct type-conditionals in the cJ class, assuraistyaight-
Having introduced the cJ language, we can now examine SOMe Mo tqward mapping. Overall code length will also be exporadhti

tivating examples. We first discuss a small example that @emo  greater, unless delegation, with its aforementioned eiatdges,
strates how a type-conditio_nal z_ivoids a comt_)ina_torial biovef is used.

the number of classes required in a Java application. Themxw In practice, it is unlikely that Java developers would wardeal
amine a specific case study: the Java Collections Framewatk a \yith this kind of combinatorial complexity. Instead, thejiivikely
its well-known shortcomings with respect to static typeesaf prefer to provide a single type that captures the union gfaskible
members. In that case, when an “unsupported” method isdcalle

) . run-time error can be signaled in the form of an exception. Fo
There are two ways to view the benefits of ¢J over_regular Java. jnstance, following Java conventions, our earlier exaniplixely
In Java, when the contents of a class can vary with respect t0 g pe written in standard Java as follows:

multiple orthogonal concerns, the programmer can eithepsé
to maintain static type safety and suffer a combinatorigl@sion - h
of the number of classes involved, or sacrifice static typetgan P‘:;izgs"g;gu“g:éio erationExcention
order to keep the number of classes manageable. cJ achives b {... 3 PP P P
benefits simultaneously. L

The conciseness benefits of cJ are relatively easy to seen Whe  public X getMin()
multiple conditionals capture different axes of varidfijlia cJ throws UnsupportedOperationException
generic class corresponds to a hierarchy of many diffeesnilar {...}
classes. Consider a simple example class b

a member under a static conditidhin an interface implemented
under conditior) should be thought of as being under a condition
P&Q for the purposes of the above discussion.) Our formalism in
Section 6 makes this definition precise.

3.1 The Argument for Safety and Conciseness

class C<X> {



This addresses the code size and number-of-types explpsiba
lem at the expense of sacrificing static type safety. Thedhpeker

is no longer able to tell under what conditions tseore and
getMin operations would be illegal. A run-time type error is pro-
duced instead, when illegal operations get call&lative to plain
Java, cJ combines the advantages of static type safety dedoa-
ciseness.

It is worth noting that the cJ compiler translates its inpubi
plain Java by following an approach similar to that of therepée
above (i.e., a single class is produced, containing alliplessiem-
bers). Yet, the cJ type system statically ensures that neptions
for unsupported methods are thrown at run-time. We desthide
cJ implementation in Section 5.

Finally, an interesting question on the power of type-
conditionals concerns their value under multiple inhedta Mul-
tiple inheritance can address the problems of delegatithait it
allows composing a class modularly without violating objeen-
tity or encapsulation. If Java had multiple inheritanceaddition
to its bounded generics, the above example could be exprésse

the same amount of code as in ¢J. Nevertheless, the maintbenefi

of type-conditionals is not in minimizing the code lengtlut fn
minimizing the number of explicit types that users need toma
age. Consider the case of a type hierarchy among tgpes2,

..., IN. Type conditionals allow the programmer to create implic-
itly a virtual isomorphic hierarchy by using a single class>
with member and/or supertype declarations conditionak ax-
tendingI1, I2, etc. The language will automatically ensure that
the two hierarchies have consistent structure. If, foranse,I1

is a subtype off5, all methods inC declared conditionally un-
derX extends I1 will be able to access methods declared con-
ditionally underX extends I5. With traditional subtyping mech-
anisms, the user would need to create explicit tyfes?2, ...,CN
with a subtyping hierarchy reflecting the oneldf 12, ..., IN. Re-
lieving the programmer from explicitly managing these tyjsethe
greatest advantage of type-conditionalaity language setting. As
we discuss in the next section, the stated motivation of digva
velopers for choosing a type-unsafe solution for the JCF meais
avoiding code size explosion but avoiding an explosion érthm-
ber of explicit types that users would need to deal with.

3.2 Case Study: Java Collections Framework

A striking demonstration of the problems presented abowebea
found in the Java Collections Framework: the standard Jata d
structures library. The JCF supplies types suclt@klection,
Set, Map, andList. However, there are other cross-cutting con-
cerns along which to organize these basic data structunes. O
such concern is that of “modifiability”: is a data structur@dn
ifiable through its public interface or not? This concept & n
captured via the Java type system in the design of the JCF. In-
stead, any attempt to modify an “unmodifiable” collectiosuks

in the throwing of arinsupportedOperationException at run-
time. Another similar concern is that of size variabilityorSe
data structures are modifiable, yet their size cannot chaiageys
are a standard example. An array supports the operatiortseof t
List interface with the exception @fdd or remove, which throw
UnsupportedOperationException. This is a case of circum-
venting the static type system in order to avoid a combitetor
explosion in the number of types specified in the library.dotf
six out of the fifteen methods of interfacellection in JDK 1.5
are optional and may result in run-time errors.

1The UnsupportedOperationException is a run-time exception (i.e.,
the compiler does not check that it is always caught or ded)aand a
member of the JCF. For the purposes of this paper, we usextépgon
type even for code outside the JCF. Any different exceptimuidassume
the same general role.

The above is a well-known issue. The very first “frequently
asked question” in the Java Collections API Design EAD

Why don’t you support immutability directly in the core
collection interfaces so that you can do away with optional
operations (antnsupportedOperationException)?

The design rationale reflected in the answer to this FAQ audiy
offers a compelling argument for cJ. The developers note:

Clearly, static (compile time) type checking is highly desi
able, and is the norm in Java. We would have supported it
if we believed it were feasible. Unfortunately, attempts to
achieve this goal cause an explosion in the size of the inter-
face hierarchy ...

Subsequently, the Java Collections API developers procegise
an illustration of the kinds of “explosion in size” problertisat a
type-safe design would encounter, if cross-cutting camesuch as
“modifiable”, “variable-size”, “append-only”, etc., arg@ressed in

the type system. The Java Collections Design FAQ concludes:

Now we're up to twenty or so interfaces and five iterators,
and it is almost certain that there are still collectionsiag
in practice that don't fit cleanly into any of the interfaces.

The above issue is not specific to the Java Collections Framkew
Other developers of Java data structure libraries havdifaehthe
same shortcomings. Doug Lea (quoted in the JCF FAQ) autteored
popular Java collections package and remarks:

Much as it pains me to say it, strong static typing does not
work for collection interfaces in Java.

(We invite the reader to consult online the informative FAQwer,
which we cannot reproduce here in its entirety.)

cJ addresses fully and cleanly the above problem with the JCF
InterfacesCollection, List, etc. are implemented modularly us-
ing type-conditionals. Specifically, there are three ieséing prop-
erties that we capture: whether a collection is modifiablegtiver
it supports only deletions, and whether it supports botletéeis
and additions (i.e., all size change operations). Thes&seratting
concerns are expressed using (marker) interfacekifiable,
DeleteOnly andResizable. TheResizable interface is a sub-
type of DeleteOnly—a resizable collection supports operations
such aglear andremove, but alscadd andaddA1l. By combin-
ing these interfaces one can specify different flavors oh ezni-
lection. This is done through a type paramelepassed to each
collection generic class. For instance, interfateslection and
List are implemented as follows:

interface Collection<E,M> extends Iterable<E,M> {
<M extends Resizable>?

boolean add(E o);

boolean addAl1l(Collection<? extends E, 7> c);
>

<M extends DeleteOnly>?

<

boolean removeAll(Collection<?, 7> c);

void clear();

>
boolean contains(Object o);
boolean isEmpty();
. // other methods common to all collections

}

2 http://java.sun.com/j2se/1.5.0/docs/guide/collewidesignfag.html

30ur re-implementation of the JCF can be found on the cJ websit
http://www.cc.gatech.edw/ssh/c;j.



interface List<E,M> extends Collection<E,M> {
<M extends Resizable>?
<
void add(int index, E element);
boolean addAll(int index, Collection<? extends E,?> c);
>
<M extends DeleteOnly>?
<
E remove(int index);

>

<M extends Modifiable>?

E set(int index, E element);

... // other methods common to all lists

}

in our above Java Collections code—e.g., for methé@dh11. The
general approach follows a natural extension of the stahdiava

variance mechanism. We discuss this topic in the next sectio

4. Subtyping and Variance

cJ type-conditionals turn out to fit very well in the Java tgpeck-
ing framework. In particular, the relationships amongetiit in-
stantiations of the same generic cJ class fall out very sirfipm
the standard rules for variance, with only a small additita.next
give a bird’s eye view of wildcards and variance in the Jaysety
system (readers familiar with variance can skip Section drH
then discuss how these relate to cJ.

(Note that the question-mark symbol is used both in our type- 4.1 Variance and Wildcards

conditional syntax, and as a wildcard in order to specifyi-var
ance in generic operations, per the standard Java syntar) C
crete classes that implement these interfaces (&rgayList)
have similarly structured type-conditionals. This imptartation

is concise without sacrificing static type safety. The usér o

Here we only give a brief (and simplified) summary of Java wild
cards as used to implement variance. A thorough treatmerbea

found in past literature [12, 29].

Java allows using generic types with a non-specific indanti
tion, through the wildcard syntaxX?“ extends T”, “? super T"

the List interface explicitly selects the desired flavor of the and “?”. For a generic type, the meaning of &<? extends T>

collection. For instance, a possible type instantiationLoft

is List<Integer,Modifiable>, signifying a modifiable (but
not resizable) list of integers. Another possible institn is
List<Integer,Object> (or any type that is not a subtype of
Modifiable in place of0bject) to signify a non-modifiable and
non-resizable list. The programmer cannot accidentallyacaet
method on a collection that is statically specified to be udmo
ifiable. The need for alinsupportedOperationException iS
eliminated.

The JCF case study serves well as a motivating example for the

more powerful cJ features described in later sections. ifiqedty,

is “C instantiated with any subtype af'. For instance, the JCF
Collection interface supports a method:

interface Collection<E> extends Iterable<E> {

addAl1(Collection<? extends E> c);
}

The wildcard means that if, for instance, we have an object of
type Collection<Number>, we can pass as an argument to its
addAll method an object of typ€ollection-of-some-subtype-
of-Number. For instance (assumirihteger subtypesiumber):

the major question we have not yet addressed is how to write Collection<Number> ¢ = new ArrayList<Number>();

general code that abstracts over multiple cJ types. Therénar
ways to safely abstract over types in the Java type systeew@m

is to use interfaces—e.g., we may want to write code that svork

Collection<Integer> ci = new ArrayList<Integer>();
. // populate ci
c.addA11(ci);

with all Comparable objects regardless of whether they are of type  Similarly, the wildcard syntaxC<? super T>" means C instan-

Integer, String, Array, etc. The other way is to use variance—

e.g., we can write code that works with Bilst<X> objects, as long
as the element typéd, is a subtype of a given type, sajmber.
Both of these valuable mechanisms are straightforwardreled
and enhanced in cJ.

cJ conditional supertypes enable abstraction using atesf
even for types that support the corresponding operatiolysomm-
ditionally. For instance, we can have definitions such as:
class ArrayList<X,M>
<X extends Comparable<X>>? implements Comparable<List<X>>

{
<X extends Comparable<X>>?
public int compareTo(List<X> that) { ... }

)

The aboveArrayList class implements interfac&mparable
and provides the appropriatempareTo method only if its param-
eter type is also Gomparable.* Thus, we can use sudhrrayList
objects with code accepting am@pmparable object—unlike the
original JavairrayList class.

The second kind of abstraction is quite interesting andtprac
cally valuable in the cJ setting. For instance, how can weewri
code that deals uniformly withist objects that support at least

aremove operation, regardless of whether the objects are of type

ArrayList<E,DeleteOnly> Or ArrayList<E,Resizable> oOr
any other compatible subtype and “flavor” combination? Tikis
precisely the role of the question-mark wildcard types émgteared

40ur thanks to Phil Wadler for this motivating example.

tiated with any supertype @', and the syntax €<7>" means €
instantiated with anything”.

Wildcards form an elegant way to write highly general cods th
can apply to multiple instantiations of generic types. Nthaless,
to statically ensure that the result is safe (i.e., that thjeai can
indeed support all the operations that the code wants topadn
it) several restrictions need to be imposed.

* An object c of type C<? extends T> can only be used to
call methods where the type parameterCd§ in a co-variant
position, i.e., appears only as the return type of a mettiad, i
all. Also, fields ofc typed as the type parameter®tan only be
read from, not written to. For instance, given an objecf type
Collection<? extends E>, we can never invoke a method
such as Boolean add(E o)” on c, because this method is
declared in interfac€ollection<E>, and the type parameter
E appears as an argument typeatia.

Similarly, an object of typeC<? super T> can only be used
to call methods with the type parameteicdh acontra-variant
position, i.e., it appears only as an argument type to a ndetho
at all. Fields ofc typed as the type parameter®éan be written
to with values typed:, but only read as values of tyg@ject.

An object ¢ of type C<?> can only be used to call meth-
ods where the type parameter ®floes not appear at albi¢
variance). Similarly, the fields ok typed as the type parameter
of C can only be read & jects, and not written to.

Next we discuss how a slight extension of the Java variance
rules makes them apply transparently to cJ.



4.2 Variance and Type-Conditionals

We return to the original question regarding type-condiis and
subtyping. Consider a cJ classx>. Can we write code that is
general enough to work type-safely with multiple instatidias of
C<X> (i.e., for multiple values ok)? Consider the simple example
from Section 3.1:

class C<X> {
<X extends Serializable>?
public void store() { ... }

<X extends Comparable<X>>?
public X getMin() { ... }
}

Intuitively, X is used in this example only in order to add more
members to generic classThus, a “strongerX (i.e., one that will
satisfy more éxtends” type conditions) will only result in more
members being added. In other words, if typ&s a subtype off
thenC<S> could safely be a subtype 0kT>—generic class can
be co-variant in its type parameter.

¢J, just like regular Java, does not automatically reldtergint
instantiations of a generic class via subtyping. That ishenJava
and c¢J type systems, an instantiatim> is never a subtype of
C<B> for two distinct classes andB, regardless of the contents of
C or howA andB are related. However, & is a subtype o8B, then
C<A> is a subtype of<? extends B> andC<B> is a subtype of
C<? super A>.The programmer can use such subtyping relations
to write code that applies to multiple instantiations of aneyéc
class and the language statically checks that the codedslsaded
on the rules outlined earlier.

¢J enhances the variance rules to deal with type conditkeors.
instance, we can have the following method, accepting amaegt
of the above type€:

void export(C<? extends Serializable> c) {
. c.store(); ...

}

That is, theexport method accepts objects of tygeof-some-
subtype-ofSerializable. The language ensures that the body of
export uses its argumentcorrectly. In this case, the call tzore
is statically type safe, since for any subtypef Serializable,
type C<X> will supportstore.

The general rule for interactions between type parametais a
variance is simple:

An occurrence of type parametein an<X extends ...>7
type-condition (on either a supertype declaration or a mem-
ber declaration) constitutes a co-variant use.

Enhanced with the above rule, all other rules of the standarid
ance framework of Java apply and enable general type safety.
Consider, for instance, @ueue that supports averaging of its
elements if they ar@umbers. (This is an artificial example—the
functionality is not part of the Java Collections Framewjprk

interface Queue<X> {
<X extends Number>?
X average();
... // other methods
}

Both appearances of type parameteare in co-variant positions:
either in a type condition, or as a return type. In this caseethod
can accept objects of tymeue-of-some-subtype-ofiumber and
call average on them safely. For instance, we can have:

void covariant (Queue<? extends Number> q) {
Number a = q.average();

}

We already saw uses of variance in our Java Collections API
case study. Consider the following excerpt from the debinitbf
Collection<E,M> in Section 3.2:

interface Collection<E,M> extends Iterable<E,M> {

boolean addAl1l(Collection<? extends E, 7> c);

boolean removeAll(Collection<?, 7> c);
}
MethodsaddA1ll andremoveAll in the above use arguments bi-
variant with respect to the second type paramet&otfiection.
That is, these methods can accept any collection, regardies
whether it is modifiable or not, delete-only or not, etc. Ntitat
the above type signatures statically prevent the impleatiemt of
methodsaddAll and removeAll from calling methods such as
add, clear, or set on their argument: all these methods are
declared conditionally and may not support them. Intuitively,
this reflects the intent of the interface for methadgiAll and
removeAll: they modify the object from which they are invoked,
but not their argument object, from which they only read ealto
add or remove.

Overall, cJ type-conditionals are an excellent match ferJa
variance. Not only does variance offer a natural abstractiecha-
nism for conditional types, but also variance and type-aanthls
offer the same kind of benefit in a programming language. Both
mechanisms allow specifying a single clasx> and having the
type system automatically compute several useful devisayipes.
In the case of variance the derivative types @@ extends T>,
C<? super T> and C<7?>, which contain only the co-variant,
contra-variant, and bi-variant methods of the class, wépect
to some typeT. In the case of cJ the derivative types corre-
spond to all possible outcomes of type-conditionals. Fetaince,
Modifiable-andDeleteOnly-List is an implicit type produced
from theList<E,M> definition. Each cJ implicit type contains only
the members that exist for this combination of conditions.

5. Implementation

The design of cJ was carefully planned to admit a sinepésure-
based translation that is backward compatible with Java codehEac
cJ generic class can be translated to a single Java genas cl
(which in turn can be translated to a single non-generic dass,
per the standard erasure translation of Java generics)ahtliother
implementation topics are discussed next.

Erasure. The current ¢J compiler is a source-to-source translator
into Java. Nevertheless, exactly the same techniques beulded
in a direct-to-bytecode translation. Indeed, the souoeseurce
translation has even more transparency requirements andrde
strates how well cJ fits the Java model.

cJ translates a class (or interface) with type-conditioirgb a
Java class (resp., interface) by removing all conditiotaksnents.
This enables a single class to play the role of all possitgitia-
tions. Consider our earlier example:
class C<X> {

<X extends Serializable>?

public void store() { ... }
<X extends Comparable<X>>?
public X getMin() { ... }

}

cJ translates into a class:

class C<X> {
public void store() { ... }

éﬁglic X getMin() { ... }
}



Note that there is no need for a run-time exception. The cd typ
system ensures statically that unsupported methods caer bev
called. (If client code is not compiled with the cJ compitbere is

no such guarantee. We later discuss how the user can elypléit
quest dynamic checks to ensure that these methods are lzat al

Erasure Intricacies. The cJ translation requires a few more steps
than simply removing the type-conditionals. First, the athpiler
translates the bodies of conditional methods using typts ¢hat
ensure the appropriate type conditions. Second, it supglienmy
method bodies to classes implementing (or extending) @nfade
(class) with unsupported methods. Lastly, it translatesgetype
instantiations into their “raw type” forms, and performe thsame
code generation that a plain Java compiler performs in laiting
generic code into non-generic code. We demonstrate theassldr
tions via examples.

When translating conditional code, the c¢J compiler needs to
maintain known type bounds for each expression. If thisffeidint
from the type the expression would have when conditionats ar
eliminated, then casts need to be output. Consider the dedrom
the Introduction:

class C<X> {
X xRef;

<X extends DataSource>?
void store() { ... xRef.getConnection() ... }
}

The call togetConnection is only valid because the typfef is
known to be a subtype @fataSource. Thus, the compiler needs
to emit a cast that will ensure this type constraint when ype-t
conditional is removed. The cast cannot fail at run-timethascJ
static type checker ensures thieore method is only called when
X isindeed a subtype @ataSource. The translated code is:

class C<X> {
X xRef;

void store()
{ ...((DataSource) xRef).getConnection()... }
}

In the case of interfaces (or abstract classes), our eraamsdation
means that classes implementing (extending) an intertdzstract
class) may need to be automatically enhanced. Considerdi-con
tional interface method. Erasure removes the type-canditiand
the method will be declared for all instantiations of theeiféce.
Yet, classes implementing some of these instantiationsatipro-
vide implementations of the method, as the method is undetla
for the given type parameters. For instance:

interface List<E,M> extends Collection<E,M> {
<M extends DeleteOnly>?
E remove(int index);

)

class FixedList<E> implements List<E,Object> {
. // no remove: Object is not subtype of Deletelnly

}

The translation adds a dummyemove public method in
FixedList. The translated version of the above example is as fol-
lows:

interface List<E,M> extends Collection<E,M> {
E remove(int index);

)

class FixedList<E> implements List<E,Object> {

public E remove(int index)
throws UnsupportedOperationException
{ throw new UnsupportedOperationException(); }

The same translation technique is used for safety: in a riEns-
lation scheme, subclasses of a class that has conditiortabdwe
would inherit those methods because of the erasure traorsiat
the superclass, allowing code not compiled with the ¢J ctamjn
gain access to those methods. Instead, we ensure that ttlassib
overrides the method with a dummy implementation to avoithsu
accidental exposure of the superclass functionality. Mo this
problem is similar to that faced by the designers of GJ [3{ te
solution we adopt is also similar to theirs. For instancensater
the following class:

class Channel<T> {
<T extends Trusted>?
void disconnect() { ... }

Erasure will remove the type-conditional and, thus, expibee
disconnect method. If the user wants to ensure security he/she
can export only specialized subclasses that explicitlyatdmple-
ment theTrusted interface:

class NonsecureChannel extends Channel<Object> { }

The ¢J compiler will translate the latter into a class thatafe to
use in an insecure environment, avoiding accidental expaxfiihe
superclass method:

class NonsecureChannel extends Channel<Object> {
void disconnect()
throws UnsupportedOperationException
{ throw new UnsupportedOperationException(); }
}

This translation technique does not help avoid the accadenpo-
sure of fields, however. To protect a conditional field agaimgu-
thorized access, a programmer could designate thefieldate,
and define getter/setter methods for it. The above translétich-
nique for methods can then be used to protect the getter setth-
ods from unauthorized uses.

In certain situations, a type instantiation consideredhlldry
the cJ compiler might not be considered legal by a regulaa Jav
compiler. For example,

class C<X> {
<X extends Enum<X>>?
EnumSet<X> es = null;

}

class EnumSet<X extends Enum<X>> {

)

A simple erasure applied to clagxX> would erase the type
condition <X extends Enum<X>>?7. However, type instantiation
EnumSet<X> is not compilable using a Java compiler, becakise
is nowhere declared to be a subtypeEatim<X>. In these situa-

tions, cJ translates tyfgumSet<X> all the way down to its “raw

type” form,EnumSet. Thus, the translation @<Xx> would be:

class C<X> {
EnumSet es =

}

The ¢J compiler then needs to perform all the translatioas ah
regular Java compiler does for expressions of tgpemSet, e.g.,
generating casts of return types of methods called on this ty

null;

Translation and Backward Compatibility. The interesting aspect
of the cJ translation, as described above, is that it is rieaidy



simple and fits very well the existing Java object model. Hstric- Clearly, our erasure translation has the same requirenasnts

tions of the cJ language outlined in Section 2.2 are in plapée other erasure translations—e.g., that of GJ [3]—for theppse
itly so that an elegant erasure-based translation can heosig. of full integration in Java. For instance, the reflection hedsm
For instance, ensuring that methods do not conflict, evemwtey needs to change to support cJ-translated code. This is npbdfpa

are under disjoint type conditions, means that we can entpley our current implementation.
erasure-based translation without the need for methodmienzs.

Similarly, ensuring that overriding methods (in a subdase de- 6. Formalization
clared under weaker type conditions than the overriddenoast
(in the superclass) enables a clean erasure by just reméwving
type-conditionals. It means that a subclass method doe%anet
cidentally” override a valid superclass method when theckss
method should not really exist based on its type conditisan3-
lating all cJ classes and methods one-to-one into Javeaesasxl
methods ensures good interfacing with client code, and ensus-
pecting legacy (i.e., standard Java) code.

The cJ translation also includes some transparent spesal ¢
handling purely for strong backward compatibility, eventla¢
source level. This was motivated by our study of the JavaeColl
tions Framework. The special handling occurs when the ¢J com
piler is invoked in “compatibility mode” and when a type paeter
is usedonly in type-conditionals (and not, for instance, to declare
references). In that case, the cJ compiler treats the péeaaseop-
tional. For instance, the cJ compiler can compile legacy ¢ade
using theCollection<E> interface (and any of the classes imple-
menting it) against the cJ library, which definésllection as
Collection<E,M>. (Either all optional parameters or none need
to be omitted.) When a type parameter is omitted, the inisi@on
is assumed to satisfy all the type-conditionals, and antaimm-
tion with full type parameters is a subtype of it, and viceseeiOur
treatment is directly analogous to “raw types” in the tratish of
Java generics [3].

Furthermore, when a type parameter to a class is used only
in type-conditionals (or transitively as a type argumenanother
class that uses this parameter only in type conditiondis) the cJ
compiler removes it from the translated code. This mearistiiea
code generated from the cJ compiler can be used as a reguéar
library, under plain Java compilers. This is best illusthatvith an
example. Consider the form of our stand&ikt interface from
the Java Collections API:

We present the formal syntax and typing rules for a subsefof ¢
Our formalism is an extension of the formalism for Feathegive
GJ (FGJ) with variance, by Igarashi and Viroli [12]. We caliro
calculus Featherweight c¢J (FCJ). FCJ captures a core sobset
¢J functionality that allows us to explore the type-safeigues
introduced by type-conditionals, with minimum extra baggand
duplication of work that has already been done for FGJ [11] an
variance [12]. Our formalism requires that all type pararet
declare upper bounds, which may beject. Each class must
declare a superclass, which may also ddgect. Additionally,

all superclass declarations must be guarded by type-condis,

though unconditional superclasses can be expressed hyghéd

type-conditional be<X extends N>?, whereN is X's declared
upper bound. Similarly, all method declarations must berde
by type-conditionals, as well. Conditional fields are ngigarted

in the formalism, since the issues involving conditionalnmber

declarations are thoroughly represented by conditionahouss.

Interfaces are not part of either the original FGJ, or oumaism.

Thus, we only support conditional superclasses. A cladadgion

includes a sequence of fields and method declarations. Wenass

an implicit constructor for each class, which takes as asnim
expressions that can be used to initialize field values. Tétnoa
body is simply an expression.

Note that the variance formalization by Igarashi and Vidales
not strictly model the wildcard implementation in Java. ®ono-
table differences include the inability in the Igarashi aidli sys-
tem to access a co-variantly typed field from a contra-v#sian-

Ja stantiated type, yieldingbject as the field’s type. An attempt to
formalize the wildcard mechanism as it is implemented iraJav
presented by Torgersen et al. [28]. However, the Torgerseh e
formalism has not been proven sound. Thus, we choose to work
with the Igarashi and Viroli formalization here, as a solasbis for

interface List<E,M> extends Collection<E,M> { proving the soundness of our type syst%m.
<M extends Modifiable>?
E set(int index, E element); Notation. For readers unfamiliar with FGJ [11] and the variance
formalism [12], we briefly introduce the notational convens
<M extends Resizable>? used. The meta-variablesandD range over class names; Y,
void add(int index, E element); and Z range over distinct type variables; T, U, V, andW range

e over typesH, N, 0, P, Q, andR range over nonvariable types (fully
¥ instantiated types); andg range over field names; ranges over
List uses its type parametér only in type conditions and to method names; ranges over parameter namesinde range over
instantiate another typepllection, where itis also used only in  expressions; ar ranges over method declarations. Meta-variable
type conditionsM is never used as an argument or return type of a v represents variance annotatians, -, andx, for in-variant, co-

method. Therefore, the cJ compiler accepts code that tefetist variant, contra-variant, and bi-variant, respectivelyg=e+T cor-
with only one type parameter. At the same time, the tramslati  responds t@ extends T in the full Java syntax. Variance anno-
of the above cJ interface into a plain Java interface elitemthe tations can be placed in front of any non-variable type.dniant
second type parameter: is the assumed default, and thaspT> is abbreviated t@<T>. A

partial order< on variance annotations can be definetbas:+ <
*, 0 < - < *. vq Vva represents the least upper bound paindvs.
In addition, we use a few shorthand conventions for concise-
void add(int index, E element); nessX is a shorthand fox, , . . . ,X,,, and similarlyT x is a short-
... hand forTx1, . . . , Tox,. When this shorthand is applied to a type
} variable or a regular variable (i.e., fields, method argusjerit

interface List<E> extends Collection<E> {
E set(int index, E element);

In short, the cJ _Com_pller compiles old-style Ja_va code egama_t 5 After the completion of the work presented in this paper, @@nemore
r_lew-style (cJ) libraries that use thra type variablesyipetcondi- recent formalization of Java wildcards has been publishgdrhis formal-
tions. Furthermore, the cJ compiler translates new-styfee(con- ization does have a proof of soundness, and should refleet avourately
ditional) library code into Java code that is source-coibfEtvith the wildcard mechanism in Java. We intend to explore usiisgfohmaliza-
existing Java client code, under standard Java compilers. tion in the cJ type system in our future work.



represents a sequence with no duplication. We @s® denote
an empty sequence. The notations the shorthand for keyword
extends, and1? is the shorthand for keywordeturn in method
bodies.

We also assume a class tail@’, which maps class namedo
their declarations. Arogramis a pair(CT, e) of a class table, and
an expression.

6.1 Syntax

We present the FCJ syntax in Figure 1. The syntax followsetyos
the abstract syntax for FGJ with variance [12]. The mairedéhce

is the addition of a type-conditional construct in front aperclass
and method declarations. The type-conditional constrictR>?,
evaluates to true if, after type parameter instantiatioa types for

X are subtypes df. A fully instantiated class has the declared su-
perclass if and only if the type-conditional guarding thpexelass
declaration evaluates to true. Otherwise, it extebisiect. Simi-
larly, a method exists for a fully instantiated class if amdydf its
type condition evaluates to true.

Syntax:
T = XI| N
N =  C<vD>
v = o |+ | -1=%
CL = class C<XaN> S-if «D<5> {T f; M}
M =  S-if <Y<P> T m (T %) {Te;}
S-if =  <X<R>?
e = X
| e.f
| e.<T>m(e)
| new C<T>(8)
| (Me

Figure 1. Syntax

6.2 Type System

The main typing rules for FCJ are presented in Figuré\2and
I are the two environments used in typing judgmenitss a type
environment that ranges over subtyping assumptions ofdhe f
T<:S. WhenX<:Ne A andN is a non-variable type, for ak, we
say thatA has non-variable bounds. is a variable environment
that maps a variableto its typeT.

To support the typing rules, we present some auxiliary defini
tions in Figure 3, and the definition of “oper*t') and “close”(} »)
of variant types in Figure 4. These rules and definitionsofell
closely the format of those in variance-based FGJ. We assiuene
reader has a certain familiarity with the FGJ formalizatitrough
not necessarily with the Igarashi and Viroli variance folisra.
To enhance the understanding of our type system, we first high
light some important additions to FGJ made by Igarashi and Vi
roli regarding variance. We then delve into the rules anchitefns
specifically changed for the inclusion of type-conditianial cJ.

Background on Variance Formalism. The two most important
additions of the lgarashi and Viroli system over FGJ are e ¢
cepts of “open” and “close” (Figure 4). Before any type isdise
(i.e., for field or method invocation, or in a subtyping judgmt),

it must be “opened” first. Opening a type means that we inttedu
a fresh type variable for each co- or contra-variantly defitype.
For example, before we can check the validity of invoking moeit

m in type C<+T>, we must open this type by introducing a fresh
type variableg into A, whereA F X <: T. To look for methodh in

C<+T> now means to look fom in C<X>. If T occurs anywhere in
m's type, it is replaced by, as well.

This “opening” conveniently disallows illegal accessesneth-
ods or fields that we informally described in Section 4. Farax
ple, suppose that in the definition of cla®sx>, we have method
Dm (X x) { ... } The type parametet appears in a contra-
variant position—as method's argument type. This means that
any co-variantly instantiated ty@x+T> should not be able to in-
voke methodn. This is indeed the case in this formalism: we first
openc<+T> to C<Y>, whereA FY<:T. We then check that any in-
vocation ofn passes in an argument of some subtype éfowever,

Y is simply a type variable with anpper bound ofT. According to

the subtyping rules in Figure 2, no type can be deemed a seibtyp
of Y (excepty itself, which is not available before the opening, and
thus cannot be the type of any argument passed.tdhus, no in-
vocation ofm on an expression of type<+T> can be well-typed.
Similarly, had the type paramet&rappeared in a co-variant po-
sition in C<X>, e.g., as the return type of a method, an expression
with the contra-variantly instantiated tyg&-T> would not have
been able to invoke that method.

Since “open” introduces new type variables into the typea-env
ronment, it is always paired with a “close” operation, whére
newly introduced type variable is closed down to its bound an
removed from the type environment. Closing also re-intoadu
variance annotations, using a conservative combinatitimeo¥ari-
ance annotations of the current use context (i.e., the tygdegb
closed) and the surrounding definition context used for tieequ-
ing “open”.

Auxiliary Definitions.  Functionmitype (A, m, C<T>lrgtu_rns the
signature of method, in type C<T>, in the form of<Y<P>U—Up.
miype(A, m, C<T>) is defined under two rules:

* MT-CLASS says that if method is declared in clasg<x>
with type-conditionakX<R>7, and the type-conditional is sat-
isfied by substituting typeg for type parameters, i.e.,
A FT<:[T/X]R, thenmiype(A, m, C<T>) is defined.

* MT-SUPER covers the condition when methed is not
declared in classc<X> at all. In this case, if the type-
conditional for superclasg<S> is satisfied by the substitution
[T/X], then mtype(A, m, C<T>) is defined asmtype(A, m,
[T/X](D<S>)).

Note that we do not need a case for wheris declared in
C<X>, but the type-conditional guarding it is not satisfied by the
substitutionT/X]. As explained in Section 2.2, the type conditions
on a subclass method must be weaker than the type conditions
guarding the method it overrides in the superclass (thisicéen
is formalized in theoverride rule, which we explain later in this
section). Thus, if method’s type conditions inc<X> cannot be
satisfied by the assumptions ik, then its type conditions in the
superclass af<X> cannot possibly be satisfied. There is no need to
invoke MT-SUPER in this case.

mbody (A, m<W>, C<T>) returns a pair(x, e).  are the pa-
rameters of, ande ism’s body.W are the actual types inferred for a
polymorphic methoeh. Note mbody is similarly defined under the
same two conditions thabtype is.

fields(A, C<T>) returns a sequence of fields in clagsT>.
Object has no fields. For all other typ&xT>, fields(A, C<T>)
returns the sequence of fields declared«T>, and, if the type-
conditional guarding<T>’s superclassp<s>, is satisfied by the
substitutionT/X], the value offields(A, [T/X](D<S>)) is returned,
as well.

The predicateverride(A, m, <X<R>?D<S>, <X<H>?<Y<P>U
—Up) judges if a methody, with signature<X<H>?<Y<P>U—Uj
may be defined in a class that has a conditional superbkss



Expression typing:
AT Fx € T'(x) (T-VAR)
AT Feg€Ty A Fbounda (To)ft2 c<T>
fields(A, bounda (C<U>))=S £  S;Ja/T
AT Feg.f,€T (T-FIELD)
AT Feg€To A Fbounda (To)ft2 ¢<T>
mtype(A, m, C<T>) =<Y<P>U—Uj
Y<:Q¢ A’ for any Q A FV ok
A A HU<[V/Y]P A;T Fees
A, A FS<[V/Y]U [V/Y]uodasT
AT Feg.<Vom(a) €T (T-INVK)
A FC<T> ok fields(A,C<T>) =U £
A;T Fees A F8<:U
A;T Fnew C<T>(8) EC<T> (T-NEW)
A;T Feg€Ty A FT ok
A Fbounda (To)<:bounda (T)
or A Fbounda (T)<:bounda (To)
AT F(T)eoeT (T-CAST)
A;T Feg€To AT ok
A Fbounda (To)zbounda (T)
and A Fbounda (T)zbounda (To)
AT F(T)eoeT (T-SCAST)
Method typing:
X<:NFR<:N A=X<R,Y<:P AFR,P,T,Tpok
A;X:T,this:C<X> Feg € Sp A FSp<:To
CT(C) =class C<X<N> <X<V>?<D<S> {...}
override(A, m, <X<V>?D<S>, <X<R>?<Y<P>T—Tp)
<X<R>?<Y<P>To m (T %) { Tep; } OK IN C<X<N>
(T-METHOD)

Class typing:

A1 =X<:N A;FR<:N A;FN ok
Ao =X<:R Ao }—ﬁ, D<S> ok
A1 FT ok M 0K IN C<X<N>
class C<XdN> <X<R>?<D<S> { T f; M } OK
(T-CLASS)
Subtyping:
A FT<:T (S-REFL)
AFS<:T AFT<U
AF s<U (S-TRANS)
X<:TEA
A FX<:T (S-UBOUND)
T<:XE A
AFT<X (S-LBOUND)

CT(C)=class C<X<N> <X<R>?<D<S> {...}
A FC<T> 12 ¢c<T>
AN FIGO/TR ([0/KD<S>)4arT

A FC<T> <:T
(S-CLASS)
v<w if w; < -, then AFT;<:S;
if w; < +, then A FS;<:T;
A FC<TS><:C<WT>
(S-VAR)
Well-formed types:
A FObject ok (WF-OBJECT)
X<:TeEA
I<Tea (WF-VAR)
A F X ok
CT(C)=class C<X<N> <X<R>?<D<S> { ...}
A FT ok A FT<:[T/XN
A FC<T> ok
(WE-CLASS)

Figure 2. Typing Rules

guarded by conditiorX<R>. The extra complication in this rule
reflects the restrictions described in Section 2.2, and &l us
proving the correctness of our erasure-based translaBentipn
6.4). There are two aspects of our translation to considestly;
recall that our translation scheme erases all type comditso After
translation, a class<X> extends its supercla®ss> uncondition-
ally. Consequently, even if a methadn C<X> is declared under a
type-conditional that precludes the condition for the salass, the
type ofm in C<X> still cannot conflict with the type afi in D<S>.
Secondly, also recall that if a method in a subclass has tine sa
type signature as a method in a superclass, we require tieasab
method toalways override the superclass method. This means the
type-conditional on the subclass method must be impliedhiey t
type-conditional on the superclass method. This requintraa-
sures that we do not have to dynamically decide whether a’slas
own method implementation should be invoked or it should cal
super.m(...).

In order for override to reflect these restrictions, it uses the
function mtype,,., which unconditionally recurses up the chain of
superclasses to find a method’s signatungype,,.(m, C<T>) re-
turns a pair(A’, <Y <P>U —Up). A’ contains subtyping assump-
tions that must be satisfied for methotb have typeY<P>T —Uy.
The second part of the pairiés signature as defined in the closest
superclass up the unconditional chain of inheritance.

The override rule uses themplies notation (as in FGJ [11])
to indicate that the restrictions represented by the caresggof
the implies need to be satisfied only if the antecedent is true. In

this case, the antecedent istype,, . (m, X, D<S>) = (A’<Z <
@>T —To). This means that methadis defined in eitheb<S>, or
some conditional superclassm{s>. If this antecedent is true, then
the parameter, return types, and bounds on the inferred tyjpist
be the same in the subclass as they are in the conditionatctage

It must also be true that given all conditions guarding thaiciof
conditional superclassestype,, . recursed through to find, and
the condition guarding itself, the condition guarding the subclass
method is true, as well. This is checked by augmentingith A’
andX<:R, and requiring that these are sufficient to showH.

Note that the definition averride is dependent on the subtyp-
ing rules defined in Figure 2. Depending on the specific aligari
implementing our declarative subtyping rules, it is pokesibat the
subtyping condition guarding the overriding meth#et,:H, cannot
be shown to be true using the assumption\inA’, andX<:R.
Consequently, certain valid overriding methods cannot foegn
so. To see this concretely, |&f =Foo<X><:Baz, whereFoo is
defined asclass Foo<X> <X<Bar>?7<Baz {...}.If we wantto
show thatA FX<:Bar, we need to deconstruct typeo<x>, and
infer from Foo<X><:Baz thatX<:Bar must be true, as well. Our
current implementation does not deconstruct types to doisdier-
ence. Subtyping assumptions thrown ift6 by mtype,. are only
effective if the type variables are not buried inside of constructed
types, such aSoo<X>. We are currently working on a decidable
algorithm for deconstructing types to get more preciseyqiby
assumptions. Note that this is a standard point of tradeacfo
powerful reasoning procedure may well end up being undbida



Method type lookup:

CT(C)= class C<X<N> <X<Q>?7<D<S>{... M}
<X<R>?<Y<P>Up m (U %) {Te;}eM A FT<:[T/XR
mitype(A, m, C<T>) =[T/X](<Y<P>U—Up)

(MT-CLASS)
CT(C)= class C<X<N> <X<Q>?<D<S>{... M}
m is not defined in M A FT<:[T/X]Q
mtype(A, m, C<T>) = mitype(A, m, [T/Q]D<S>)

(MT-SUPER)
Method body lookup:
CT(C) = class C<X<N> <X<Q>?<D<S>{... M}
<X<R>?<Y<P>Up m (U %) {fe;}eM A FT<:[T/XR

mbody(A, m<W>, C<T>) = (%, [W/Y][T/X]e)

Unconditional field lookup:

Unconditional method type lookup:

mitype,,.(m, DS>) = (A,<Y<P>U—Up)

fields,, .(Object) = @
CT(C)=class C<X<N> <X<R>?<D<U> {S

fields,,.([T/X]D<U>)=D g
fields,,.(C<T>) =D g, [T/X1S £

CT(C)= class C<X<N> <X<Q>?<D<S>{... M}
<X<R>?7<Y<P>Up m (U %) {Te;}eM A’ =[T/X](X<R)
mtype,,.(m, C<T>) = (A/, [T/X](<Y<P>U—Up))
(MTyo-CLASS)
CT(C)= class C<X<N> <X«@>?<D<S>{... M}
m is not defined in M

A=A T/T(X <:Q)

(MB-CLASS)
COT(C)=class C<X<N> <X<Q>?<D<S>{S f; M}
m is not defined in M A FT<:[T/X]Q
mbody(A, m<W>, C<T>) = mbody(A, m<W>, [T/X]D<S>)
(MB-SUPER)

Field lookup:

fields(A, Object) = @
CT(C)=class C<X<N> <X<R>?<D<U> {S f; M }
fields(A, [T/X]D<U>)=D g A FT<:[T/X]R

fields(A, C<T>) =D g,[T/X]S £
CT(C)=class C<X<N> <X<R>?<D<U> {S f; M }
A FTZT/X]R
fields(A, C<T>)=[T/X|S £

Valid method overriding:

Bound of type:
bounda (N) =N

mtype . (m, C<T>) = (A/, [T/X](<Y<P>U—Up))
(MTyo-SUPER)

mtype,.(m, D<S>) = (A’, <Z<Q>T—Tp) implies
[¥Y/Z](T, To,Q) = (U,Up,P) and A, A", X<:RFX<:H

override(A, m, <X<R>?D<S>, <X<H>?<Y<P>U—Up)

AX) = (+,5)
bounda (X) = bounda(S)

Figure 3. Auxiliary definitions

A conservative algorithm, on the other hand, will reject sqmo-
grams because of its inability to establish the conditiangttieir
soundness. The latter is typically preferable in practsiece, in
this setting, troublesome programs tend to be highly cosdri
The two rules for unconditional field lookup are only used in

proving the correctness of erasure, using the erasuredateded

in the accompanying technical report [10]. They are inctlifte
completeness of the auxiliary functions.

Type Rules. Most of the rules presented in Figure 2 are the same
as their variance-based FGJ counterparts. We now go thritnegh
ones particular to the type-conditional extensions in FCJ.

T-FIELD and T-INVK: these rules define when a field reference
or a method invocation, respectively, is well-typed. Eveaugh
they look identical to their variance-based FGJ countéspéney
use functiongields andmtype, which fully encapsulate the lookup
of conditional supertypes and conditional methods, asiqpuely
explained.

T-METHOD: The interesting change to the T-METHOD rule
from its counterpart in variance-based FGJ is that the enwient
A (under which the return and parameter types, as well as fiiy bo
of the method, expressios, must be well-typed) is augmented
with the type boundX<:R, which is the type-conditional under
which the method is declared. Intuitively, this says that method
is declared under type-conditiondl<kR>7, then in the scope of the
body of the method it can be assumed that the type environkent
supports this bound.

T-CLASS: Note that the conditional superclasss> needs to
be proved well-typed undex augmented with the type-conditional
condition guarding it.

Open:
A FTHOT (O-REFL)
AFSHATT AAIFTH22U
n ALETH (O-TRANS)
AFsSfAnl2y
X fresh for A,C<¥1T1,vT,v2To> v # o
A FC<T1T1,vT,T2To> ¥ (W< Ty ,0X,72Te>  (O-CLASS)
Close:
AX) = (+,T)
XJa T (C-PROM)
Xe&d A
Xgdom(A) (C-TVAR)
X{a X
(vi, Ts) if T; Ja Ty
(w;, T))= (vi V4,0;) if T; da U; and T; #U;
(Vf/ \Y V;,Ui) if T, =X and A(X) = (V{L-,Ui)
C<TT> a C<WT >
(C-CLASS)

Figure 4. Open and Close

6.3 Proof of Soundness

We prove the soundness of our type system by proving subject
reduction and progress properties [30]. Due to space liinits, we
state the theorems here. Interested readers can find théidefin

of reduction rules, as well as the full version of the proafghe
technical report available on the cJ website [10].

Theorem 1 [Subject Reduction]: If A;T" FecT ande — &/,
thenA; T e’ €S andA FS<:T for somes.

Theorem 2 [Progress]: Lete be a well-typed expression.



1. If e hasnew C<T>(e).f as a subexpression, th@ialds(A,
C<T>) =T f,andf = f£;.

2. If e has new C<T>(e).m(d) as a subexpression, then
mbody (A, m, C<T>) = (%, e0) and|z| = [d].

Theorem 3 [Type Soundness]:If §;) - e € T ande —*
e’ being a normal form, ther’ is either a valuev such that
A;TF o e SandP F S <: T for somes, or an expression
that includes(T)new C<T>(e) wherel) FC<T> <7 T.

6.4 Proof of Correctness of Erasure

We formalized our erasure implementation by defining anugeas
function that transforms FCJ expressions and types intarvee-
based FGJ (FGJ expressions and typeld|a yields a FGJ type
by erasing a FCJ typE, and|e|a,r Yields an FGJ expression by
eraséng an FCJ expressien We prove the following two theo-
rems:

Theorem 4 [Erasure Preserves Typing]l:For a progran{CT, e),
if CT is ok, andA;T" Frcy e € T, then|CT|a is ok, and
|A[a, [Tla Fras le[ar €[T[a

Theorem 5 [Erasure Preserves Execution Modulo Expansion]:
If A;T Frey e € Tande—s . €, then there exists some FGJ
expressiond’ such thatle’|ar = d' and|elar —Fqy, 4
where=- is the expansion function.

Again, we refer readers to the technical report for definitd
the erasure function, expansion function, and proofs ofathave
two theorems.

7. Related Work

cJ is related to several programming language and software e
gineering concepts. These range from mainstream modatiniz
techniques to meta-programming and conditional compitasip-
proaches.

Clearly the idea of a type-conditional is closely relateddadi-
tional compilation, as with the C/C++ preprocessitfdef” con-
struct. Although#ifdef is valuable for configuring large projects,
it addresses very different needs from cJ. Conditional dlatipn
gives low-level manual control for software configuratidm.the
context of a portable language, like Javagatidef statement be-
comes less useful. At the same time, conditional compitegiaf-
fers from the lack of any form of safety control. The use ofdien
tional flags may be inconsistent, resulting in invalid confagions
that are not detected until one attempts to select them eTthas
been work on adding some safety to conditional compilatioar
alyzing all configurations of a C program, and there is evigghat
such a heuristic approach may work in several contexts—e&lpe
for refactoring [8]. Nevertheless, cJ offers full statidetg guar-
antees, eliminating the problem altogether. Furtherntbeetype-
conditions of cJ are structured, richer than mere promstiand
well-integrated with the Java type system.

Conditional methods have been explored in OO language in
work at least as early as CLU [19]. Nevertheless, CLU does not
support subtyping, so the language context of this work talvig
different. Itis, thus, difficult to compare CLU to ¢J, wheng onain
goal is to maintain static type safety, yet, at the same timaan-
tain a clean subtyping hierarchy used for abstraction. Rask
on optional methods in Java was also presented by Myers et al
[22]. This was in the context of a proposal for adding gerisgric
to Java, and it includes the feature of attachihgre clauses to

8For a formal definition of erasure that matches very closeiyimple-
mentation, the type rules presented in Figure 2 require mefmement for
the proofs of these theorems. These differences are ingoesgal to the
material in this paper, and are presented in our technipakte

individual methods. The conditions on thaere clauses, how-
ever, can only be “structural” constraints—i.e., does tppeam-
eter T provide methodvoid foo();. This mechanism does not
support conditional subtyping—e.g., it is not possible xpress
that aCollection iS Comparable, if the elements it holds are
Comparable. Even more importantly, the work by Myers et al.
does not support type-safe abstraction over classes witfitoonal
methods, as in the interaction of cJ with variance.

More recently, Emir et al. presented an extension to C# te sup
port generalized type constraints on methods [7]. Thisrsita
allows both upper and lower bound type conditions on methods
This is similar to ¢J in that methods exist conditionally é®on
the instantiation of parametric types. Nevertheless etlage sig-
nificant differences, and in future work we plan to pursue loiom
ing the two approaches. cJ currently does not allow usingyihe
parameter of a polymorphic method inside a type conditiersl
crucial feature in Emir et al.’s work. At the same time, cJ bas
eral features not found in the generalized type constrajspisoach.
First, cJ supports conditional definitions of fields, as vasltondi-
tional subtyping. Furthermore, the cJ (and Java) form ofavae
we examined earlier is a “use-site variance” mechanism pssga
to the “definition-site variance” supported in Emir et alv®rk.

In addition to being part of standard Java, we believe thetsiie
variance is a mechanism better suited for imperative prograg
languages in general. In this setting, a single class diefinits un-
likely to produce types that are purely co-variant, pureiyntca-
variant, or purely bi-variant. Instead defining a class ikily im-
plicitly yield a co-variant part, a contra-variant part.dn use-site
variance these subsets of the class functionality are etb@wto-
matically from a single definition. In definition-site vamiee, they
have to be explicitly separated out into distinct interfaby the
programmer. Thus, we believe use-site variance to be a nsere u
friendly system and a natural fit for Java.

In languages with (multi-)methods outside classes, thé&wor
constraint-based polymorphism in Cecil [20] is relatedXoCecil
provides users the ability to add constraints to both mettaoa
supertypes. The constraints can be subtyping constraistaell
as structural constraints, requiring a type to provide diqdar
method. This is a very different context from that of our work
however. Furthermore, the Cecil type system does not have an
analogue of our variance approach to abstracting over @ictb
with or without some of the conditionally defined members.

Our type-conditional is also related to traditional meta-
programming techniques, which offer mechanisms for prnogra
to generate other programs. Recent approaches, such &3efafe
[9] and Genoupe [5] attempt to add safety guarantees to meta-
programming, yet maintain expressiveness. Neverthelesse ap-
proaches either fail to achieve full safety, or reject pamgs in a
way that is not transparent to the programmer. Neither nréshma
integrates seamlessly with a programming language, as &s. do
For instance, SafeGen uses an automatic theorem provedén or
to prove well-formedness properties of every produced rarog
Yet this approach is not guaranteed to always produce aectga
sults, as the theorem prover may not terminate. Similagydsipe
suffers from potential unsafeties, as its reasoning on alfietys of
generated code relies on the equivalence of arbitrarilyplexex-
pressions from the generator source code, which is undgeida
to determine. (Based on the published description, it setbiais

.Genoupe unsoundly estimates the run-time equivalenceprésx

sions based on syntactic similarity.)

It is tempting to find parallels between cJ and advanced OO
modularization mechanisms such as traits [6, 25], mixirjs 2
mixin layers [27]. These approaches vary in expressivenads
several of them are insufficient for solving the combinatioeix-
plosion problems identified in Section 3. For instance, ®ased



mixins or mixin layers would still require a large number oht-
positions, with explicit subtyping links added among thengrder
to express the required functionality of the Java CollectiBrame-
work. It is possible that a traits-based mechanism couldesty
alleviate many of the problems in the Java Collections Freornle
(albeit with a complete rewrite). Nevertheless, there issooh
mechanism currently for Java that would tie well with the oéshe
language’s type system (e.g., variance) and execution imede
thermore, no mixin or traits mechanism offers capabiliizsilar
to those shown in Section 3.1, i.e., the ability to add exteaniners
only when a type parameter that is already used for othergsep
has a certain subtyping property.

Type-conditionals in cJ can be viewed as being similar tetyp

safe variant records work—e.g., [24]. Nevertheless, wariecords
mechanisms typically try to address the problenmwof-time vari-

ability with static type-safety. cJ is not concerned witlaees to
the type of a variable during run-time. Instead, cJ focusethe
static configurability of components. The techniques useshsure
static type safety in the case of variant records and in the ofcJ
show this difference clearly: statically safe variant melsatypically
require the programmer to specify what code will get exattbe

any possible type. Indeed, this is the best one can hope vieen t

object can indeed vary at run-time. In contrast, ¢J stdyiesisures
that the legal operations on an object are fully known.

Configuring generic code is also reminiscent of techniquaes i

C++ template programming [1, 13]. Fundamentally, C++ teated
offer a powerful (Turing-complete) but unsafe languagedon-
figuring types: there is little static checking capabiligybnd the
checking of templates after instantiation. Furthermduere is no
way to guarantee that a template computation will even teatei
The C++ community has developed ideas on statically vatigat
the input to a template [21, 26] and the general ideaonepts

has emerged and even developed as a language-indepenedent no

tion [14]. Nevertheless, concept-based techniques carateron
validating the type parameters of a generic class, ratlzar ton-
figuring it under static conditions. cJ offers the abilitydonfig-
ure classes based on subtyping conditions, without sangfstatic
type safety and with a smooth integration in the base languag

cJ can be viewed as an instance of the aspect-oriented progra

ming paradigm [17], because of its ability to allow a clashé
configured based on the structure of a different type hibsafiep-
resenting a cross-cutting concern). As we demonstratel thvé
cJ implementation of the JCF, the cross-cutting concerndifiaa
bility” is separated in the type system from the intrinsienfoof a
data structure (e.g., whether itis a list, or a set, or a nE.type
system does maintain concepts such as “modifiable list'ritouhi-
fiable map”, etc., but these are derived from their compotyg&s.
In fact, the cJ reimplementation of the JCF can be comparpreto
vious work that uses AOP to enforce consistency in datatstreic
and behavior [18, 23]—in the JCF, consistency in the usagetaf
structures along cross-cutting dimensions is enforcetiégd type
system. Nevertheless, cJ differs from common aspectteddan-
guages like AspectJ [16] in that separation of concerns is edn-
fined to the type level. cJ does not offer any cross-cuttiaduies
at the level of code or method definitions: these are intessjpke
throughout traditional Java language components (i&ssels) and
not collected in a single entity. Thus, what cJ has to offerisog-
onal to traditional aspect languages and it is interestrgpthsider
integrating their advantages in future work.

8. Conclusions

We presented cJ: an extension of Java that allows declakasg ¢
and interface members and supertypes provisionally, usudsyp-
ing conditions on parameter types. cJ's power lies in thalldivs
the composition of orthogonal type hierarchies concisalyoid-

ing a combinatorial blowup of the number of declared types) y
without sacrificing static type safety. Thus, ¢J has a coog8ng
flavor at the level of type hierarchies: the user can definarsep
aspects of a type hierarchy independently and combine tisamy u
cJ type-conditionals to form the complete set of expresgsipes.

We believe that cJ offers an interesting combination of espr
siveness and safety, together with a smooth integratiam aviep-
resentative mainstream OO language. cJ’s ability to seakparob-
lems is demonstrated by applying it to the Java Collectionsie-
work. cJ addresses the Collection Framework’s well-knotarts
comings, eliminating the possibility of run-time errors fmsup-
ported operations without sacrificing conciseness.
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