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Abstract In [Wil90, Wil91b] we proposed compressed caching
for virtual memory—storing pages in compressed form
Compressed caching uses part of the available RAM tgn a main memorgompression cachte reduce disk pag-
hold pages in compressed form, effectively adding a newng. Appel also promoted this idea [AL91], and it was
level to the virtual memory hierarchy. This level attempts evaluated empirically by Douglis [Dou93] and by Russi-
to bridge the huge performance gap between normal (Umovich and Cogswell [RC96]. Unfortunately Douglis’s
compressed) RAM and disk. experiments with Sprite showed speedups for some pro-

Unfortunately, previous studies did not show a consis-9"@Ms, but no speedup or some slowdown for others.
tent benefit from the use of compressed virtual memoryXUSSinovich and Cogswell's data for a mixed PC work-
In this study, we show that technology trends favor com-lo_aOI showed or_lly a slight potential k?e”ef't- There. IS a
pressed virtual memory—it is attractive now, offering re- Widespread belief that compressed virtual memory is at-
duction of paging costs of several tens of percent, andracu_ve only for machines without a fast local disk, such
it will be increasingly attractive as CPU speeds increaséS diskiess handheld computers or network computers,
faster than disk speeds. and laptops with slow d|sks..As we and Dc_)ughs pointed

out, however, compressed virtual memory is more attrac-

Two of the elements of our approach are innova-tive as CPUs continue to get faster. This crucial point
tive. First, we introduce novel compression algorithmsseems to have been generally overlooked, and no operat-

suited to compressing in-memory data representationsng system designers have adopted compressed caching.
These algorithms are competitive with more mature Ziv-

Lempel compressors, and complementthem. Second, we !N thiS paper, we make a case for the value of com-
adaptively determine how much memory (if at all) should pressed gachmg In modern systems. We am to ShO_W
be compressed by keeping track of recent program bet_hat'the discouraging results of former studies were pri-
havior. This solves the problem of different programs,marlly due to the use of machines that were quite slow
or phases within the same program, performing best fo y current standards. For current, fast, disk-based ma-
different amounts of compressed memory. chines, compressed virtual memory offers substant!al
performance improvements, and its advantages only in-
crease as processors get faster. We also study future
1 Introduction trends in memory and disk bandwidths. As we show,
compressed caching will be increasingly attractive, re-
For decades, CPU speeds have continued to double eyardless of other OS improvements (like sophisticated
ery 18 months to two years, but disk latencies have imyrefetching policies, which reduce the average cost of

proved only very slowly. Disk latencies are five to siX disk seeks, and log-structured file systems, which reduce
orders of magnitude greater than main memory accesge cost of writes to disk).

latencies, while other adjacent levels in the memory hi- ) )
erarchy typically differ by less than one order of mag- e Will also show that the use of better compression
nitude. Programs that run entirely in RAM benefit from &lgorithms can provide a significant further improvement
improvements in CPU speeds, but the runtime of pro-n the performance of compressed caching. Better Ziv-
grams that page is likely to be dominated by disk seeks-€Mpel variants are now available, and we introduce here
and may run many times more slowly than CPU-bound?® €W family of compression algorithms de§|gned forin-
programs. memory data representations rather than file data.



The concrete points in our analysis come from simula- As we explain below, the results for these algo-
tions of programs covering a variety of memory require-rithms are quite encouraging. A straightforward imple-
ments and locality characteristics. At this stage of ourmentation in C is competitive with the best assembly-
experiments, simulation was our chosen method of evaleoded Ziv-Lempel compressor we could find, and su-
uation because it allowed us to easily try many ideas imperior to the LZRW1 algorithm (written in C by Ross
a controlled environment. It should be noted that all ourWilliams)[Wil91a] used in previous studies of com-
simulation parameters are either relatively conservativgressed virtual memory and compressed file caching.
or perfectly realistic. For instance, we assume a quite . . : .

L . . As we will explain, we believe that our results are sig-
fast disk in our experiments. At the same time, the costs ... . »
nificant not only because our algorithms are competitive

of compressions and decompressions used in our simu- . . .
. . and often superior to advanced Ziv-Lempel algorithms,
lations are the actual runtime costs for the exact page,

X . . ; ut because they ardbfferent Despite their immaturity,
whose compression or decompression is being simulate .
at any time they work well, and they complement other techniques.

They also suggest areas for research into significantly
The main value of our simulation results, however, more effective algorithms for in-memory data.

is not in estimating the exact benefit of compressed : . N
. . . (Our algorithms are also interesting in that they could
caching (even though it is clearly substantial). Instead, . ; .
- . : be implemented in a very small amount of hardware, in-
we demonstrate that it is possible to detect reliably how

. uding only a tiny amount of space for dictionaries, pro-
much memory should be compressed during a phase of. . L . :
. ; . iding extraordinarily fast and cheap compression with a
program execution. The result is a compressed virtua

memory policy that adapts to program behavior. Thesmall amount of hardware support.)

exact amount of compressed memory crucially affect
program performance: compressing too much memor

when it is not needed can be detrimental, as is compress—T q q laorith d their relationshi
ing too little memory when slightly more would pre- O understand our algorithms and their relationship to

vent many memory faults. Unlike any fixed fraction of _otheralgorithms, itis necessary to und'erstand afew basic
compressed memory, our adaptive compressed cachidﬂeas aboytdata compression. (We will focus on lossless
scheme vyields uniformly high benefits for all test pro- COMPression, which allows exact reconstruction of the

grams and a wide range of memory sizes original data, because lossy compression would gener-
' ally be a disaster for compressed VM.)

.1 Background: Compression

All data compression algorithms are in a deep sense
ad hoe—they must exploiexpected regularities1 data
) ) to achieve any compression at all. All compression al-
In [WLM91] we explained how a compressor with & qrithms embody expectations about the kinds of regu-
knowledge of a programming language implementationgyjsies that will be encountered in the data being com-

cpuld e?qoloit that knowledge to achieve high compres-pressed.  Depending on the kind of data being com-
sion ratios for data used by programs. In particular, wey essed, the expectations may be appropriate or inappro-
gxplalned how pointer data cqntam very little informa- priate and compression may work better or worse. The
tion on average, and that pointers can often be coMpain key to good compression is having the right kinds
pressed down to a single bit. of expectations for the data at hand.

Here we describe algorithms that make much weaker Compression can be thought of as consisting of two
assumptions, primarily exploiting data regularities im- phases, which are typically interleaved in practiced-
pqsed by hardware grchitecture; and common progrankjing and encoding]BCW90, Nel95]. Modeling is the
ming and language-implementation strategies. These alsycess of detecting regularities that allow a more con-
gorithms are fast and fairlfymmetrical-compressionis  jse representation of the information. Encoding is the
not much slower than decompression. This makes thergynsiryction of that more concise representation.
especially suitable for compressed virtual memory ap-
plications, where pages are compressed about as often @&,-Lempel compression. Most compression algo-
they're decompressed. rithms, including the overwhelmingly popular Ziv-

1A variant of one of our algorithms has been used successfully forl‘_(_:‘mp(_:‘I fa_mlly’ are ba_SEd on detection e)tac_t repetl-
several years in the virtual memory system of the Apple Newton, allons ofstringsof atomic tokens. The token size is usu-

personal digital assistant with no disk [SW91] (Walter Smith, personalally one byte, for speed reasons and because much data
communication 1994, 1997). While we have not previously published
this algorithm, we sketched it for Smith and he used it in the New- Ziv-Lempel algorithm Apple had used previously, but was much faster.
ton, with good results—it achieved slightly less compression than aUnfortunately, we do not have any detailed performance comparisons.

2 Compression Algorithms




is in some sense byte-oriented (e.g., characters in a tekest viewed as records and data structures—the overall
file) or multiple-byte oriented (e.g., some kinds of imagearray of memory words is typically used to store records,
data, Intel Architecture machine code, unicode). whose fields are mostly one or two words. Note that

. . fields of records are usuallyord-alignedand that the
A Ziv-Lempel compressor models by reading through : :

. . I data in those words are frequently numbers or pointers.
the input data token by token, constructing a dictionary . .

: - Pointers can be usefully vieweak numbers—they are
of observed sequences, and looking for repetitions as it o ) .
L . . . —_Integer indices into the array of memory itself.

goes. It encodes by writing strings to its output the first
time they are observed, but writing special codes when Integer and pointer data often have certain strong regu-
a repetition is encountered (e.g., the number of the diclarities. Integer values are usually numerically small (so
tionary entry). The output thus consists of appropriatelythat only their low-order bytes have significant informa-
labeled “new” data and references to “old” data (repeti-tion content), or else similar to other integers very nearby

tions). in memory.

The corresponding LZ decompressor reads through Likewise, pointers are likely to point to other ob-
this data much like an interpreter, reconstructing the dicjects nearby in memory, or be similar to other nearby
tionary created during compression. When it sees a neointers—thatis, they may point to another area of mem-
string, it adds it to the dictionary just as the compressorory, but other pointers nearby may point to the same area.
did, as well as sending it to its (uncompressed) outputThese regularities are quite common and strong. One
When it sees a code for a repetition of a dictionary item reason is that heap data are often well-clustered; com-
it copies that item to its output. In this way, its dictio- mon memory allocators tend to allocate mostly within a
nary always matches the dictionary that the compressasmall area of memory most of the time; data structures
had at the same point in the data stream, and its outputonstructed during a particular phase of program execu-
replicates the original input by expanding the repetitiontion are often well-clustered and consist of one or a few
codes into the strings they represent. types of similar objects [WJINB95].

The main assumption embodied by this kind of com- Other kinds of data often show similar regularities.
pressor is that literal repetitions of multi-token strings Examples include the hidden headers many allocators
will occur in the input—e.g., you'll often see several put on heap objects, virtual function table pointers in
bytes in a row that are exactly the same bytes in the sam€++ objects, booleans, etc.
order as something you saw before. This is a natural as-

T . X These regularities are strong largely because in-
sumption in text, and reasonable in some other kinds of . - S
; memory data representations are designed primarily for
data, but often wrong for in-memory data.

speed, not space, and because real programs do not usu-
ally use random data or do random things with data.
(Even randomized data can be very regular in this way;
s consider an array of random integers less than 1000—alll
of them will have zeroes in their upper 22 bits.)

2.2 In-Memory Data Representations

It is commonly thought that LZ-style compression i
“general purpose,” and that in-memory data are fairly
arbitrary—different programs operate on different kinds
of data in different ways, so there’s not much hope for2.3  Exploiting In-Memory Data Regularities
a better algorithm than LZ for compressing in-memory
data. The first assumption is basically fadsand the

second is hasty, so the conclusion is dubious. Our goal in this section is to convey the basic flavor

of our algorithms (which we call WK algorithms); the

While different programs do different things, there areactual code is available from our web site and is well-
some common regularities, which is all a compressiorcommented for those who wish to explore it or experi-
algorithm needs to work well on average. Rather thanrment with it.

consisting of byte strings, the data in memory are often . .
9 y 9 y We note that these algorithms were designed several

2|t is worth stressing this again, because there is widespread confuyears ago, when CPU’s were much slower than today—
sion about the “optimality” of some compression algorithms. In gen- they therefore stress simplicity and Speed over achieving

eral, anencodingscheme (such as Huffman coding or arithmetic cod- hiah . beli hat b | ith
ing) can be provably optimal within some small factor, but a compres- igh compression. We believe that better algorithms can

sor cannot, unless the regularities in the data are known in advance afde designed by refining the basic modeling technique,
in detail. Sometimes compression algorithms are proven optimal basepierhaps in combination with more traditional sequence-

on the S|_mp||fy|ng assumption that the source is a stoc_hastlc (randombriented modeling, and by using more Sophisticated en-
ized, typically Markov) source, but real data sources in programs are

generallynot stochastic[WJNB95], so the proof does not hold for real coding Sftrategies- .GiV.en their sim_plicity, however, they
data. are strikingly effective in our experiments.




Our compression algorithms exploit in-memory dataand taking the appropriate action. As with more conven-
regularities by scanning through the input data a 32-bitional compression schemes, a tag indicating no-match
word at a time, and looking for data that aramerically  directs it to read an item (one word) from the compressed
similar—specifically, repetitions of the@gh-order22-bit  input, insert it in the dictionary, and echo it to the output.
pattern of a word, even if the low-order 10 bits are differ- A tag indicating all-zeroes directs it to write a word of
ent3 They therefore performartial matching of whole-  zeroes to its output. A tag indicating a full-word match
word bit patterns. directs it to copy a dictionary item to the output, either

To detect repetitions, the encoder maintains a dictio—WhOIe (in the full match case) or with its low bits re-

nary of just 16recently-seen words(One of our algo- placed by bits consumed from the input (for a partial

rithms manages this dictionary as a direct mapped cachgjatCh)'

and another as a 4x4 set-associative cache, with LRU The encoding can then be performed quickly. Rather
used as the replacement algorithm for each set. Thegban actually writing the result of compressing a word
are simple software caching schemes, and could be tridirectly to the output, the algorithm writes each kind of
ially implemented in very fast hardware. Due to lack of information into a different intermediate array as it reads
space and because the exact algorithm did not matter fahrough the input data, and then a separate postprocess-
compressed caching performance, we will only discussng pass “packs” that information into the output page,
the direct-mapped algorithm in this paper.) using a fast packing routine. (The output page is seg-
mented, with each segment containing one kind of data:

they do, the regularities must be very strong. Where Z[ags, dictionary indices, low bits, and full words.) For ex-

; - ample, the two-bit tags are actually written as bytes into
typical LZ-style compressor uses a dictionary of ManYa byte array, and a special routine packs four consecutive
kilobytes (e.g., 64 KB), our compressors use only 64 y Y, P P

bytes and achieve similar compression ratios for in-Words (holding 16 tags) into a single word of output by
myemory data P shifting and XORing them together. During decompres-

sion, a prepass unpacks these segments before the main
The compressor scans through a page, reading eaglass reconstructs the original data.

word, probing its cache (dictionary) for a matching pat-

tern, and emitting a two-bit code classifying the word. A

word may 3 Adaptively Adjusting the Compression

- Cache Size
e not match a dictionary entry, or

e match only in the upper 22 bits, or To perform well, a compressed caching system should
adapt to the working set sizes of the programs it caches
for. If a program’s working set fits comfortably in RAM,

As a special case, we check first to see if the word is alfew pages (or no pages) should be kept compressed, so
zeroes, i.e., matches a full-word zero, in which case wéhat the overwhelming majority of pages can be kept in
use the fourth two-bit pattern. uncompressed form and accessed with no penalty. If a

. ) _ program’s working set is larger than the available RAM,
For the all-zeroes case, only the two-bit tag is writ- and compressing pages would allow it to be kept in

ten to the c_:qmprgssed ou_tput page. For_ the other threISAM, more pages should be compressed until the work-
cases, additional information must be emitted as well. ang set is “captured”. In this case, the reduction in disk

the no-match case, the entire 32-bit pattern that did oL, its may greatly outweigh the increase in compression

ma:cE atrr:ytf:jl'n% IS erttgréto t_he oq:tput. F %r. a ftL.J" (32;"2 cache accesses, because disk faults are many times more
match, the dictionary Index IS writlen, indicating whic expensive than compression cache faults.

dictionary word was repeated. For the partial (22-bit)

match case, the dictionary index and the (differing) low Douglis observed in his experiments that different pro-

10 bits are written. grams needed compressed caches of different sizes. He

: implemented an adaptive cache-sizing scheme, which
The corresponding decpr_npressor reads through. th\‘?aried the split between uncompressed and compressed

compressed output, examining one two-bit tag at a timgg dynamically. Even with this adaptive caching sys-
3The 22/10 split was arrived at experimentally, using an early datatem, however, his results were inconsistent; some pro-

set that partially overlaps the one used in this study. The eﬁectivenesgrams ran faster, but others ran slower. We believe that

of the algorithm is not very sensitive to this parameter, however, and o : :
varying the split by 2 bits does not seem to make much difference—DougIIS s adaptive caching strategy may have been partly

using more high bits means that matches are encoded more compacti@t fault. Douglis used a fairly simple scheme _in which
but somewnhat fewer things match. the two caches competed for RAM on the basis of how

e match a whole 32-bit pattern.




recently their pages were accessed, rather like a normalvicted to disk, whether or not the compression cache is
global replacement policy arbitrating between the needsf significant size. Our experiments show that this cost
of multiple processes, keeping the most recently-touched very small.)

pages in RAM. Given that the uncompressed caahe
waysholds more recently-touched pages than the com-
pressed cache, this scheme requires a bias to ensure that
the compressed cache has any memory at all. We believe
that this biased recency-based caching can be maladap-  ——
tive, and that a robust adaptive cache-sizing potiag-
notbe based solely on the LRU ordering of pagéthin
the caches.

50 100 150

50

misses

200,000 )

100,000

3.1 Online Cost/Benefit Analysis

Our own adaptive cache-sizing mechanism addresses
the issue of adaptation by performing an online
cost/benefit analysis, based on recent program behay-. ) ) . . .
ior statistics. Assuming that behavior in the relativelyf;gtlger;r'n Cost/benefit computation using the miss-rate
near future will resemble behavior in the relatively re- 9 '
cent past, our mechanism actually keeps track of aspects
of program behavior that bear directly on the perfor-
mance of compressed caching for different cache sizes, Figure 1 shows an example miss rate histogram deco-

and compresses more or fewer pages to improve perfofated with some significant data points. (This is not real
mance. data, and not to scale because the actual curve is typically

. ) . . very high on the far left, but the data points chosen are
This system uses the kind of recency information keptreasonable).

by normal replacement policies, i.e., it maintains an ap-

proximate ordering of the pages by how recently they The benefit of this 50/50 configuration is the reduction
have been touched. Our system extends this by retainin disk faults in going from a memory of size 100 to a
the same information for pages which have been recentijnemory of size 150. We can measure this benefit simply
evicted. This information is discarded by most replace-Py counting the number of times we fault on pages that
ment policies, but can be retained and used totteW ~ are between the 101st and 150th positions in the LRU
well a replacement policy is working, compared to whatordering (30,000 in Figure 1), and multiplying that count
adifferentreplacement policy would do. by the cost of disk service.

We therefore maintain an LRU (@ecency ordering The cost of this 50/50 configuration is the cost of com-
of the pages in memorgnd a comparable number of pressing and decompressing all pages outside the uncom-
recently-evicted pages. This ordering is not used primarpressed cache region. These are exactly the touches to
ily to model whatis in the cache, but rather to model the pages beyond the 51st position in the LRU ordering
what the program is doing (200,000 touches). Thus, in the example of Figure 1,

compressed caching is beneficial if compressing and de-
A Simplified Example. To understand how our system compressing 200,000 pages is faster than fetching 30,000
works, consider a very simple version which manages gages from disk.
pool of 100 page frames, and only chooses between two In general, our recency information allows us to es-
compressed cache sizes: 50 frames, and 0 frames. With a '

) : timate the cost and benefit of a compression cache of a
compression cache of 50 frames and a compression ratig

of 2:1, we can hold the 50 most-recently-accessed pagecgven size, regardless of what the current size of the com-

) ) ession cache actually is, and which pages are currentl
in uncompressed form in the uncompressed cache, arlf y Pag y

) ) . . In memory. That is, we can do a “what if analysis” to
the next 100 in compressed form. This effectively in- . . ;

. ; .. find out if the current split of memory between caches
creases the size of our memory by 50% in terms of its ;

) Is a good one, and what might be a better one. We can
effect on the disk fault rate. . o

simply count the number of touches to pages in differ-
The task of our adaptation mechanism is to decideent regions of the LRU ordering, and interpret those as

whether doing this is preferable to keeping 100 pages ithits or misses relative to different sizes of uncompressed
uncompressed form and zero in compressed form. (Weache and corresponding sizes of compressed cache and

generally assume that pages are compressed before beiogerall effective memory size.

memory size



Multiple target sizes. We generalize the above scheme usually have a shorter replacement cycle, and need to de-
by using several different “target” compression cachecay their statistics at a faster rate than larger ones.
sizes, interpreting touches to different ranges of the LRU

ordering appropriately for each size. The adaptive com-

_memory size, time would advance inappropriately slowly
ponent of our system computes the costs and benefl{Ersmall memories and inappropriately quickly for large
of each of the target sizes, based on recent counts oP bprop ya y 9

. . ones. The small cache would wait too long to respond
touches to regions of the LRU ordering, and chooses th? changes, and the large one would twitchﬁy “jump[))” at

target size with the lowest cost. Then the compressego . . : : .
. . . . i rief changes in program behavior, which are likely not

cache size is adjusted indemand-drivermvay: memory . .

. to persist long enough to be worth adapting toward.

is compressed or uncompressed only when an access to a

compressed page (either in compressed RAM or on disk) Extensive simulation results show that this strategy

occurs. works as intended: our adaptivity ensures that for any

Actually, our system chooses a targetcompressed memory size, the cache responds to changes in the re-
Y, Y P cent behavior of a program relatively quickly, so that it

cache size, and the corresponding overall effective caché . . . .

o can benefit from relatively persistent program behavior,
size is computed based on the number of page frameg : e i oo ;

L . but not so quickly that it is continually “distracted” by
left for the compressed cache, multiplied by an esti- ) )
. . hort duration behaviors.

mate of the compression ratio for recently compresseg
pages. This means that the statistics kept by our adaptiv- A single setting of the decay factor (relativized auto-
ity mechanism are not exact (our past information maymatically to the memory size) works well across a variety
contain hits that are in a different recency region than thabf programs, and across a wide ranges of memory sizes.
indicated by the current compressibility estimate). Nev-
ertheless, this does not seem to matter much in our sim4
ulations; approximate statistics about which pages have
been touched how recently are quite sufficient. This indi-
cates that our system will not be sensitive to the details o

If the decay rate were not inversely proportional to the

Detailed Simulations

In this section, we describe the methodology and re-

Eplts of detailed simulations of compressed caching. We

the replacement policy qsed forthe uncompre;sed CaChEaptured page image traces, recording the pages touched
any normal LRU approximation should work fine. (E.g., and their contentsfor six varied UNIX programs, and

a clock algorithm gsing reference bits, a FIFO-LRU S€g-;so thege to simulate compressed caching in detail.
mented queue using kernel page traps, or a RANDOM-
LRU segmented queue using TLB miss handlers.) (The code for our applications, tracing and filtering

. - . tools, and compressors and simulator are all available
The overheads of updating the statistics, performlnqrom our web site for detailed study and further re-

the cost/benefit analyses, and adaptively choosing a taE’earch.)
get split are low—just a few hundred instructions per un-
compressed cache miss, if the LRU list is implemented Note that our traces do not contain references to exe-

as a tree with an auxiliary table (a hash table or sparsgutable code pages. We focus on data pages, because our

page-table like structure). main interest is in compressing in-memory data. As we
will explain in Section 5, compressing code equally well
3.2 Adapting to Recent Behavior is an extra complication but can certainly be done. Sev-

eral techniques complementary to ours have been pro-

To adapt to recent program behavior our statistics argposed for compressing code and the data from [RC96]
decayed exponentially with time. Time, however, is de-indicate that references to code pages exhibit the same
fined as the number afiteresting eventslapsed. Events locality properties as references to data pages.
that our system considers “interesting” are page touches
that could affect our cost benefit analysis (i.e., would4.1 Methodology
have been hits if we had compressed as much memory as
any of our target compression sizes currently suggestsyest suite. For these simulations, we traced six pro-
Defining time this way has the benefit that touches todrams on an Intel x86 architecture under the Linux oper-

very recently used pages are ignored, thus filtering oufting system with a page size of 4KB (we will study the
high-frequency events. effect of larger page sizes in Section 4.3). The behavior

- o of most of these programs is described in more detail in
Additionally, the decay factor used is inversely pro- \wJNB95]. Here is a brief description of each:
portional to the size of memory (total number of page

frames), so that time typically advances more slowly for e gnuplot: A plotting program with a large input pro-
larger memories than for small ones—small memories  ducing a scatter plot.



e rscheme A bytecode-based interpreter for a 3. LZRW1: Another fast Lempel-Ziv implementa-
garbage-collected language. Its performance is  tion. This algorithm was used by Douglis in
dominated by the runtime of a generational garbage ~ [Dou93]. While it does not perform as well as LZO,

collector. we wanted to demonstrate that even this algorithm
o would allow for an effective compressed cache on
e espressoA circuit simulator. today’s hardware.

e gcc The component of the GNU C compiler that

actually performs C compilation. The runtimes of the test suite. Our results are pre-

sented in terms of time spent paging, but it is helpful to

e ghostscript A PostScript formatting engine. know the processing time required to execute each pro-
gram in the test suite. Figure 2 shows the time required
e p2c: A Pascal to C translator. to execute each of our six programs on each of the three

processors, when no paging occurs. These times can
These programs constitute a good test selection fope added with paging time information to obtain total
locality experiments (as we try to test the adaptivity of turnaround time for a given architecture, memory size,
our compressed caching policy relative to locality pat-and virtual memory configuration.
terns at various memory sizes). Their data footprints

vary widely: gnuplot and rscheme are large programs | Program P-Pro | SPARC | SPARC
(with over 14,000 and 2,000 pages, respectively), gccand | name 180MHz | 168MHz | 300MHz
ghostscript are medium-sized (around 550 pages), while | gnuplot 46.89 32.99 20.61
espresso and p2c are small (around 100 pages). rscheme 8.26 11.77 7.59
i espresso 10.07 12.35 7.41

We used the following three processors: gcc 9.89 14.66 9.41
ghostscript 18.95 26.89 16.84

1. Pentium Pro at 180 MHz This processor approx- p2c 2.38 2.91 2.08

imately represents an average desktop computer at

this time. Compressed caching is not only for fast S _
machines. Figure 2: The processing times for each program in the

test suite on each processor used in this study. If enough
2. UltraSPARC-10 300 Mhz While one of the fastest memory is available such that no paging occurs, these
processors available now, it will be an average pro-times will be the turnaround times.
cessor two years from now. Compressed caching

works even better on a faster processor. A brief note on compressor performance. All of our

3. UltraSPARC-2 168 MHz A slower SPARC ma- compression algorithms achieve roughly a factor of two
chine which provides an interesting comparison toin compression on average for all six programs. All can

the Pentium Pro, due to its different architecturecqlrppressdand d”ecompress a El)'igevi/anve” llmd,eLha,lf a
(e.g., faster memory subsystem). millisecond on all processors. The m algorit m is

the fastest, compressing a page in about 0.25 millisec-

. . . . onds and decompressing in about 0.15 milliseconds on

We used three different compression algorithms in oty o pantium Pro. faster on the SPARC 168 MHz. and
experiments: over twice as fast on the SPARC 300 MHz. (This is over
_ 20 MB compressednduncompressed per second, about
1. WKdm: A recency based compressor that Oper-e pandwidth of a quite fast disk.) LZO is about 20%

ates on machine words and uses a direct-mappegiower’ and LZRW1 about 20% slower still.
16 word dictionary and a fast encoding implemen-

tation. Tracing. Our simulator takes as input a trace of the
2. LZO: Specifically, LZO1F, is a carefully coded pages a program tOL.'C.h.eS' augmented with mformanon
o . . about the compressibility and cost of compression of
Lempel-Ziv implementation designed to be fast, . .
: . . each touched page for a particular compression algo-
particularly on decompression tasks. It is well .
) ) . rithm. To create such a trace and keep the trace size
suited to compressing small blocks of data, using )
- ) : manageable, we used several steps and several tracing
small codes when the dictionary is small. While all

: . . and filtering tools.
compressors we study are written in C, this one also
has a speed-optimized implementation (in Intel x86 We traced each program using the portable tracing tool
assembly) for the Pentium Pro. VMTrace[WKB]. We added a module to VMTrace that



made it emit a complete copy of each page as it was refeur simulations (a 5ms seek time disk is fast by modern

erenced. We refer to such tracegage image traces standards). In Section 4.3 we examine the effect of using
a faster disk (up to a seek time of 0.625ms).

Creating compression traces. To record the actual ef-

fectiveness and time cost of compressing each page imt.2 Results of Detailed Simulations

age, we created a set obmpression tracesFor each

combination of compression algorithm and CPU, we cre-4.2.1 Wide Range Results

ated a trace recording how expensive and how effective

compression is for each page image in the reduced pageor each of our test programs, we chose a wide range of

image trace. Since we have 6 test programs, 3 compregnemory sizes to simulate. The plots of this section show

sion algorithms, and 3 CPUr's, this resulted in 54 com-the entire simulated range for each program. Subsequent

pression traces. sections, however, concentrate on thierestingregion

ipf memory sizes. This range usually begins around the

The tool that creates compression traces is linked with’ h s 90% of its ti X q
a compressor and decompressor, and consumes a (re2€ Where a program spends 90% of its time paging an

duced) page image trace. For each trace record in the0?? Of its time executing on the CPU, and ends at a size
page image trace, it compresses and decompresses tH9€re the program causes very little paging.

page image and outputs a trace record. This record con- Figure 3 shows log-scale plots of the paging time of
tains the page number, the times for compressing and desach of our programs as a function of the memory size.
compressing the page’s contents at that moment, and tfeach line in the plot represents the results of simulating
resulting compressed size of the page. Each page imagecompressed cache using a particular algorithm on our
is compressed and decompressed several times, and tB®PARC 168 MHz machine. The paging time of a reg-
median times are reported. Timing is very precise, usingilar LRU memory system (i.e., with no compression) is
the Solaris high-resolution timer (all of our compressionshown for a comparison. As can be seen, compressed
timings were done under the Solaris operating system)caching yields benefits for a very wide range of mem-
To avoid favorable (hardware) caching effects, the cachegry sizes, indicating that our adaptivity mechanism reli-
are filled with unrelated data before each compression o#ibly detects locality patterns of different sizes. Note that
uncompression. (This is conservative, in that burstinesall compression algorithms exhibit benefits, even though
of page faults will usually mean that some of the relevanthere are definite differences in their performance.
memory is still cached in the second-level cache in areal

system.) Figure 3 only aims at conveying the general idea of the

outcome of our experiments. The same results are ana-
Simulation parameters. We used four different target YZ€d in detail in subsequent sections (where we isolate
compression sizes with values equal to 10%, 23%, 37%|'nterest|ng memory regions, algorithms, architectures,
and 50% of the simulated memory size. Thus, during?"d trends).
persistent phases of program behavior (i.e., when the sys-
tem has enough time to adapt) either none, or 10%, Oh 2.2 Normalized Benefits and the Effect of Com-
23%, or 37%, or 50% of our memory pages are holding pression Algorithms
compressed data. Limiting the number of target com-

pression sizes to four guarantees that our cost/benefgur first goal is to quantify the benefits obtained by us-

analysis incurs a low overhead. The decay factor used '|sng compressed caching and to identify the effect of dif-

zgzhgpg]t;r?%r'w'tﬁagc:t ;e_cElt’nLeveaTio(vg(t)r; /Ncl)fbtehlggmtg:ferent compression algorithms on the overall system per-
12 y) weight equ 0 }ormance. It is hard to see this effect in Figure 3, which

recent event. Our results were not particularly sensitive, 1o indicate that all compression algorithms obtain
to the exact value of the decay factor.

similar results.

Estimates used. During simulation we had to estimate A more detailed plot reveals significant variations be-
the costs for reading a page from disk or writing it to tween algorithm performance. Figure 4 plots the normal-
disk. We conservatively assumed that writing “dirty” ized paging times for different algorithms in the interest-
pages to disk incurs no cost at all, to compensate for fileng region. (Recall that this usually begins at the size
systems that keep low the cost of multiple writes (e.g.,where a program spends 90% of its time paging and 10%
log-structured file systems). Additionally, we assumedof its time executing on the CPU, and ends at a size where
a disk with a uniform seek time of 5ms. Admittedly, a the program causes very little paging). By “normalized
more complex model of disk access could yield more acpaging time” we mean the ratio of paging time for com-
curate results, but this should not affect the validity of pressed caching over the paging time for a regular LRU



Total paging time (seconds) Total paging time (seconds)

Total paging time (seconds)

Total paging time for espresso on a SPARC-168

Total paging time for gcc on a SPARC-168

100 T 1000 T T
Traditional VM —+— Traditional VM —+—
100
w
10 B
3
&
@
£ 1
2
=3
T
=
1 g
2
1
0.1 0.1 =
25 30 35 40 45 50 50 100 150 200 250 300 350 400
Memory size (pages) Memory size (pages)
Total paging time for gnuplot on a SPARC-168 Total paging time for ghostscript on a SPARC-168
1000 , 1000 . .
Traditional VM —+— Traditional VM —+—
LZO ---%--- LZO ---%---
LZRW1 - - LZRW1 - -
WKdm & WKdm -8
100
)
2
3
&
@
100 £ 1
2
=3
@
\ =
A\ g
\ 2
- 1
=3 \“%\
a e
10 0.1
0 2000 4000 6000 8000 10000 12000 50 100 150 200 250 300 350 400 450
Memory size (pages) Memory size (pages)
Total paging time for p2c on a SPARC-168 Total paging time for rscheme on a SPARC-168
1000 T T 1000 T T
Traditional VM —+— Traditional VM —+—
LZO ---%--- LZO -
LZRW1 ------ LZRW1 ------
WKdm & WKdm -8
100
@
2 100
3
&
@
10 £
2
=3
@
53
©
E 10
1 5
X\
oy
0.1 1
40 50 60 70 80 920 100 110 120 200 400 600 800 1000 1200 1400 1600 1800

Memory size (pages)

Memory size (pages)

Figure 3: Compressed caching yields consistent benefits across a wide range of memory sizes.
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Figure 4: Varying compression algorithms can affect performance significantly. Even though all algorithms yield
benefits compared to uncompressed virtual memory, some are significantly better than others.



replacement policy. formance of LZO is significantly better on the Pentium
. L Pro 180 MHz machine than one would expect based on
As can be seen, all algorithms obtain significant ben-

, . ; the machine speed alone. The reason is that, as pointed
efit over uncompressed virtual memory for the interest-

. . : 0 out earlier, the implementation of LZO we used on the
ing ranges of memory sizes. Benefits of over 40% A entium Pro is hand optimized for speed in Intel x86

common for large parts of the plots in Figure 4. At the assembly language. Perhaps surprisingly, the effect of

same time, Iosg_es are rare (only e_x_h|b|ted for gnuplot)[he optimization is quite significant, as can be seen. For
and small. Additionally, losses diminish for faster com- hostscript, for instance, the Pentium Pro is faster than

pression algorithms (and faster processors, which is n .
shown in this plot). That is, when our adaptivity does no?ﬁg]e SPARC 168 MHz using LZO.
perform optimally, its cost can be reduced by having a
fast compression algorithm, since itis a direct function of4'3 Technology Trends
performing unnecessary compressions and decompre2—3 1

: Is Memory Bandwidth a Problem?
sions.

Gnuplot is an interesting program to study more Compressed caching mostly benefits from the increases
closely. The program stores data that are highly comef CPU speed relative to disk latency. Nevertheless, a
pressible (exhibiting a ratio of over 4:1 on average). Thisdifferent factor comes into play when disk and memory
way, the compressed VM policy can look at quite largebandwidthsare taken into account. A first observation
memory sizes, expecting that it can compress enougls that moving data from memory takes at most one-
pages so that all the required data remains in memoryhird of the execution time of our WKdm compression
Nevertheless, gnuplot’s running time is dominated by aalgorithm. (This ratio is true for both the Pentium Pro
large loop iterating only twice on a lot of data. Hence, 180 MHz machine, which has a slow memory subsys-
for small memory sizes the behavior that the compressetem, and the SPARC 300 MHz, which has a fast proces-
caching policy tries to exploit ends before any benefitssor. It is significantly better for the SPARC 168 MHz
can be seen. For larger sizes, the benefit can be substamachine.) Hence, memory bandwidth does not seem to
tial, reaching over 80%. be the limiting factor for the near future. Even more
importantly, faster memory architectures (e.g., RAM-

As shown in Figure 4, the performance difference OfBUS i b id dand ) |
compressed caching under different compression algo- ) will soon become widespread and compression al-

rithms can often be over 15%. Our WKdm algorithm gorithms can fully benefit as they only need to read con-
achieves the best performance for the vast majority Opgu%us gat.z'th-rhﬁ overr]allttrgnc:lls also fav?r:\(t)aol/e ' Mﬁlm'
data points, due to its speed and comparable compressicﬁ.{y andwigths have historically grown a o, whre

rates to LZO. The LZRW1 algorithm, used by Douglis isk bandwidths and latencies have only grown at rates

ield istently th t Its. This fact, bi Garounq 20%. (Ap analysis of technology trends can be
yielas consistently tne worst resufis. 1hisfact, com Inej"ound in M. Dahlin’s “Technology Trends” Web Page at

with the slow machine used (for current standards) ar o/ ‘ au/ Jdahlin/techTrends/
at least partially responsible for the rather disappointin pi/fwww.cs.utexas.edu/users/dahlin/techTrends/ )

results that Douglis observed.
4.3.2 Sensitivity Analysis

4.2.3 Implementation and Architecture Effects The cost and benefits of compressed caching are de-
pendent on the relative costs of compressing (and un-
In the past sections we only showed results for ourcompressing) a page vs. fetching a page from disk. If
SPARC 168 MHz machine. As expected, the fastercompression is insufficiently fast relative to disk paging,
SPARC 300 MHz machine has a lower compression angompressed virtual memory will not be worthwhile.

decompression overhead and, thus, should perform bet- On the other hand, if CPU speeds continue to increase

ter overall. The Pentium Pro 180 MHz machine is USU-c. % cter than disk speeds, as they have for many years,

ally slower than t.)Oth SPARC machines in comprgsgmqhen compressed virtual memory will become increas-
and uncompressing pages (not unexpectedly as it is an

. ingly effective and increasingly attractive. Over the last
older architecture—see also out later remarks on mems-, . 0
ory bandwidth) de(_:ade_, CPU speeds have mpreased b_y about 60% a year,
' while disk latency and bandwidth have increased by only
Figure 5 shows three of our test programs simulatecabout 20% a year. This works out to an increase in CPU
under WKdm and LZO in all three architectures. Forspeedselative to disk speedsf one third a year—or a
WKdm, the performance displayed agrees with our ob-doubling every two and a half years, and a quadrupling

servations on machine speeds. Nevertheless, the pesvery five years.
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Figure 5: A SPARC 168 MHz usually has better performance than a Pentium Pro 180 MHz, while a SPARC 300 MHz
is significantly better than both. Nevertheless, the Pentium Pro 180 MHz is much faster for a hand-optimized version
of the LZO algorithm, sometimes surpassing the SPARC 168 MHz.
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Figure 6: A sensitivity analysis studying disks of various speeds. This conservatively covers the cases of slower CPUs,
perfect prefetching, and larger page sizes.



Figure 6 shows plots of simulated performance of ourobvious and has been invented independently at least
adaptive caching system, using page compression timfour times [BCW90] before we reinvented it yet again.)
ings measured on a 300 MHz QItraSI?ARC. .Each I!ne The use of partial matching (only the high bits) can
represents the paging costs for simulations using a give . : L=

. ) e viewed as a simple and fast approximatiordefta
disk fault cost. Costs are normalized to the performance _ . : .
) : . coding a technique used for purely numeric data (such
of a conventional LRU memory with theamedisk page : S .
L . as sensor input data or digitized audio) [Nel93Delta
access time; that is, each curve represents the speedup Or

. .~ Tcoding (a form of differential coding) encodes a numer-
slowdown that comes from using compressed caching. . : . .
ical value as a numerical difference from the previous

The middle line in each plot can be regarded as thenumerical value. Unlike a traditional delta coder, our al-
performance of a machine the speed of a 300 MHz Ultragorithm can encode a value by its difference (low bits)
SPARC with an average page fetch cost (for 4KB pagesjrom any of the values in an MTF dictionary, rather than
of only 2.5ms, about one third the average disk seek time¢he unique previous value.
of a fast d'Ski Note Fhat, n normallged performanpe In [KGJ96], Kjelso, Gooch, and Jones presented a
terms, assuming a twice as fast disk is exactly equiva- : ; . .

: : . ~compression algorithm also designed for in-memory
lent to assuming a twice as slow CPU. At the same time : . S .
. . . fata. Their X-match algorithm (which is designed for
studying the case of a fast disk conservatively covers th% . AN .
. . ; ardware implementation) is similar to ours in that both
case of perfect prefetching of multiple pages (a twice as

o . : use a small dictionary of recently used words. Rizzo, in
fast disk is equivalent to always prefetching the next two__. . ! . o
. o Riz97], also devised a compression algorithm specific to
needed pages with one seek). This, in turn, conserva-

In-memory data. His approach was to compress away the

tively COVers the case of usi_ng "T’“ger page sizes. Hencﬁarge number of zeros found in such data. Rizzo asserts
our sensitivity analysis (taking into account fast d|sks)that more complex modeling would be too costly. We

also subsumes many other scenarios. have shown that it is possible to find more regularities
Looking at the middle line of each plot, we can seewithout great computational expense.
that with a disk hage access .COSt. of 2.5ms, most pro- While we have not addressed the compression of ma-
grams show a reduction of paging times by 30 to 70 per-_, . L .
. ) chine code, others have shown that it is possible to com-
cent, averaged across the interesting range of memorF

) . . ress machine code by a factor of 3 using a specially
sizes. Thus, compressed virtual memory is a very clea . .

! : uned version of a conventional compressor [Yu96] and
win even for a disk access cost of 2.5ms per 4KB page

The line above the middle one can be taken to re reser§y as much as a factor of 5 using a compressor that un-
P erstands the instruction set [EE®7]. We believe that

a system with the same CPU speed and disk costs a fac: : .
Similar techniques can be made very fast and achieve a
tor of two lower, at 1.25ms per 4KB page. Even though : : L .
. S ", compression ratio of at least 2, similar to the ratios we
performance for this system is significantly worse, still

much speedup is obtained. The top line represents asii%gt for data, so an overall compression ratio of 2 for

. th code and data should generally be achievable. This
tem where disk page accesses cost only 0.625ms per 4 - . .
. iS within 20% of the size reduction found by Cogswell
page. For some programs, this degrades performance S : .
. L and Russinovich using an extremely fast, simple, and un-
overall to the point that compressed caching is not worth- ) ; : .
. tuned “general purpose” compression algorithm [RC96].
while. : . .
(Their paging data also support the assumption that full
Going the other direction, along with the technology workloads exhibit the kind of locality needed for com-
trends, we can look at the next lower line to see the perpressed paging, making our focus on data paging more

formance of a system with twice as fast a processor relareasonable.)
tive to its disk. For most of our programs, each doubling A significant previous study of compressed caching

of CPU speed offers a significant additional speedup . .

) . e : tvas done by Douglis, who implemented a compressed
typically decreasing remaining paging costs by ten to . . .
forty percent virtual memory for the.Sprlte operajung. system aljd eval-

' uated it on a DECStation 5000, which is several times to

an order of magnitude slower than the machines we used
5 Related Work in our experiments.

Douglis’s results were mixed, in that compressed vir-
Our compression algorithms are roughly similar to thetual memory was beneficial for some programs and detri-
well-known MTF (“move-to-front”) algorithm, which mental to others. As should be apparent from our dis-
maintains an LRU ordering, but is unusual in its use of
partial matChing and a fixed 32-bit word as its basic gran-  4«pgjta coding” is something of a misnomer because it's really a
ularity of operation. (The general MTF scheme is fairly modeling technique with an obvious encoding strategy.




cussion of performance modeling, we believe that this6 Conclusions

was primarily due to the slow hardware (by today’s stan-

dards) used. This is supported by our sensitivity analy- Compressed virtual memory appears quite attractive
sis, which showed that an 8 times slower machine than an current machines, offering an improvement of tens
300 MHz UltraSPARC would yield mixed results, even of percent in virtual memory system performance. This
with better compression algorithms than those availablémprovement is largely due to increases in CPU speeds
to Douglis. relative to disk speeds, but substantial additional gains
As discussed earlier, Russinovich and Cogswell’sczm(:".fr.0 m better comgrissi_on algorithms and successful
study [RC96] showed that a simple compression cachépJl aptivity to program behavior.
was unlikely to achieve significant benefits for the PC For all of the programs we examined, on currently
application workload they studied. Nevertheless, theiravailable hardware, a virtual memory system that uses
results do not seem to accurately reflect the trade-offs ineompressed caching will incur significantly less paging
volved. On one hand, they reported compression overeost. Given memory sizes for which running a program
heads that seem unrealistically low (0.05ms per comsuffers tolerable amounts of paging, compressed caching
pression on an Intel 80486 DX2/66, which is improbableoften eliminates 20% to 80% of the paging cost, with
even taking only the memory bandwidth limitations into an average savings of approximately 40%. As the gap
account). But the single factor responsible for their re-between processor speed and disk speed increases, the
sults is the very high overhead for handling a page faulbenefit will continue to improve.

that they incurred (2ms—this is overhead not containing The recency based approach to adatively resizing the
the actual seek time). This overhead is certainly a resulf y bp piively 9

; . ; ..__compression cache provides substantial benefit at nearly
of using a slow processor but it is possibly also an artifact

of the OS used (Windows 95) and their implementation.any memary siz€, for many kmo_ls of programs. In our
tests, the adaptive resizing provided benefit over a very

A study on compressed caching, performed in 1997vide range of memory sizes, even when the program
but only very recently published, was done by Kjelso,was paging little. The adaptivity is not perfect, as small
Gooch, and Jones [KGJ99]. They, too, used simulationsost may be incurred due to failed attempts to resize the
to demonstrate the efficacy of compressed caching. Adeache, but performs well for the vast majority of pro-
ditionally, they addressed the problem of memory man-grams. Moreover, it is capable of providing benefit for
agement for the variable-size compressed pages. Thesmall, medium, and large footprint programs.
experiments used the LZRW1 compression algorlthm N e WK compression algorithms successfully take
software and showed for most programs the same kinds - .

o : advantage of the regularities of in-memory data, pro-

of reduction in paging costs that we observed. These. . . .
) : . viding reasonable compression at high speeds. After
benefits become even greater with a hardware implemen- :

. ! . many decades of development of Ziv-Lempel compres-
tation of their X-match algorithm. . i

sion techniques, our WKdm compressor fared favorably

Kjelso, Gooch, and Jones did not, however, addressvith the fastest known LZ compressors. Further research
the issue of adaptively resizing the compressed cache imto in-memory data regularities promises to provide
response to reference behavior. Instead, they assumeighter compression at comparable speeds, improving the
that it is always beneficial to compress more pages tgerformance and applicability of compressed caching for
avoid disk faults. This is clearly not true as when moremore programs.
pages are compressgd, any more memory accesses may, appears that compressed caching is an idea whose
suffer a decompression overhead, while only a few dlsli. .

. .lime has come. Hardware trends favor further improve-
faults may be avoided. The purpose of our adaptive . :
0 : ; mentin compressed caching performance. Although past
mechanism is to determine when the trade-off is ben- . . "

- : experiments failed to produce positive results, we have
eficial and compression should actually be performed, :

. : improved on the components required for compressed
Kjelso, Gooch, and Jones did acknowledge that some_" . )

. caching and have found that it could be successfully ap-
compressed cache sizes can damage performance. Inl-ieOI toda
deed, their results strongly suggest the need for adada- Y-
tivity: two of their four test programs exhibit perfor-
mance deterioration under software compression for se\References
eral memory sizes.
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