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Abstract

Data races are among the most reliable indicators of programming
errors in concurrent software. For at least two decades, Lamport’s
happens-before (HB) relation has served as the standard test for de-
tecting races—other techniques, such as lockset-based approaches,
fail to be sound, as they may falsely warn of races. This work in-
troduces a new relation, causally-precedes (CP), which generalizes
happens-before to observe more races without sacrificing sound-
ness. Intuitively, CP tries to capture the concept of happens-before
ordered events that must occur in the observed order for the pro-
gram to observe the same values. What distinguishes CP from past
predictive race detection approaches (which also generalize an ob-
served execution to detect races in other plausible executions) is
that CP-based race detection is both sound and of polynomial com-
plexity.

We demonstrate that the unique aspects of CP result in practical
benefit. Applying CP to real-world programs, we successfully an-
alyze server-level applications (e.g., Apache FtpServer) and show
that traces longer than in past predictive race analyses can be an-
alyzed in mere seconds to a few minutes. For these programs, CP
race detection uncovers races that are hard to detect by repeated
execution and HB race detection: a single run of CP race detec-
tion produces several races not discovered by 10 separate rounds of
happens-before race detection.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Software/Program Verification]

General Terms Languages, Reliability, Verification

1. Introduction

Data races are the most common symptom of a programming
error in the increasingly central field of concurrent programming.
Two memory accesses are “conflicting” if they are performed by
different threads, they access the same memory location, and at
least one of them is a write. A data race is then typically defined
as two concurrent (or unordered or not happens-before-ordered)
conflicting accesses [7, 21, 26, 36].

Typical modern high-performance dynamic race detectors are
based on one of two principles: happens-before (HB) ordering or
lockset computation. Lockset-based race detectors follow an idea
popularized by Eraser [42] and attempt to detect inconsistent use of
locks for access to the same memory location by different threads.
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This approach has the advantage of detecting many races, even
if these are not observed in the execution being monitored. For
instance, if the detector records two write accesses by different
threads to the same memory word without holding a common lock,
it will report a possible race. The drawback of lockset-based race
detectors is that they are unsound. The reported races are often
spurious since the two suspicious events may be well-ordered via
other thread communication (e.g., the prior reading of a well-
synchronized flag indicating that the thread can now freely read
shared data without synchronization). Consider, for instance, the
example execution in Figure 1. (Our visual convention is that events
occur top-to-bottom in the total order of the observed execution. We
use the standard syntax acq(l)/rel(l) for the acquisition/release of
lock l, and w(x)/r(x) for the write/read of variable x.)

Thread 1 Thread 2

w(y)

acq(l)

w(x)

rel(l)PPq acq(l)

r(x)

r(y)

rel(l)

Figure 1. Example of no race on variable y.

Although the two accesses to shared variable y do not occur
with the same lock held, they are well-ordered—the second access
only occurs after Thread 2 has observed a value written by Thread
1. It is quite possible that, if the two critical sections over lock l
had been swapped, Thread 2 would not have attempted to read y
since its read of x would have yielded a different value.

In our work, we focus on sound race detection: races are ex-
tremely hard to debug and reporting false positives to the user
severely reduces the usability of a race detection tool. Sound race
detection is a hallmark feature of happens-before based approaches.
HB race detectors attempt to discern when there has been inter-
thread communication that effectively orders the two conflicting
events. Unordered events are reported as a race, since there is no
reason why they could not have occurred at exactly the same in-
stance. In its simplest form, happens-before is a partial order that
generalizes the observed total order of a multithreaded program’s
execution by:

• ordering all events by a single thread in the order they were
actually observed

• ordering lock releases and subsequent acquisitions of the same
lock in the order they were observed.



All events unordered by happens-before are then considered to
be potentially performed simultaneously. Under the assumption
that threads can only communicate via mechanisms represented in
the HB order1 this approach is sound. Consider again the above
execution trace. The inter-thread HB edge shown as an arrow,
together with the transitivity of the HB partial order, ensure that
the two writes to y are HB-ordered, thus no HB race is reported.

The problem with plain happens-before race detection is that
it can miss many races due to accidental HB edges. The original
definition of happens-before by Lamport [30] was in the context of
distributed systems, with an HB edge introduced for explicit inter-
process communication. Lock synchronization does not induce the
same hard ordering as explicit communication, however. A lock-
based critical section can often be reordered with others, as long
as lock semantics (mutual exclusion) is preserved. Consider the
code example shown in Figure 2. In this example, the PolarCoord
class has two fields, radius and angle, protected by the object lock
this. The count field tallies the number of accesses to radius and
angle, and the main method forks two concurrent threads. This
program has a race condition on count; unfortunately, precise race
detectors such as FT [21] or + [38] fail to detect this
race condition on 94% of test runs.

Figure 3(A) illustrates the essence of the problem by showing
the trace that the HotSpot JVM typically generates for the program
of Figure 2, with no overlap between the executions of the two
threads. For this trace, a happens-before race detector would not
find a race on count, since the lock release by Thread 1 happens-
before the lock acquire of Thread 2, thereby masking the lack of
synchronization between the accesses to count. In contrast, trace
B presents a different scheduling where there is clearly a race on
count. By inspection, we are able to predict from trace A that a
race condition could occur as in trace B; we say that trace A has a
predictable race.

Our work consists of defining a new relation, causally-precedes
(CP), by analogy to happens-before, to detect such races. A race oc-
curs if two conflicting actions are not CP-ordered. Unlike prior pre-
cise race detectors, a CP-based race detector can detect predictable
race conditions as in Figure 3. The essence of detecting this pre-
dictable race is that the critical section of Thread 2 has received no
information that can reveal whether the critical section of Thread
1 has already executed or not. More precisely, reordering events as
in trace B (thus exposing an HB race) maintains the property that
all read operations return exactly the same values as in the orig-
inal execution—we call this a correct reordering of the observed
behavior. A correctly reordered execution is just as feasible as the
observed one.

Some previous work has addressed the problem of latent races
in the context of happens-before race detection [10, 11, 45, 47].
This work typically comes under the label of predictive race analy-
sis, and is a subset of the general area of predictive and generaliz-
ing concurrency analysis [18, 20, 28, 29, 48, 49, 57–59]. The main
idea of this body of work is to consider which of the correct re-
orderings of critical sections would have triggered a race in an HB
detector. The problem with a reorderings-based approach is that it
requires exploring all reorderings of critical sections to determine
which ones are correct and produce a race. This exploration is an
expensive process: the space of possible reorderings is exponential
and executions with races are often hard to discover. When applied
to dynamic (i.e., run-time) race detection “[the] predictive runtime
analysis technique can be understood as a hybrid of testing and
model checking” [9].

1 Although this simplistic definition only covers locks, other inter-thread
communication can be captured as happens-before edges.

Figure 2: Example Program PolarCoord

1 class PolarCoord {

2 int radius, angle;

3 int count; // counts accesses

4

5 static PolarCoord pc = new PolarCoord();

6

7 void setRadius(int r) {

8 count++;

9 synchronized(this) { radius = r; }

10 }

11

12 int getAngle() {

13 int t;

14 synchronized(this) { t = angle; }

15 count++;

16 return t;

17 }

18

19 public static void main(String[] args){

20 fork { pc.setRadius(10); }

21 fork { pc.getAngle(); }

22 }

23 }

Figure 3: Example Traces for the PolarCoord Program.

Thread 1 Thread 2
r(count)

w(count)

acq(this)

w(radius)

rel(this)

acq(this)

r(angle)

rel(this)

r(count)

w(count)

Thread 1 Thread 2
acq(this)

r(angle)

rel(this)

r(count)

w(count)

r(count)

w(count)

acq(this)

w(radius)

rel(this)

Tool Report
Happens-Before: “no race”

Causally-Precedes: “race”

Tool Report
Happens-Before: “race”

Causally-Precedes: “race”

(A) predictable race condition (B) happens-before race

In contrast, our work offers the first sound yet scalable tech-
nique for predictive race detection. Specifically, CP weakens the
HB order while still maintaining soundness. CP is guaranteed to
have a polynomial cost of evaluation, and our efficient implemen-
tation allows turning this into a linear cost, by limiting the size of
the reordering window. CP race detection results are not complete:
examining all correct reorderings of the original trace would neces-
sitate an exponential search. Consequently, our detector may miss
some races. Nevertheless, it is guaranteed to detect a superset of
the observed happens-before races and to only give warnings for
true races. (More accurately, the soundness theorem we prove is
more subtle: if our detector issues a warning, there is either a cor-
rect reordering of the observed execution that exhibits an HB race,
or a reordering that exhibits a deadlock. Thus, our race soundness
guarantee only applies to deadlock-free programs, yet in practice
our sound warning of a possible deadlock is just as valuable as a
warning of a race.)



Specifically our work makes the following contributions:

• We present causally-precedes, a weaker relation than happens-
before, yet offering the same desirable features: CP leads to
sound race detection, and can be evaluated efficiently (in poly-
nomial time). It is worth emphasizing that multiple researchers
have fruitlessly pursued such a weakening of HB in the past.
We demonstrate with numerous examples why it is not easy to
weaken HB while remaining sound. (Both the definition of CP
and our proof of soundness are results of multi-year collabora-
tive work, with several intermediate failed attempts.)

• We present an efficient implementation of CP. Although the
relation is polynomial, practical race detection can hardly afford
even quadratic complexity: an Ω(n2) algorithm (with n being
the number of observed events) is unscalable in practice, with
event counts in the millions. We implement our algorithm in
Datalog, for declarative logical reasoning, and apply successive
optimizations, first to make the algorithm’s complexity depend
only on synchronization events, and then to derive a family of
linear algorithms by allowing finite reordering windows.

• Our experiments showcase the advantages of CP and our im-
plementation. The extra races detected are among the hardest
to discover with plain HB analysis. A single CP-based race de-
tection run discovers several new races, unexposed by 10 inde-
pendent runs of plain HB race detection. Our implementation
avoids past scalability pitfalls. If we examine races appearing
within a finite reordering window (e.g., 1,000 non-redundant
shared memory events) we can achieve linear runtime costs for
our analysis, even for real-world programs and workloads.

The rest of the paper introduces our causally-precedes relation
(Section 2), illustrates the kind of reasoning it supports and its
soundness properties (Section 3), describes our implementation
(Section 4), presents experimental results (Section 5), and discusses
related work (Section 6) before concluding (Section 7).

2. Causally-Precedes

We next introduce our new relation, causally-precedes, and subse-
quently illustrate it via examples.

2.1 Definitions

We consider a standard single-observer model for assigning seman-
tics to a concurrent execution. That is, all events are observed in
a total order and we define our concepts relative to the observed
order. Events have the form [t : a]i, where t is the thread perform-
ing the event, and i is the event’s index in the total order. The ac-
tion, a performed by an event is of the form w(x), r(x), acq(l) and
rel(l). Thread creation and joining can be added straightforwardly,
as explicit causally-precedes edges; for simplicity, we do not dis-
cuss these events in the examples.

Definition 1 (Happens-before). In this framework the happens-
before (≪HB) relation is defined simply as the smallest relation that
satisfies the following (we use underscores as a “don’t care” value):

• Events by the same thread are ordered as they appear. This
partial order of events in a trace is also called Program Order
(PO).
([t : ]i1 ≪HB [t : ]i2 if i1 ≤ i2)
• Releases and acquisitions of the same lock are ordered as they

appear.
([t1 : rel(l)]irel

≪HB [t2 : acq(l)]iacq if irel < iacq)
• ≪HB is closed under composition with itself.

(≪HB= (≪HB ◦ ≪HB))

We also assume two helper relations:

• the binary relation ≍ (read conflicts). Two events by different
threads conflict if they both access the same variable and one of
the actions is a write.

• the function RL(e) that maps a lock acquisition event to the
corresponding lock release. (I.e., RL([t1 : acq(l)]iacq ) = [t1 :
rel(l)]irel

if there is no [t1 : rel(l)]i′
rel

with iacq < i′
rel
< irel.) In

this case, we say that [t1 : acq(l)]iacq is paired with [t1 : rel(l)]irel
.

RL(e) is a one-to-one function for a well-formed execution, so
we also consider its inverse, RL−1(e).2

Definition 2 (Causally Precedes). Causally precedes (≪CP) is
then the smallest relation such that:

a) ≪CP has a release-acquire edge between critical sections over
the same lock that contain conflicting events.
([t1 : rel(l)]irel

≪CP [t2 : acq(l)] jacq if there are
[t1 : ]k1

≍ [t2 : ]k2
such that

iacq < k1 < irel < jacq < k2 < jrel, where
RL−1([t1 : rel(l)]irel

) = [t1 : acq(l)]iacq and
RL([t2 : acq(l)] jacq ) = [t2 : rel(l)] jrel

)

b) ≪CP has a release-acquire edge between critical sections over
the same lock that contain CP-ordered events. (These events
can be lock acquisition or release events, and not necessarily
internal events in the critical section.)
Because of Rule (c), below, this condition turns out to be equiv-
alent to the seemingly weaker “releases and acquisitions of the
same lock are ordered if the beginning of one critical section
is CP-ordered with the end of the other”—since there is an HB
order between the start of a critical section and every internal
event, as well as all internal events and the end of a critical sec-
tion. ([t1 : rel(l)]irel

≪CP [t2 : acq(l)] jacq , if

RL−1([t1 : rel(l)]irel
) ≪CP RL([t2 : acq(l)] jacq )

c) CP is closed under left and right composition with HB.
(≪CP= (≪HB ◦ ≪CP) = (≪CP ◦ ≪HB))

Note that ≪CP is a subset of the happens-before relation. In-
specting the three cases of the ≪CP definition, we see that all≪CP

edges produced by the first two rules are release-acquire edges on
the same lock and so are also≪HB edges. The third rule then states
that CP is closed under composition with HB, which still produces
a subset of the HB edges, since HB is transitively closed. It is sim-
ilarly easy to see that CP is transitive.

Definition 3 (CP-Race). We define a race (or CP-race when we
need to distinguish from happens-before races) to be a pair of
conflicting events that are not CP-ordered in either direction.

2.2 Illustration

There are a few aspects of the definition of CP that should be
emphasized for clarity. Probably most important among them is
that CP is not a reflexive relation. (If it were, Rule (c) would make
CP equal to HB.) Consequently, CP is also not a partial order.

Recall that we want CP to retain only some of the HB edges (i.e.,
ordering dependencies) in a way that captures which conflicting
events could have happened simultaneously in a reordered but
certain-to-be-feasible execution. Consider again the example of
Figure 3 from Section 1 and observe that the shown HB edge is not
a CP edge. None of the events shown are CP-ordered—i.e., they
constitute a CP-race (and a predictable race). The same occurs in
the execution of Figure 4.

2 In this section we try to strike a balance between precise presentation and
avoiding tedious definitions for pre-existing, well-understood concepts. We
thus try to be more formal when defining elements unique to our approach
and otherwise rely on intuition—e.g., the preconditions for a well-formed
trace (such as pairing of lock acquisitions and releases, well-nesting of
critical sections) are omitted here but stated fully in our proof of soundness.



Thread 1 Thread 2

w(y)

acq(l)

rel(l)PPq acq(l)

rel(l)

w(y)

Figure 4. Another example of a certain race not reported by HB.

In both cases, the critical sections do not contain conflicting
events, which would order them per Rule (a) of the CP definition.
In contrast, Figure 1 in Section 1 incurs no CP race report: the HB
release-acquire edge is also a CP edge (per Rule (a)) and Rule (c)
can then be used to CP-order the two operations on variable y.

Indeed, Rule (a) of the CP definition is almost inevitable. To see
this consider what constitutes a feasible execution.

Definition 4 (Correctly Reorders). We say that an execution ex′

correctly reorders (CR) another execution ex (also written ex′ =CR

ex) iff ex′ is a total order over a subset of the events of ex that:

• contains a prefix of the events of every thread in ex and respects
program order, i.e., if an event e in ex appears in ex′ then all
events by the same thread that precede e in ex also appear in ex′

and precede e.
• for every read event that appears in ex′, the most recent write

event of the same variable in ex′ is the same as the most recent
write event of the same variable in ex.

The definition of CR matches the intuition for feasible alterna-
tive executions: if every value read is the same as in the observed
execution, then the alternative is certainly also feasible.3

In this light, Rule (a) from the definition of CP is intuitively
clear: as far as later events are concerned, two conflicting events
have to occur in the same order in every correctly-reordered execu-
tion. Thus, conflicting events induce a hard ordering dependency,
if it is certain that they do not constitute a race (in this case, be-
cause they are protected by a common lock). Since two critical sec-
tions over the same lock have to be ordered in their entirety (i.e.,
all events of one have to precede all events of the other) the order-
ing constraint on conflicting events becomes an ordering constraint
on the entire critical section containing them. The same reasoning
applies to Rule (b) of the CP definition: if two events internal to
respective critical sections are CP-ordered, then the entire critical
sections are also CP-ordered.

Rule (c) is the most interesting aspect of the CP definition. The
rule is both very conservative and surprisingly weak, in different
ways. Intuitively, Rule (c) is directly responsible for the soundness
of CP: once some evidence of inevitable event ordering is found, all
earlier and later events in an HB order automatically maintain their
relative order. This conservative aspect of the Rule is necessary for
ensuring that a CP race truly indicates that the events could have
been concurrent. At the same time, Rule (c) is quite weak. Consider
three events e1, e2, e3. It could be that e1 ≪CP e2, e2 ≪HB e3, and
consequently e1 ≪CP e3. This still does not mean that e2 ≪CP e3,
even though the HB order between e2 and e3 is what allows e1 to CP
e3. This aspect is what prevents CP from missing the possibility of
predictable races (as in e2-does-not-CP-e3) even when it assumes
conservatively that certain reorderings are not possible, in order to
maintain soundness.

3 This pairing of a read with the most recent write event implicitly intro-
duces sequential consistency as an assumption. Nevertheless, this is not a
constraint: Every HB race is a CP race. In case no HB races are observed
for an execution, a relaxed memory model yields sequentially consistent
behavior, thus our assumption is valid.

3. Complications and Soundness

We discuss the subtleties of CP through examples of hard-to-
reason-about executions. Such examples naturally lead to the state-
ment of our soundness theorem and its proof.

3.1 Example Reasoning

For each example, it is interesting for the reader to consider in-
dependently whether there is a predictable race or not. Reason-
ing about concurrent executions is quite hard: even concise exam-
ples require exhaustive examination of a large number of possi-
ble schedulings or complex formal reasoning to establish ordering
properties. In the following examples, we expressed the constraints
as symbolic inequalities with disjunctions (e.g. “this event is either
before that or after the other”) and proved manually they were un-
satisfiable.

Figure 5 contains a first example that suggests why sound pre-
dictive race detection is hard in the presence of many threads and
nested locks. We use the shorthand sync(lock) for a sequence
of events that induces an inevitable ordering with other identical
sync sequences. (E.g., sync(n) can be short for acq(n) r(nVar)
w(nVar) rel(n).) For ease of reference, CP edges produced by
Rule (a) of the CP definition are shown in the figure, as twin ar-
rows.

Thread 1 Thread 2 Thread 3

acq(m)

sync(n)
Q

QQs
Q

QQs acq(l)

�
�

�/

�
�

�/

sync(n)

w(x)

rel(l)

sync(n)

w(z)

rel(m) XXXXXXz
XXXXXXz

acq(m)

r(z)

w(z)

rel(m)

acq(l)

rel(l)

w(x)

Figure 5. No race between the two writes to x in any correctly
reordered execution. Twin arrows show the “hard” CP constraints,
i.e., CP order because of Rule (a) of the CP definition. sync(n)
can be thought of as acq(n) r(nVar) w(nVar) rel(n).

There is no predictable race between the two writes to x in
the above example: any correct reordering of the execution will
have the three sync sequences and the critical sections over lock
m ordered in the way they were observed, resulting in an ordering
of the two writes. (Interestingly, the empty critical section over l
in Thread 3 is necessary, or there would be a predictable race.)
The CP definition captures this reasoning accurately. Rule (b) is
essential in establishing that the two critical sections over lock l
are CP-ordered: because of rule (b), the end of the critical section
over l in Thread 2 is CP-ordered relative to the (empty) critical
section over l in Thread 3. (Since CP composes with HB to yield
CP, the sync(n) event in Thread 2 is CP-ordered with acq(l) in
Thread 3, thus triggering rule (b).)

For another interesting example, consider Figure 6.
There is no predictable race on x in this example, but establishing
this fact requires case-based reasoning involving both the hard
ordering constraints induced by sync sequences and the semantics
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rel(m)

wr(x)

Figure 6. Trace with no predictable HB-race on x.

and identity of locks (e.g., the fact that the critical sections on n
cannot overlap). CP avoids such reasoning but gives an accurate
result. The two critical sections on n are not CP-ordered, and also
do not necessarily occur in the order shown in a correctly reordered
execution. The two critical sections on m, however, are CP-ordered
and also necessarily in the order observed. Again, we see the
interesting aspects of Rule (c) of the CP definition: even though
the HB order between the critical sections on n is what enables the
CP order between the critical section on m, the former does not get
upgraded to a CP order.

Figure 7 presents another hard-to-reason-about example.

Thread 1 Thread 2 Thread 3 Thread 4

w(x)

acq(m)

sync(n)

@
@R
@
@R
acq(l)

������
sync(n)

sync(n)

rel(m)

acq(m)

������
sync(o)

sync(o)

rel(l)

acq(l)

������
sync(p)

sync(p)

rel(m)

w(x)

sync(q)HHjHHj sync(q)

sync(r)XXXXXXXXXXXXz

XXXXXXXXXXXXzsync(r)

rel(l)

Figure 7. No predictable race between the two writes to x.

This execution does not have a predictable race on variable x. Nev-
ertheless, the reasoning required to establish this fact can be quite
complex. Removing events can easily result in a racy execution.
For instance, removing the sync(r) edge allows a race by moving
the entire set of actions by Thread 3 and Thread 4 before those of
Thread 1 and Thread 2.

Detecting predictable races can often require complex reorder-
ings of events. The value of a polynomial but sound predictive race
detector is that it avoids exploring all such reorderings. Consider
the case of Figure 8. There is a CP-race between the two writes

Thread 1 Thread 2

acq(m)

sync(o)

w(x)

acq(n)

rel(n)

rel(m)

acq(n)

acq(m)

rel(m)

w(x)

sync(o)

rel(n)

Thread 1 Thread 2

acq(n)

acq(m)

rel(m)

acq(m)

sync(o)

w(x)

w(x)

sync(o)

rel(n)

acq(n)

rel(n)

rel(m)

Figure 8. Exposing the HB race on x (execution on the left) re-
quires a complex reordering of events (shown on the right).

to variable x. There is also a predictable race. It is not possible to
expose this, however, without thread scheduling that breaks up the
outer critical sections, as shown on the right part of the figure. CP
does not need to reproduce the schedule in order to warn of a pos-
sible race.

At the same time, however, CP often avoids complex nested
lock reasoning by not distinguishing between a predictable race
and a deadlock. Our soundness theorem has an interesting form:
a CP-race is a sound indication of either a race or a deadlock
in a correctly reordered execution. The deadlock is immediately
apparent: there is a cycle in the lock-blocking graph. To see this
consider the example of Figure 9.

Thread 1 Thread 2

acq(m)

acq(l)

rel(l)

w(x)

rel(m)

acq(l)

acq(m)

rel(m)

w(x)

rel(l)

Thread 1 Thread 2

acq(m)

acq(l)

acq(l)

acq(m)

Figure 9. The observed execution (left) has a CP-race between the
two writes to x. There is no predictable race, however! Instead, it is
easy to reorder events to expose a deadlock (see right).

There is a CP-race between the accesses to variable x in this ex-
ample. Yet there is no predictable HB race: no correctly reordered
execution can have the two write events without synchronization
between them. The CP soundness theorem states that this is only
possible when a reordering can expose a deadlock due to threads
acquiring locks in a way that introduces a cycle in the acquisition
dependencies.



The above examples offer the reader a glimpse of the com-
plexities of defining CP and proving its soundness. The difficulty
of reasoning about event order highlights the challenge of defin-
ing a relation that weakens the observed ordering much more than
happens-before, yet at the same time is guaranteed to be sound. A
race analysis has to either perform heavy reasoning or to conserva-
tively assume ordering every time events may be ordered. Rule (c)
of the CP definition plays this role but it is still hard to prove that
it is conservative enough. The ultimate conservative ordering is of
course HB: all critical sections are assumed to always be precisely
in the order they were observed.

3.2 Soundness

We now state more fully our assumptions on the execution form, as
well as our soundness theorem. Our assumptions include the well-
nesting of locks, as well as standard lock semantics.

Definition 5 (Trace). A trace is a total order of events such that

1. Acquisition of a lock is not followed by another acquisition of
the same lock without an intervening paired lock release.

2. Critical sections are well-nested. More explicitly, if an acqui-
sition of lock l2 is performed after an acquisition of lock l1 by
the same thread and before l1’s paired release then the paired
release of l1 cannot appear before the paired release of l2 does.

Our main soundness theorem has a simple statement:

Theorem 1 (CP is Sound). Given a trace tr with a CP-race, we
can produce a tr′′ =CR tr with either an HB-race or a deadlock.

The full proof can be found in the Appendix.
Note that the statement of the theorem applies only to one CP

race. (And, since ≪CP is a subset of ≪HB, every HB-race is also
a CP-race.) That is, the theorem proof establishes that either the
“first” CP-race of a trace is an HB-race in some correct reordering
of the trace or we can produce a correct reordering with a deadlock.
(The idea of stating the soundness guarantee so that it applies to
the first error reported is standard [21, 23].) The first race is the
one that finishes earliest in the total order of the trace, i.e., a CP-
race between events e1 = [t1 : u1]i and e2 = [t2 : u2] j, with i < j,
such that that there is no CP-race between two events both of which
appear before e2, as well as no race between events e3-e2, with e3

appearing after e1 and before e2.
Although the theorem’s guarantee applies to only one race, we

can conservatively maintain soundness when reporting multiple
races, at the cost of potentially missing some. Specifically, once
a CP-race (which may be merely an HB-race) is discovered (and
reported), the rest of the trace can be treated as if the CP-race were
a CP edge, thus hard-ordering the two racy events. This means that
the soundness guarantee of the theorem then applies to the next CP-
race reported: any correct reordering of a restricted trace (i.e., one
with extra CP edges) is a correct reordering of the original trace.
The drawback is that some CP-race nearby another CP race may
not be reported due to our conservative treatment.

The form of the soundness theorem is quite interesting. Al-
though a CP race implies a predictable race only in deadlock-free
programs, this is hardly a disadvantage. Pointing out a potential
deadlock is at least as important as pointing out races. Furthermore,
deadlocks are arguably an easier problem to dynamically detect, or
statically eliminate. Therefore we expect CP warnings to be almost
always (correct) race warnings.

4. Implementation

CP reasoning, based on definition 2, is highly recursive. Notably,
Rule (c) can feed into Rule (b), which can feed back into Rule (c).
As a result, we have not implemented CP using techniques such

as vector clocks, nor have we yet discovered a full CP implemen-
tation that only does online reasoning (i.e., never needs to “look
back” in the execution trace); these remain challenging questions
for future work. However, CP has an easy polynomial algorithm,
derived directly from the definition. We express this algorithm in
the Datalog language. (Datalog programs have guaranteed poly-
nomial complexity, and Datalog can express any polynomial algo-
rithm.) Consider a trace of execution expressed via the input re-
lations of Figure 10. We report errors of the form “instruction X
accessed memory location Y in a way that races with instruction
Z”.

TraceNext[e1] = e2. // what is the next event after e1

ThreadForEvent[e] = t. // what is the thread performing e

AcqEvent[e] = m. // e is a lock acquire for mutex m

RelEvent[e] = m. // e is a lock release for mutex m

WriteEvent[e] = x. // e is a write for variable x

ReadEvent[e] = x. // e is a read for variable x

Figure 10. Input relations for our Datalog algorithm.

(Datalog code notation: A relation in the form “Relation[arg]
= value” is a function; the left arrow symbol, <-, is the implication
used for inference, i.e., if the right hand side is true, the left hand
side fact is inferred; ; is the logical “or” operator.)

We can then straightforwardly define concepts such as
“critical sections”, “matching lock/unlock” operations, etc.
These are captured by relations “InSameCriticalSec(e,eAcq)”
(event e is in the critical section starting at eAcq) and
“MatchingCriticalSecBoundary[eRel] = eAcq” (event eRel is the
lock release paired with lock acquisition eAcq). This allows defin-
ing HB and eventually CP as in Figure 11.

CP(e1Rel,e2Acq) <-

MatchingCriticalSecBoundary[e1Rel] = e1Acq,

RelEvent[e1Rel] = AcqEvent[e2Acq],

InSameCriticalSec(e1,e1Acq),

InSameCriticalSec(e2,e2Acq),

(WriteEvent[e1] = WriteEvent[e2];

WriteEvent[e1] = ReadEvent[e2];

ReadEvent[e1] = WriteEvent[e2]).

CP(e1Rel,e2Acq) <-

MatchingCriticalSecBoundary[e1Rel] = e1Acq,

RelEvent[e1Rel] = AcqEvent[e2Acq],

InSameCriticalSec(e1,e1Acq),

InSameCriticalSec(e2,e2Acq),

CP(e1,e2).

CP(e1,e2) <- CP(e1,e3), HB(e3,e2).

CP(e1,e2) <- HB(e1,e3), CP(e3,e2).

Figure 11. Straightforward CP logic in Datalog.

Having a polynomial algorithm is not sufficient for scalability,
however. Realistic executions can have millions of “significant”
shared memory events. (Significant events are those remaining
after elimination of events that will not affect the reporting of a
race—e.g., repeat accesses to the same shared memory variable by
the same thread without intervening synchronization operations.)
Defining relations such as HB or CP on a cross-product of events
is prohibitive. In our implementation we address this challenge in
two ways:

• We compute quadratic relations, such as HB or CP, only on lock
acquisition and release events. The HB and CP order on regular
memory events is then computed on-demand based on the HB
and CP order of preceding/following synchronization events.
This is already shown in the code of Figure 11.



• We do not fully compute HB or CP, but instead maintain a finite
window K of allowed distance for event reorderings (typically
500 or 1000 significant shared memory events). HB(e1,e2) and
CP(e1,e2) are guaranteed to be conservatively computed for
endpoints e1 and e2 less than K significant events apart. This
windowing strategy effectively makes our race detection often
be of practically linear complexity: we only relate every event
with at most K others.4 (Our implementation does have some
remaining Ω(n2) or higher asymptotic complexity parts, but for
relations that are expected to be small. A notable exception in
practice is long critical sections, for which we have to relate all
events to all others, thus suffering quadratic complexity.) The
windowing strategy also means that our algorithm will only
detect and report races between events less than K significant
events apart.

Our computation of CP for only a finite window is implemented
by computing a relation FollowingNearbyEvent and various spe-
cializations of it (for nearby events by the same thread, nearby
synchronization actions, etc.). These relations are then threaded
throughout the implementation to restrict computations that require
examination of every pair of events. Importantly, this means that
our main implementation logic differs from the simple form of Fig-
ure 11. In particular, all rules need to both have a filter (so that
they trigger accurate computation only when events are within a
distance of K) as well as a conservative closure (so that a sound
overapproximation of CP is computed when there is a possibility
of missing an ordering due to the finite window). This is well illus-
trated by looking at the form of the second rule of the CP definition,
which is also the second rule in Figure 11. In the implementation
the rule is broken up in two:

// the version for when CP is accurate

CP(e1Rel,e2Acq) <-

MatchingCriticalSecBoundary[e1Rel] = e1Acq,

RelEvent[e1Rel] = AcqEvent[e2Acq],

InSameCriticalSec(e1,e1Acq),

InSameCriticalSec(e2,e2Acq),

CP(e1,e2),

FollowingNearbySynchronizationEvent(e1,e2).

// the version for conservative CP when the

// base CP information may be inaccurate

CP(e1Rel,e2Acq) <-

MatchingCriticalSecBoundary[e1Rel] = e1Acq,

NearbyCriticalSecOnSameLock(e2Acq,e1Rel),

InSameCriticalSec(e1,e1Acq),

InSameCriticalSec(e2,e2Acq),

SynchronizationEvent(e1),

SynchronizationEvent(e2),

!FollowingNearbySynchronizationEvent(e1,e2).

This approach allows us to maintain soundness while achieving
scalability. Additional optimizations in our implementation include
manual indexing for efficient relational joins, as well as join order
optimizations.

5. Experiments

We evaluated the performance and prediction capability of our CP
race detector on a collection of multithreaded Java benchmarks,
mostly from previous studies [12, 17, 54]).

4 One may argue that even an exponential search algorithm can become
linear by limiting its search space to a finite window, but the constants
(space and time overhead) would be prohibitive in that case. Our limit-
ing the accurate-CP-computation window is practically feasible exactly be-
cause computing CP has a reasonable asymptotic complexity in the first
place.

The most substantial of our benchmarks are:

• Jigsaw, W3C’s web server [53], coupled with a stress test har-
ness.

• FtpServer, a high-performance FTP server implementation
from The Apache Foundation [51], coupled with a JMeter
workload [52].

• StaticBucketMap, a part of the Apache Commons project, of-
fering a thread-safe implementation of the Java Map interface.
The code size of this benchmark is small, but its driver exercises
it thoroughly, resulting in a long trace.

To perform the CP analysis on the benchmarks, we used the
RoadRunner framework [22] to dynamically instrument the byte-
code of each benchmark at load time. The instrumentation code
creates a stream of events for field and array accesses, synchro-
nization operations, thread fork/joins, etc.

We used this infrastructure to perform an inexpensive happens-
before race analysis and to also produce a trace subsequently used
for the CP analysis. The CP analysis was thus explicitly coded
to report races if they were not also HB races (since the latter
were discovered and reported already). We conservatively translate
accesses to volatile variables and thread creation/join events into
pseudo-lock accesses. The traces produced are quite sizable even
though stack-variable references are filtered out. The traces are
then reduced to only maintain events concerning shared memory
locations, and to eliminate re-accesses to the same variable by
the same thread without intervening synchronization. The reduced
trace is then imported into a database and analyzed using our
Datalog implementation.

The first columns of Table 1 show the main metrics for our
benchmarks. The benchmark size in LC is not entirely represen-
tative of its complexity for our analysis: much of the code in a pro-
gram’s directory is library code, not exercised at all. Conversely,
much of the code actually exercised is Java library code, never
shown in the benchmark size. (Library code is still valuable to ana-
lyze: the code may not contain races, but may be used in an unsafe
way, exposing a race in client code.) StaticBucketMap is the most
extreme example: if we were to report its code size uniformly with
the other benchmarks, it would come to 110KLC. The directory
contains the entire Apache Commons Collections project, however.
The main StaticBucketMap class and test driver file are just 807
LC. Neither of the two sizes is representative of the code actually
exercised, though the second is closer. Similar caveats apply to the
report of thread counts. This metric lists the total number of thread
created, which can be higher than the number of threads active si-
multaneously.

Table 1 collects the results of our experiments. We use a high-
performance commercial Datalog engine by LogicBlox Inc., on
academic license. All analysis was done on a machine with a Dual
Six Core Intel Xeon X5650, 2.66GHz Processor and 24GB of
RAM. (The CP analysis implementation is single-threaded, hence
only one core was active at a time.) We performed CP analysis with
the reordering window K = 500 significant events, as described
in Section 4. We report the races found in a single HB run, in 10
HB runs, as well as the races found by CP in its single run but
never found in the 10 HB detector runs. Races are reported per-
variable (i.e., dynamic race instances are collapsed based on which
data words they occur on). Still, multiple races may have the same
underlying cause (e.g., a single missing lock/unlock may fix more
than one race). Furthermore, recall that our soundness guarantee
only applies to the first race and ensuring that all race reports
are sound requires post-processing (which we currently perform
manually and requires multiple re-runs of our analysis). For these
reasons, the number of races and running times should be viewed
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banking 145 762 522 10 1 1 +0 10s
elevator 1.4k 25k 16k 5 0 0 +0 38s
FtpServer 39k 992k 543k 11 21 27 +7 20m 06s
hedc 25k 102k 1.4k 6 5 5 +0 9s
Jigsaw 49k 1,992k 42k 77 18 33 +3 17s
philo 86 669 382 6 0 0 +0 10s
pool1.2 8.4k 692 526 8 0 0 +0 10s
pool1.3 24k 841 683 8 0 0 +0 12s
StaticBucketMap see text 265k 133k 5 7 7 +0 1m 35s
stringBuffer 1.4k 223 178 8 0 0 +0 9s
tsp 706 328k 381 4 0 0 +0 9s
vector 26k 325 270 15 1 1 +0 9s

Table 1. Benchmark metrics and number of races detected by our CP analysis but not found in 10 HB runs, as well as time taken for CP
analysis. Running times of 9sec are effectively zero: this is the overhead of initializing the Datalog engine and importing data from text files.

only as an imperfect proxy of the utility of our approach. A likely
way our analysis would be used by a programmer in practice would
be not to report all races, but by analyzing a trace, fixing the first
race in the code, then re-analyzing.

The results are representative of the position of our approach
relative to others. As can be seen in Table 1, 8 of these benchmarks
(i.e., two-out-of-three) produce tiny reduced traces (fewer than
2,000 events, with 7 of them having fewer than 1,000). These
brief executions offer little opportunity to detect HB races and
virtually no opportunity to correctly reorder events: For all of the
tiny traces, CP does not discover any races that are not HB races.
Nevertheless, a lockset-based approach would report races even
for these executions, since it is easy to observe when a shared
variable is accessed by a different thread with a disjoint set of
locks held. This illustrates quite well how unsound, lockset-based
race detectors tackle a fundamentally different problem. Unsound
predictive analyses highlight possible race conditions, whereas our
work focuses on proving the presence of race conditions.

Elevator is another benchmark that is mostly uninteresting. Al-
though its trace is longer than the tiny ones, it is still fairly short
(16k events), and has neither HB nor CP races. The jPredictor study
[12] and the Said et al. work [40] showed no races on elevator ei-
ther, despite using an unsound lockset-based analysis and an SMT
solver that explores all valid trace reorderings, respectively.

The real benchmarks for our approach are the three longer
traces: FtpServer, Jigsaw, and StaticBucketMap. It is instructive to
compare results with HB. Clearly HB race detection and CP race
detection are different in nature. The cost of our current CP analysis
is at least one-to-two orders of magnitude higher than the cost of
HB race detection. Nevertheless, the goal of CP is to perform a
deep analysis, implicitly considering event reorderings, and to find
“hard” races, which a plain HB analysis would not normally detect.
For both FtpServer and Jigsaw, CP-based race detection uncovers
several races that were not exposed by any of the 10 happens-
before race detector runs. This ranges from 3 to 7, or an average
of 17% new races for these two benchmarks, confirming that CP
race detection can target deeper races than typical HB detectors.
Examining the intermediate results of our analysis indicates that
CP is a much weaker relation than HB: the number of CP edges
computed by our analysis (among synchronization operations) is
typically as low as 10% to 20% of the number of HB edges for these
benchmarks. Thus, happens-before race detection often considers
events to be ordered when there is no semantic reason why they
should be.

StaticBucketMap is our final benchmark. It has a long execu-
tion, covering very little code, thus CP only reports races also de-
tected by HB. This is the inverse problem from that of the tiny
traces: CP does not win over HB not because of insufficient cov-
erage but because of too-thorough coverage of the possible execu-
tions. It would be interesting in the future to perform a sensitivity
analysis and create runs of several sizes, both for StaticBufferMap,
as well as for the 9 programs with smaller traces, to see at what
point CP starts detecting more races than HB and when HB catches
up. This requires extensive knowledge of the benchmark programs,
however.

The table also shows that the time required for CP analysis is
quite low, although there is certainly room for further improve-
ment of our CP implementation. For small traces, CP analysis is
almost instantaneous. For traces with long critical sections, many
threads, and deep lock nesting, the analysis time grows. Still, the
overall scalability of CP analysis far exceeds reported numbers for
past sound predictive concurrency analyses in the literature. For in-
stance, Said et al.’s SMT-solver-based technique [40] takes 57sec to
analyze a 1.4k event hedc trace. (The longest trace analyzed by Said
et al. is much smaller than ours, at 45k events long. Yet even this
size may be misleading, since the trace is for tsp, which performs
a tiny number of thread-shared events relative to the original trace
length.) We are not aware of a sound predictive analysis that can
scale to executions at the level of our reactive applications Jigsaw
and FtpServer with a running time in the low minutes.

6. Related Work

Our approach is distinguished from other related work by (1) main-
taining precision while generalizing beyond an observed trace and
(2) guaranteeing polynomial complexity and achieving scalability.
We discuss other precise predictive and other dynamic approaches
in some depth, and briefly overview other race detection tech-
niques.

6.1 Predictive Approaches

The most relevant work to our precise race prediction tech-
nique [10–12, 40, 46] was briefly discussed in Section 1 and Sec-
tion 5. Such work is typically a hybrid of testing and model check-
ing and does not achieve the polynomial complexity and scalability
of causally-precedes race detection. For instance, in the recent work
by Said et al. [40] scalability relies on a modern SMT solver and an
efficient encoding of the problem. Another interesting idea that past
work [10, 11] has explored is sliced causality, which makes use of



a priori control- and data-flow dependence information to obtain a
reduced slice of the happens-before partial ordering for a particular
observed trace. Race conditions are predicted with sliced causal-
ity by logging only the relevant operations in a program trace and
model-checking all feasible trace permutations in a post-mortem
analysis phase. These permutations are sound because one may in-
fer and ignore irrelevant operations via static dependence informa-
tion; the soundness of the predictions follow from the soundness
of the trace permutations generated. Sliced causality requires two
static analysis phases for prediction. This approach can detect races
that our approach does not: recall that our correctly-reordered exe-
cution always respects intra-thread event order. However, our defi-
nition of causality is explicitly geared towards mechanisms that do
not perform static program analysis, and, thus, cannot tell whether
a value read by a thread influences subsequent values produced
by the same thread. Adapting our causally-precedes order to also
take such dependences into account (instead of assuming that ev-
ery value read by a thread affects all subsequent thread actions) is
orthogonal to the core properties of the definition.

Among this work, the jPredictor tool [12] is distinguished by ex-
plicitly producing a polynomial algorithm for race detection. Nev-
ertheless, in order to do so, jPredictor abandons the general sound-
ness guarantees of the theory that underlies it. The main soundness
theorem of the jPredictor work (which applies to more than race de-
tection) states that every produced “consistent permutation” corre-
sponds to a possible program execution. Nevertheless, “generating
all the consistent permutations of a partial order is a #P-complete
problem” [12]. To avoid an exponential search, jPredictor employs
two shortcuts for the case of race detection. The first is avoiding
a search of permutations: events are processed following the order
of the original execution. For predictive power, jPredictor relies on
an unsound definition of what constitutes a race (Def. 5 of [12]).
The definition adapts (to sliced causality) the lockset criterion for
race detection: two conflicting, sliced causality-unordered accesses
that occur without holding a common lock are considered to race.
The examples of Section 3 (assuming a program text that causes the
events in the order shown, under the sliced causality criterion) re-
sult in false race reports under this definition. The second shortcut
is in the implementation, which performs a single slicing traversal
of the trace, also resulting in unsoundness.

Another interesting predictive approach consists of reordering
models that are more permissive than our correctly-reorders rela-
tion on executions. Past work [20, 27] assumes that threads only
communicate via holding locks, and not by writing to shared mem-
ory locations. Any trace that holds the same locks in the same or-
der of nesting is considered an appropriate generalization of the
observed behavior in that predictive model. The Penelope [49] sys-
tem then adds soundness back by trying to reproduce the predicted
atomicity violation through changes to the scheduling of a real ex-
ecution. The published experiment numbers imply that their ap-
proach does not scale at or near the level of CP race detection and
can suffer from high costs in small yet complex executions. Nev-
ertheless, there cannot be a valid comparison since Penelope is an
atomicity violation detector and not a race detector (thus addressing
an inherently harder problem). Combinations of approaches along
these lines should be interesting future work.

6.2 Dynamic Analysis

Happens-Before Approaches Numerous tools are based on Lam-
port’s happens-before relation [14, 21, 37, 43]. These tools are
more precise than lockset-based race detectors, but are often less
efficient. TRaDE [14] uses accordion clocks along with dynamic
escape analysis to boost performance. Banerjee et al. [5] provide
an alternative algorithm to the simple happens-before analysis that
uses a linear amount of storage. Happens-before race detectors

have also been applied to nested fork-join parallelism [32]. The


+ [37] algorithm is an efficient happens-before vector clock al-
gorithm that uses the epoch optimization for a 2-3x performance
improvement. FT [21] improves upon + by using an
adaptive lightweight representation for the happens-before relation
and by introducing optimized constant-time fast paths that account
for approximately 96% of operations encountered in a trace, and
provides a 2.3x performance improvement over +. Pacer [7] im-
proves on the performance further by employing sampling tech-
niques.

Lockset Approaches A lockset for a shared variable is the set
of locks that protect access to that variable. Locksets were intro-
duced [15] as an alternative representation to the happens-before
analysis. Later, locksets were used alone as an efficient technique
for data race detection in Eraser [42].

Every CP race (and hence every HB race) is also a lockset
race, since the absence of a CP edge between conflicting accesses
to a location means that there is no consistently held protecting
lock for that location. Consequently, a lockset-based race detector
would detect all races detected by CP,5 and may also report many
additional warnings. In practice, many of these extra warnings are
false alarms that do not correspond to actual races.

Various refinements and extensions for Eraser have been pro-
posed. Static escape analysis can improve performance [35, 55].
Reasoning about races at the object level instead of the mem-
ory word level [55] improves performance but leads to more false
alarms. The lockset technique was also extended with timing thread
segments [25] to reduce false positives caused by data not being
protected by a lock during an initialization phase. Further perfor-
mance enhancements use whole-program static analysis to reduce
the amount of instrumentation necessary [13] or involve type in-
ference [2]. Eraser’s algorithm has also been extended for the Java
Memory Model [31] and implemented with AspectJ [6].

Hybrid Techniques Recent work on dynamic data race detec-
tion focuses on combining locksets and happens-before analy-
sis. O’Callahan and Choi [36] developed a two-phase localization
scheme; a first pass lockset analysis filters out problematic fields
for a second pass hybrid analysis. RaceTrack [61] uses a happens-
before analysis to estimate whether threads can concurrently access
a memory location so as to reduce false positives caused by empty
locksets. MultiRace [38] presents improved versions of happens-
before and lockset algorithms. Locksets enable happens-before ap-
proaches to report additional warnings and reduce the number of
vector clock comparisons needed in the happens-before analysis.
Goldilocks [17] combines locksets and happens-before in an un-
usual way by using locksets to efficiently track the happens-before
relation. This precise, complicated analysis is embedded in a Java
virtual machine to enable continuous monitoring of race conditions.

6.3 Other Approaches

Several static approaches exist to deal with data races. Type sys-
tems [1, 8, 24, 41] and languages [4] have been proposed to prevent
races in programs. Other static approaches include Warlock [50]
and Locksmith [39] for ANSI C programs, scalable whole-program
analyses [34, 56] and dataflow-analysis-based approaches [16, 19].
Aiken and Gay [3] also investigate static race detection focusing on
SPMD programs.

Scheduler-driven approaches, such as model checking [33], in-
volve running the target program with many different thread sched-
ules, either concretely or symbolically. RaceFuzzer [44] takes po-
tentially racing access pairs and uses a randomized scheduler to

5 Note that the Eraser algorithm, which incorporates lockset-based reason-
ing, is also slightly incomplete in how it reasons about thread-local data,
and so may miss some real HB or CP races.



drive the execution to exhibit an actual race condition. It would be
interesting to try to combine such techniques with our approach,
which is explicitly geared towards discovering “hard” races with-
out exploring many complex interleavings.

7. Conclusions

Precise race detectors are important tools for developing reliable
multithreaded programs, while avoiding the costs associated with
false alarms. We showed how to extend the traditional notion of
race detection to also support race prediction, without sacrificing
scalability or soundness. Our work introduces the novel concept
of the causally-precedes relation, which significantly weakens HB.
We prove that CP race detection is sound and demonstrate its
practical value. Defining and proving the soundness of CP was far
from trivial: both tasks became possible only after several failed
attempts and significant collaborative work.

We believe that our research can open several avenues for fur-
ther work. First, it is quite possible that a more efficient implemen-
tation of CP can be derived, to push performance further by at least
an order of magnitude and even bring it to levels comparable to HB.
Such a development may, for instance, be based on a novel summa-
rization of CP information using vector clocks, or on the use of Bi-
nary Decision Diagrams to represent Datalog relations. (We could
try the bddbddb engine [60] for this purpose.) A second possibil-
ity is that of defining other relations that weaken HB in a sound
yet efficient way. Finally, we suspect the underlying notion of trace
prediction, based on the causally-precedes relation, may also pro-
vide benefits when checking properties such as deadlock-freedom,
atomicity, and determinism.
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Appendix: Soundness Proof

Theorem (CP is Sound). Given a trace tr with a CP-race, we can
produce a tr′′ =CR tr with either an HB-race or a deadlock.

Proof. Let the first race of trace tr be between events e1 and e2, with
e1 appearing before e2 in the trace. Being the first race means that
there is no CP-race between two events both of which appear before
e2, as well as no race between events e3-e2, with e3 appearing after
e1 and before e2.

Consider a trace tr′ such that:

• tr′ =CR tr and tr′ has the same first CP-race as tr, i.e., between
events e1 = [t1 : u1]i and e2 = [t2 : u2] j, with i < j. (With i and j
the indices of the events in trace tr′.)

• Among traces satisfying the above property, tr′ has minimal
distance j − i between events e1 and e2 of the first CP-race.
(Intuitively, this means that all irrelevant events between e1 and
e2 are correctly-reordered out of the e1-e2 segment in trace tr′.)

• Among traces that satisfy the above properties, tr′ is one that
also minimizes the distance between e2 and every beginning of a
critical section containing e1, from innermost to outermost. That
is, among traces that have the same (minimal) distance between
e2 and the innermost acquisition event k1 for a critical section
containing e1, tr′ minimizes the distance between e2 and the
second such lock acquire, among those satisfying all the above
tr′ minimizes the distance between e2 and the third such lock
acquire, k3, and so on, all the way to the outermost critical section
containing e1.

We will refer to the last two requirements as the minimality prop-

erty. For such a trace tr′, we get important lemmas:

Lemma 1. All events e between e1 and e2 are such that

(a) e1 ≪HB e and e ≪HB e2

(b) e1 3CP e and e 3CP e2.

Proof. We prove each case separately.

(a) • Assume e 3HB e2. Then we can move e and all events e′

that occur between e and e2 such that e ≪HB e′ to the point
right after e2. The result of the move maintains program order.
(Note that thread t2 is not affected by the move at all, since
we have already assumed that e 3HB e2, therefore e cannot
happen-before any previous event in t2.) If this move (or any
move in later proofs) is not possible it is because of one of
two reasons:
• It causes the result to not be a trace because the pairing

of lock acquisition/releases becomes invalid (i.e., a lock is
acquired while held).



• The result is a valid trace t but t ,CR tr′ because a read
now sees a different written value.

The former means that the moved events have a common lock
with some non-moved event (say, f ) that occurs before e2—
an impossibility since in this case e ≪HB f , hence f would
be a moved event. The latter reason is also an impossibility
since then a moved event would conflict with a non-moved
event, f . If the two events were CP-ordered, then they would
also be HB ordered, hence f would have moved. If the events
were not CP-ordered then e1-e2 would not have been the first
race of tr′. Hence the move is possible, which violates the first
minimality property, therefore our assumption was false and
e ≪HB e2.

• If e1 3HB e, then we can move e and all events e′ that occur
between e1 and e such that e′ ≪HB e to right before e1. Again,
with similar reasoning as above (or as in Lemma 2, below) we
get a contradiction.

(b) If either e1 ≪CP e or e ≪CP e2, then we would have had
e1 ≪CP e2, per part (a) and the definition of CP: a contradiction.

�

Lemma 2. Consider any lock acquire event a1 for a critical section
containing e1. All events e between a1 (inclusive) and e1 have
a1 ≪HB e and if e1 ≪HB e2 then e ≪HB e2.

Proof. Assume a1 3HB e. Let E be the set of operations made up
of e and all e′ that occur between a1 and e such that e′ ≪HB e. Note
that set E cannot contain any events from thread t1, or else a1 ≪HB

e. Try to move all operations in E to right before a1. If the move is
not possible, it is either because these moved events have a common
lock with some non-moved event, f (a contradiction, since then
f ≪HB e, and f would be moved) or that the moved events conflict
with a non-moved event (also a contradiction since it would imply
a race before e1-e2 or a CP relation, which violates the assumption
of no-HB between a1 and the moved events). Therefore, moving E
before a1 is possible, and the result of the move maintains intra-
thread order. However, moving E violates the minimality property
of tr′.

The fact that (e ≪HB e2) follows from similar reasoning as in
Lemma 1, but uses the assumption that e1 ≪HB e2 to establish that
e1 is not among the moved events. �

Lemma 3. Any conflicting events that both occur before e2, or with
one being e2 and the other occurring after e1 and before e2, have to
be CP-ordered.

Proof. Otherwise we trivially have a CP-race earlier than e1-e2. �

Lemma 4. Consider any lock acquire event a1 for a critical section
containing e1. If a critical section c...c′ starts before event a1 and
ends after a1 and before e1 then a1 ≪CP c′.

Proof. By induction.

Base case: Consider the c...c′ that ends the soonest after a1 (among
all such c...c′ that satisfy the stated conditions). Assume that
a1 3CP c′. By the well-nesting of lock operations, such a
critical section c...c′ cannot be performed by thread t1.
Let d be the first event after a1 in this critical section. We will
try to move d...c′ to the point right before a1, respecting intra-
thread order. If the move is successful it violates the minimality
of tr′, hence the move must be illegal because it violates some
property of CR or of the definition of a trace. Therefore, the
move must be illegal for either of the usual two reasons:

1. It causes the result to not be a trace because the pairing
of lock acquisition/releases becomes invalid (i.e., a lock is
acquired while held).

2. The result is a valid trace t but t ,CR tr′ because a read now
sees a different written value.

For case (1), the moved events cannot be acquiring a lock held
by thread t1 at position a1, since that lock would not be released
before e1. If the lock were held by a thread other than t1, we
have a critical section with the stated properties for c...c′ that
ends before the currently considered c...c′, which is impossible.
Case (2) means that the moved events conflict with some non-
moved event that occurs after a1. This non-moved event e′′ has
to CP the moved event it conflicts with (by Lemma 3). But from
Lemma 2 we have a1 ≪HB e′′ and therefore a1 ≪CP c′.

Inductive case: the argument is identical to the base case, except
in case (1) when we consider the possibility that a lock that
needs to be acquired by the moved events is held by a thread
other than t1. In this case, we have an earlier critical section
g...g′ with the stated properties, and therefore a1 ≪CP g′, by
the inductive assumption. But since our c...c′ acquires the same
lock, we get the desired a1 ≪CP c′. �

Lemma 5. There cannot be a critical section by a thread other than
t2 that starts after event e1 and before e2, and ends after event e2.

Proof. Assume that such critical sections exist. Among them pick
the c...c′ that starts last, i.e., closest to e2. Let d be the last event
before e2 of this critical section. We have two cases:

1. If c...d does not contains nested critical sections inside it, we
can move all events c...d to the point right after e2. The proof
is similar to that of Lemma 4. The move respects intra-thread
ordering. Also the moved events cannot be acquiring a lock
held at point e2. (There are no nested critical sections in the
moved events, and the lock acquired by event c is still held at
e2.) Furthermore, the resulting trace is a correct reordering of
the original because if it were not we would then have a conflict
between events whose relative position changes, i.e., between
the moved events and non-moved events. But in that case there
would be a CP edge originating in c...d to an event before e2

(by Lemma 3) and since c is between e1 and e2 we would get
(using Lemma 1) e1 ≪CP e2 (a contradiction).

2. If c...d does contain critical sections, let g...g′ be the one ending
last before e2. Consider an event sequence produced as follows:

- we drop all events starting from (and including) g of that
thread

- we drop all events after e2 by all other threads.

Clearly the result is a prefix of tr′. If it is a legal trace that cor-
rectly reorders tr′ then we are violating the minimality of tr′.
In the resulting event sequence there cannot be an event acquir-
ing a lock already held: the only dropped lock release events
are either after e2 (in which case subsequent lock acquisitions
are also dropped), or are dropped together with their lock ac-
quisition event (in the case of g...g′ events). Note that if there
is a critical section inside c...c′ that starts before g...g′, it has
to also end before g, or it would violate the definition of either
g...g′ or c...c′. Also, no read can see a different write, or this
would imply a conflict between a dropped event after g and an-
other before e2. In such a case we would have a CP ordering,
per Lemma 3 and e1 ≪CP e2, as before. We conclude that the
resulting trace correctly reorders tr′ and violates its minimality
assumption: a contradiction.

�

Armed with these lemmas about trace tr′ we can now attempt to
prove the soundness theorem. We will show that tr′ either has an
HB race (in fact, e1 and e2 have to be adjacent in this minimal trace)
or, if not, the trace exposes a deadlock which can be caused by a
slightly reordered trace.



Clearly, if e1-e2 is an HB race in tr′ then we are done. Assume
it is not. We will try to CR-reorder tr′ so that one of the minimality
properties is violated (which is a contradiction). Consider the first
event f such that:

• f is performed by a thread other than t1

• f occurs after e1 and before e2.

Such an event needs to exist if e1-e2 are HB-ordered. Furthermore,
by Lemma 1, e1 ≪HB f , and since f is the first such event in any
thread other than t1, it needs to be a lock acquire. Consider then the
critical section f ... f ′. There are two cases:

1. f ′ occurs before e2. Let f ... f ′ be over lock l. We get two
subcases:

(a) l is not held by t1 during e1.
Since e1 ≪HB f and f is the first such event outside t1,
there must be a critical section over l after e1 and before
f . Let g be the lock acquire event of that critical section. g
has to be an event by thread t1, otherwise the definition of
f would be violated (there would be another “first” event).
Also, g has to be after e1, by our assumption that l is not held
during e1. Consider a move of f ... f ′ to right before point g.
The move respects intra-thread order. Also, if a read sees a
different write then a moved event must conflict with one
of the non-moved events after g, hence (Lemma 3) we have
some e′′ such that e′′ ≪CP f ′. But we have e1 ≪HB e′′ (by
Lemma 1), e′′ ≪CP f ′, and f ′ ≪HB e2 (by Lemma 1), hence
e1 ≪CP e2: a contradiction.
Finally, the move may cause a lock, m, to be acquired
while being held: this means a critical section acquiring and
releasing that lock is inside f ... f ′. (Assume w.l.o.g. that m
is the first such lock.) If m is held at point g by a thread t3,
other than t1, then it has to be released before f , violating
the definition of f (since there is a different first event after
e1 by a thread other than t1).
A more interesting case is when lock m is held at point g
by thread t1. In that case, lock l is nested inside lock m in
thread t1 (because l is acquired at position g with m held) and
lock m is nested inside lock l in thread t2. We can cause a
deadlock by moving a prefix of the f ... f ′ critical section (up
until the lock m acquisition) to point g. Therefore the move
of f ... f ′ to point g either produces a legal trace t such that
t =CR tr′, or exposes a deadlock. The move can be repeated
until there are no more critical sections over lock l between
e1 and f ... f ′. At that point, we can just move event f to
right before e1. This would produce a correctly reordered
trace that violates the minimality of tr′: a contradiction.
We conclude that if Case 1(a) occurs, there is always a
deadlock in a correct reordering of trace tr′.

(b) l is held by t1 during e1.

Let a2 be the last lock acquisition event of lock l before
e1. Consider a move of f ... f ′ and all previous events by
the same thread after a2 to right before point a2. Let a′2 be
the lock release paired with a2. The move respects intra-
thread order. Also, if a read sees a different write then
a moved event must conflict with one of the non-moved
events after a2, hence (by Lemma 3) we have some e′′ such
that e′′ ≪CP e′, where e′ is a moved event, and therefore
e′′ ≪CP f ′ (since all the moved events precede f ′ and are by
the same thread). But (by Lemma 2) we have a2 ≪HB e′′ and
therefore a2 ≪CP f ′. Since, however, the critical sections
starting at a2 and ending at f ′ are over the same lock l, we
get that a′2 ≪CP f ′, because of the second rule in the CP
definition. This implies e1 ≪CP e2 (since e1 is before a′2, by

assumption of case 1(b), and f ′ ≪HB e2, by Lemma 1): a
contradiction.
Finally, we consider the case of the move being illegal
because it causes a lock, m, to be acquired while being held.
If such an m is held by a thread t3, other than t1, at point
a2, then it has to be released before e1 (otherwise the release
event would violate the definition of f , since it would come
before it, after e1 and by a thread other than t1). This means
that Lemma 4 applies to the critical section of that thread.
Hence, we have that a2 ≪CP h′, where h′ is m’s release
event in t3. But since h′ happens-before some moved event
(since the moved events acquire lock m), we get e1 ≪CP f ′

(again, all moved events are program-ordered with f ′) and
consequently (via Lemma 1) e1 ≪CP e2: a contradiction.
If lock m is held at position a2 by thread t1, then l is nested
inside m in thread t1, while m is nested inside l in the thread
performing f ... f ′. (The lock acquisition of m by that thread
cannot be before f since the lock is released after e1 and f
is the first event after e1 by a thread other than t1. Therefore
m is acquired and released inside critical section f ... f ′.) As
before, we can cause a deadlock by moving a prefix of the
f ... f ′ critical section (and any earlier events after a2 by the
same thread) to a2.
Therefore, this case again implies a deadlock in a reordering
of trace tr′.

2. f ′ occurs after e2.
We then have by Lemma 5 that f ... f ′ has to be performed by
thread t2. Let f ... f ′ be over lock l. Lock l cannot be held by t1

during event e1, or e1 ≪CP e2. Therefore, there must be some
critical section g...g′ over l, performed by thread t1 after e1, such
that g′ ≪HB f . (Recall that f is the first event after e1 by a thread
other than t1.) Assume w.l.o.g. that g...g′ is the last such critical
section.
Consider an event sequence produced as follows:

- we drop g and all events e′ after g by a thread other than t2.

- we drop all events after e2 by all threads.

Clearly the result is a prefix of tr′. If it is a legal trace that
correctly reorders tr′ then we are violating the minimality of tr′.
Therefore the result of this event drop has to be illegal. The drop
respects intra-thread order. Also, if a read sees a different write
then a dropped event must conflict with one of the non-dropped
events before e2. By Lemma 3 we get a CP edge between events
after e1 and before e2 in tr′, and by Lemma 1 and CP properties
we have e1 ≪CP e2: a contradiction.
Thus, the event sequence cannot be a trace: a lock has to be
acquired while held. Such a lock, m, has to be acquired before
one of the dropped events, with its release among the dropped
events. The lock is then re-acquired by one of the non-dropped
events, i.e., by thread t2. The acquisition of m has to be in thread
t1 (otherwise f would not be the first event between e1 and e2

by a thread other than t1). In thread t1, for trace tr′, lock l has
to be nested inside m (since dropping every event after g, which
is an acquisition of l, caused the drop of the release but not the
acquisition of m). However, lock m is nested inside l in thread t2,
since it is acquired after l’s acquisition (point f ) and before l’s
release (which occurs after e2). We can again cause a deadlock
with an event move (of a prefix of f ...e2).

This concludes the proof of the theorem: any CP race implies
either an HB race in the minimal trace tr′, or a deadlock in a
reordered trace. �


