
DSD-Crasher: A Hybrid Analysis Tool for Bug
Finding

CHRISTOPH CSALLNER

Georgia Institute of Technology

YANNIS SMARAGDAKIS

University of Oregon

TAO XIE

North Carolina State University

DSD-Crasher is a bug finding tool that follows a three-step approach to program analysis:

D. Capture the program’s intended execution behavior with dynamic invariant detection. The

derived invariants exclude many unwanted values from the program’s input domain.
S. Statically analyze the program within the restricted input domain to explore many paths.

D. Automatically generate test cases that focus on reproducing the predictions of the static

analysis. Thereby confirmed results are feasible.
This three-step approach yields benefits compared to past two-step combinations in the litera-

ture. In our evaluation with third-party applications, we demonstrate higher precision over tools

that lack a dynamic step and higher efficiency over tools that lack a static step.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, reliability; D.2.5 [Software Engineering]: Testing and Debugging—

testing tools; I.2.2 [Artificial Intelligence]: Automatic Programming—program verification

General Terms: Reliability, Verification

Additional Key Words and Phrases: Automatic testing, bug finding, dynamic analysis, dynamic

invariant detection, extended static checking, false positives, static analysis, test case generation,

usability

1. INTRODUCTION

Dynamic program analysis offers the semantics and ease of concrete program ex-
ecution. Static analysis lends itself to obtaining generalized properties from the
program text. The need to combine the two approaches has been repeatedly stated
in the software engineering community [Young 2003; Ernst 2003; Xie and Notkin
2003; Beyer et al. 2004; Csallner and Smaragdakis 2005]. In this article, we present
DSD-Crasher: a bug-finding tool that uses dynamic analysis to infer likely program
invariants, explores the space defined by these invariants exhaustively through static

Authors’ addresses: csallner@gatech.edu, yannis@cs.uoregon.edu, xie@csc.ncsu.edu This is a re-
vised and extended version of [Csallner and Smaragdakis 2006a], presented at ISSTA 2006 in

Portland, Maine, and also contains material from [Smaragdakis and Csallner 2007].
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, January 2008, Pages 1–36.

2 · Christoph Csallner et al.

analysis, and finally produces and executes test cases to confirm that the behavior
is observable under some real inputs and not just due to overgeneralization in the
static analysis phase. Thus, our combination has three steps: dynamic inference,
static analysis, and dynamic verification (DSD).

More specifically, we employ the Daikon tool by Ernst et al. [2001] to infer likely
program invariants from an existing test suite. The results of Daikon are exported
as JML annotations [Leavens et al. 1998] that are used to guide our Check ’n’ Crash
tool [Csallner and Smaragdakis 2005]. Daikon-inferred invariants are not triv-
ially amenable to automatic processing, requiring some filtering and manipulation
(e.g., for internal consistency according to the JML behavioral subtyping rules).
Check ’n’ Crash employs the ESC/Java static analysis tool by Flanagan et al.
[2002], applies constraint-solving techniques on the ESC/Java-generated error con-
ditions, and produces and executes concrete test cases. The exceptions produced
by the execution of generated test cases are processed in a way that takes into ac-
count which methods were annotated by Daikon, for more accurate error reporting.
For example, a NullPointerException is not considered a bug if thrown by an
un-annotated method, instead of an annotated method; otherwise, many false bug
reports would be produced: ESC/Java produces an enormous number of warnings
for potential NullPointerExceptions when used without annotations [Rutar et al.
2004].

Several past research tools follow an approach similar to ours, but omit one of
the three stages of our analysis. Check ’n’ Crash is a representative of a static-
dynamic (SD) approach. There are several representatives of a DD approach, with
the closest one (because of the concrete techniques used) being the Eclat tool by
Pacheco and Ernst [2005]. Just like our DSD approach, Eclat produces program
invariants from test suite executions using Daikon. Eclat also generates test cases
and disqualifies the cases that violate inferred preconditions. Nevertheless, there
is no static analysis phase to exhaustively attempt to explore program paths and
yield a directed search through the test space. Instead, Eclat’s test case generation
is largely random. Finally, a DS approach is implemented by combinations of
invariant detection and static analysis. A good representative, related to our work,
is the Daikon-ESC/Java (DS) combination of Nimmer and Ernst [2002a].

The benefit of DSD-Crasher over past approaches is either in enhancing the abil-
ity to detect bugs, or in limiting false bug warnings.1 For instance, compared
to Check ’n’ Crash, DSD-Crasher produces more accurate error reports with fewer
false bug warnings. Check ’n’ Crash is by nature local and intra-procedural when no
program annotations are employed. As the Daikon-inferred invariants summarize
actual program executions, they provide assumptions on correct code usage. Thus,
DSD-Crasher can disqualify illegal inputs by using the precondition of the method
under test to exclude cases that violate common usage patterns. As a secondary
benefit, DSD-Crasher can concentrate on cases that satisfy called methods’ precon-
ditions. This increases the chance of returning from these method calls normally
and reaching a subsequent problem in the calling method. Without preconditions,
Check ’n’ Crash is more likely to cause a crash in a method that is called by the

1We use the terms “fault”, “error”, and “bug” interchangeably, similarly the terms “report” and

“warning”.

ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 3

tested method before the subsequent problematic statement is reached. Compared
to the Eclat tool, DSD-Crasher can be more efficient in finding more bugs because
of its deeper static analysis, relative to Eclat’s mostly random testing.

To demonstrate the potential of DSD-Crasher, we applied it to medium-size third-
party applications (the Groovy scripting language and the JMS module of the JBoss
application server). We show that, under controlled conditions (e.g., for specific
kinds of errors that match well the candidate invariants), DSD-Crasher is helpful
in removing false bug warnings relative to just using the Check ’n’ Crash tool.
Overall, barring engineering hurdles, we found DSD-Crasher to be an improvement
over Check ’n’ Crash, provided that the application has a regression test suite
that exercises exhaustively the functionality under test. At the same time, the
approach can be more powerful than Eclat, if we treat the latter as a bug finding
tool. The static analysis can allow more directed generation of test cases and, thus,
can uncover more errors in the same amount of time.

2. PHILOSOPHY AND MOTIVATION

We next discuss the main principles of our approach, which concentrates on reducing
the rate of false bug warnings, at the expense of reporting fewer bugs. We then argue
why a dynamic-static-dynamic combination yields benefits in a general setting,
beyond our specific tools.

2.1 Terminology: Soundness for Incorrectness

Analyses can be classified with respect to the set of properties they can establish
with confidence. In mathematical logic, reasoning systems are often classified in
terms of soundness and completeness. A sound system is one that proves only true
sentences, whereas a complete system proves all true sentences. In other words, an
analysis is sound iff provable(p) ⇒ true(p) and complete iff true(p) ⇒ provable(p).

In our work, we like to view program analyses as a way to prove programs incor-
rect—i.e., to find bugs, as opposed to certifying the absence of bugs. If we view a
static checker as a system for proving the existence of errors, then it is “sound” iff
reporting an error means it is a true error and “complete” iff all errors in programs
result in error reports. In contrast, if we view the static checker as a system for
proving correctness, then it is “sound” iff passing the program means there are
no errors (i.e., iff all incorrect programs produce an error report—what we called
before “complete”) and “complete” iff all correct programs result in no error (i.e.,
reporting an error means that one exists—what we called before “sound”).

The interesting outcome of this duality is that we can abolish the notion of
“completeness” from our vocabulary. We believe that this is a useful thing to do
for program analysis. Even experts are often hard pressed to name examples of
“complete” analyses and the term rarely appears in the program analysis literature
(in contrast to mathematical logic). Instead, we can equivalently refer to analyses
that are “sound for correctness” and analyses that are “sound for incorrectness”.
An analysis does not have to be either, but it certainly cannot be both for interesting
properties.

Other researchers have settled on different conventions for classifying analyses,
but we think our terminology is preferable. For instance, Jackson and Rinard
call a static analysis “sound” when it is sound for correctness, yet call a dynamic

ACM Journal Name, Vol. V, No. N, January 2008.

4 · Christoph Csallner et al.

analysis “sound” when it is sound for incorrectness [Jackson and Rinard 2000].
This is unsatisfactory—e.g., it assumes that static analyses always attempt to prove
correctness. Yet, there are static analyses whose purpose is to detect defects (e.g.,
FindBugs by Hovemeyer and Pugh [2004]). Another pair of terms used often are
“over-” and “under-approximate”. These also require qualification (e.g., “over-
approximate for incorrectness” means the analysis errs on the safe side, i.e., is
sound for correctness) and are often confusing.

2.2 Why Prove Programs Incorrect?

Ensuring that a program is correct is the Holy Grail of program construction.
Therefore analyses that are sound for correctness (e.g., static type systems) have
been popular, even if limited. Nevertheless, for all interesting properties, sound-
ness for correctness implies that the analysis has to be pessimistic and reject valid
programs. For some kinds of analyses this cost is acceptable. For others, it is not—
for instance, no mainstream programming language includes sound static checking
to ensure the lack of division-by-zero errors, exactly because of the expected high
rejection rate of correct programs.

The conservativeness of static analysis has an impact on how it can be used
in a software development cycle. For the author of a piece of code, a sound-for-
correctness analysis may make sense: if the analysis is too conservative, then the
programmer probably knows how to distinguish between a false warning and a true
bug, and how to rewrite the code to expose its correctness to the analysis. Beyond
this stage of the development process, however, conservativeness stops being an as-
set and becomes a liability. A tester cannot distinguish between a false warning and
a true bug. Reporting a non-bug to the programmer is highly counter-productive
if it happens with any regularity. Given the ever-increasing separation of the roles
of programmer and tester in industrial practice, high confidence in detecting errors
is paramount.

This need can also be seen in the experience of authors of program analyses and
other researchers. Several modern static analysis tools [Flanagan et al. 2002; Engler
and Musuvathi 2004; Hovemeyer and Pugh 2004] attempt to find program defects.
In their assessment of the applicability of ESC/Java, Flanagan et al. [2002] write:

[T]he tool has not reached the desired level of cost effectiveness. In
particular, users complain about an annotation burden that is perceived
to be heavy, and about excessive warnings about non-bugs, particularly
on unannotated or partially-annotated programs.

This conclusion is also supported by the findings of other researchers, as we
discuss in Section 8. Notably, Rutar et al. [2004] examine ESC/Java2, among other
analysis tools, and conclude that it can produce many spurious warnings when
used without context information (method annotations). One specific problem,
which we revisit in later sections, is that of ESC/Java’s numerous warnings for
NullPointerExceptions. For five testees with a total of some 170 thousand non-
commented source statements, ESC/Java warns of a possible null dereference over
nine thousand times. Rutar et al., thus, conclude that “there are too many warnings
to be easily useful by themselves.”

To summarize, it is most promising to use analyses that are sound for correctness
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 5

at an early stage of development (e.g., static type systems). Nevertheless, for
analyses performed by third parties, it is more important to produce error reports
in which the user can have high confidence or even certainty. This is the goal of
our work. We attempt to increase the soundness of existing analyses by combining
them in a way that reduces false error reports.

2.3 Research Question

The ultimate goal we would like to measure DSD-Crasher against is a fully auto-
mated tool for modern object-oriented languages that finds bugs but produces no
false bug warnings. A fully automated bug finding tool should require zero interac-
tion with the software developer using the tool. In particular, using the bug finding
tool should not require any manual efforts to write additional specifications or test
cases. The tool should also not require manual inspection of the produced bug
warnings.

The goal of eliminating false bug warnings is complicated because the notion
of a bug depends on interpretation. Furthermore, whether a program behavior
constitutes a bug depends not only on the program state but also on the validity
of inputs. Initially, no program behavior constitutes a bug. Only specifications
(implicit or explicit) allow us to distinguish between an expected behavior and
a bug. In practice, many implicit specifications exist, e.g., in the form of pre-
and postconditions. A common precondition of object-oriented programs is that
null is never a legal input value, unless explicitly stated in a code comment. A
common postcondition is that a public method should not terminate by throwing a
class cast exception. Beyond such general properties, most specifications are very
specific, capturing the intended semantics of a given method.

Below we use pre and post when referring to satisfying pre- and postcondition,
respectively.

(1) pre AND post is the specified behavior: the method is working in the intended
input domain as expected by the postcondition.

(2) pre AND NOT post is a bug: the method deviates from the expected behavior
in the intended input domain.

(3) NOT pre is a false bug report, since it reports behavior outside the intended
input domain of the method.

In our work, we concentrate on bugs involving only primitive language opera-
tions (such as array accesses, dynamic type errors, and null dereferences). The
same approach can likely generalize to violations of arbitrary user specifications.
Nevertheless, our goal of full automation influences our focus: since most programs
in practice do not have explicit formal specifications, we concentrate on implicit
specifications in the target language.

In terms of preconditions, we analyze a program on a per-public-method basis and
try to infer which inputs are valid with subjective local reasoning. This means that
we consider an input to be valid if manual inspection reveals no program comments
prohibiting it, if invariants of the immediately surrounding program context (e.g.,
class invariants) do not disqualify the input, and if program values produced during
actual execution seem (to the human inspector) consistent with the input. We do

ACM Journal Name, Vol. V, No. N, January 2008.

6 · Christoph Csallner et al.

not, however, try to confirm the validity of a method’s input by producing whole-
program inputs that give rise to it. In other words, we consider the program as a
library : We assume that its public methods can be called for any values not specif-
ically disallowed, as opposed to only values that can arise during whole-program
executions with valid inputs to the program’s main method. This view of “program
as library” is common in modern development environments, especially in the Java
or .Net world, where code can be dynamically loaded and executed in a different
environment. Coding guidelines for object-oriented languages often emphasize that
public methods are an interface to the world and should minimize the assump-
tions on their usage.2 Furthermore, this view is convenient for experimentation,
as it lets us use modules out of large software packages, without worrying about
the scalability of analyzing (either automatically or by hand) the entire executable
program. Finally, the per-method checking is defensive enough to withstand most
changes in the assumptions of how a class is used, or what are valid whole-program
inputs. Over time such assumptions are likely to change, while the actual method
implementation stays the same. Examples include reusing a module as part of a
new program or considering more liberal external environments: buffer overflows
were promoted in the last two decades from obscure corner case to mission-critical
bugs.

In an earlier paper [Smaragdakis and Csallner 2007] we introduced the terms
language-level soundness and user-level soundness, which we also use in this article.
A tool offers language-level sound bug warnings, if the error can be reproduced
for some input to the method, regardless of the method’s precondition—i.e., the
program model used by the analysis accurately captures the language’s semantics.
User-level soundness is a stronger notion and means that the warning reflects a bug
that arises for valid method inputs, as determined by the local reasoning outlined
above.

2.4 DSD Combinations

We use a dynamic-static-dynamic combination of analyses in order to increase the
confidence in reported faults—i.e., to increase soundness for incorrectness. The
main idea is that of using a powerful, exhaustive, but unsound static analysis, and
then improving soundness externally using dynamic analyses.

Figure 1 illustrates the main idea of our DSD combination. The first dynamic
analysis step generalizes existing executions. This is a heuristic step, as it involves
inferring abstract properties from specific instances. Nevertheless, a heuristic ap-
proach is our only hope for improving soundness for incorrectness. We want to
make it more likely that a reported and reproducible error will not be dismissed by
the programmer as “outside the intended domain of the method”. If the “intended
domain” of the method (i.e., the range of inputs that constitute possible uses) were
known from a formal specification, then there would be no need for this step.

2For instance, McConnell [2004, chapter 8] writes “The class’s public methods assume the data is

unsafe, and they are responsible for checking the data and sanitizing it. Once the data has been

accepted by the class’s public methods, the class’s private methods can assume the data is safe.”
Similarly, Meyer [1997, chapter 23] explicitly bases his guidelines of class design on the design of

libraries.

ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 7

Allowed by user-level specification

Allowed by inferred invariants

1. Dynamic
Execute &
generalize

Allowed by programming language

2. Static
Exhaustive search

of testee &

invariants

Existing

passing
tests

generalize invariants

Warnings by static analysis

Reported
bugs

3. Dynamic
Confirm
static results

Fig. 1. The goal of the first dynamic step is to infer the testee’s informal specification. The static

step may generalize this specification beyond possible executions, while the final dynamic step will
restrict the analysis to realizable problems. Each box represents a program domain. An arrow

represents a mapping between program domains performed by the respective analysis. Shading

should merely increase readability.

The static analysis step performs an exhaustive search of the space of desired
inputs (approximately described by inferred properties) for modules or for the whole
program. A static analysis may inadvertently consider infeasible execution paths,
however. This is a virtually unavoidable characteristic of static analyses—they
cannot be sound both for correctness and for incorrectness; therefore they will
either miss errors or over-report them. Loops, procedure calls, pointer aliasing, and
arithmetic are common areas where analyses are only approximate. Our approach
is appropriate for analyses that tend to favor exhaustiveness at the expense of
soundness for incorrectness.

The last dynamic analysis step is responsible for reifying the cases reported by
the static analysis and confirming that they are feasible. If this succeeds, the case
is reported to the user as a bug. This ensures that the overall analysis will only
report reproducible errors.

Based on our earlier terminology, the last dynamic step of our approach addresses
language-level soundness, by ensuring that executions are reproducible for some
input. The first dynamic step heuristically tries to achieve user-level soundness, by
making sure that the input “resembles” other inputs that are known to be valid.

3. TOOLS BACKGROUND

Our three-step DSD-Crasher approach is based on two existing tools: Daikon (Sec-
tion 3.1) and Check ’n’ Crash (Section 3.3), which combines ESC/Java (Section 3.2)
and the JCrasher test case generator [Csallner and Smaragdakis 2004]. This section
presents background information on these tools.

ACM Journal Name, Vol. V, No. N, January 2008.

8 · Christoph Csallner et al.

3.1 Daikon: Guessing Invariants

Daikon [Ernst et al. 2001] tracks a testee’s variables during execution and gen-
eralizes their observed behavior to invariants—preconditions, postconditions, and
class invariants. Daikon instruments a testee, executes it (for example, on an ex-
isting test suite or during production use), and analyzes the produced execution
traces. At each method entry and exit, Daikon instantiates some three dozen in-
variant templates, including unary, binary, and ternary relations over scalars, and
relations over arrays (relations include linear equations, orderings, implication, and
disjunction) [Ernst et al. 2001; Nimmer and Ernst 2002b]. For each invariant tem-
plate, Daikon tries several combinations of method parameters, method results,
and object state. For example, it might propose that some method m never returns
null. It later ignores those invariants that are refuted by an execution trace—for
example, it might process a situation where m returned null and it will therefore
ignore the above invariant. So Daikon summarizes the behavior observed in the
execution traces as invariants and generalizes it by proposing that the invariants
might hold in all other executions as well. Daikon can annotate the testee’s source
code with the inferred invariants as JML preconditions, postconditions, and class
invariants [Leavens et al. 1998].

3.2 ESC/Java: Guessing Invariant Violations

The Extended Static Checker for Java (ESC/Java) by Flanagan et al. [2002] is
a static program checker that detects potential invariant violations. ESC/Java
recognizes invariants stated in the Java Modeling Language (JML) [Leavens et al.
1998]. (We use the ESC/Java2 system by Cok and Kiniry [2004]—an evolved
version of the original ESC/Java, which supports Java 1.4 and JML specifications.)
We use ESC/Java to derive abstract conditions under which the execution of a
method under test may terminate abnormally. Abnormal termination means that
the method would throw a runtime exception because it violated the precondition
of a primitive Java operation. In many cases this will lead to a program crash as
few Java programs catch and recover from unexpected runtime exceptions.

ESC/Java translates the Java source code under test to a set of predicate logic
formulae [Flanagan et al. 2002]. ESC/Java checks each method m in isolation,
expressing as logic formulae the properties of the class to which the method be-
longs, as well as Java semantics. Each method call or invocation of a primitive
Java operation in m’s body is translated to a check of the called entity’s precondi-
tion followed by assuming the entity’s postcondition. In addition to the explicitly
stated invariants, ESC/Java knows the implicit pre- and postconditions of primi-
tive Java operations—for example, array access, pointer dereference, class cast, or
division. Violating these implicit preconditions means accessing an array out-of-
bounds, dereferencing null pointers, mis-casting an object, dividing by zero, etc.
ESC/Java uses the Simplify theorem prover of Detlefs et al. [2003] to derive error
conditions for a method.

ESC/Java is the main static analysis tool in our DSD combination. Our earlier
discussion applies to ESC/Java: the tool is unsound (both for correctness and for
incorrectness) yet it is powerful and exhaustive.
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 9

Static

Search
for bug

Run test:
Confirm

Dynamic

New test:
{m(-1);}

New result:
m crash

Testee:
m(int p)

Fig. 2. Check ’n’ Crash uses ESC/Java to statically check the testee for potential bugs. In this
example, ESC/Java warns about a potential runtime exception in the analyzed method when pass-

ing a negative parameter (the ESC/Java warning is not shown). Check ’n’ Crash then compiles

ESC/Java’s bug warnings to concrete test cases to eliminate those warnings that cannot be repro-
duced in actual executions. In this example, Check ’n’ Crash produces a test case that passes -1

into the method and confirms that it throws the runtime exception ESC/Java has warned about.

3.3 Check ’n’ Crash: Confirming Guessed Violations

Check ’n’ Crash [Csallner and Smaragdakis 2005] is a tool for automatic bug find-
ing. It combines ESC/Java and the JCrasher random testing tool [Csallner and
Smaragdakis 2004]. Check ’n’ Crash takes error conditions that ESC/Java in-
fers from the testee, derives variable assignments that satisfy the error condition
(using a constraint solver), and compiles them into concrete test cases that are
executed with JCrasher to determine whether the error is language-level sound.
Figure 2 shows the elements of Check ’n’ Crash pictorially. Compared to ESC/Java
alone, Check ’n’ Crash’s combination of ESC/Java with JCrasher eliminates spu-
rious warnings and improves the ease of comprehension of error reports through
concrete Java counterexamples.

Check ’n’ Crash takes as inputs the names of the Java files under test. It in-
vokes ESC/Java, which derives error conditions. Check ’n’ Crash takes each error
condition as a constraint system over a method m’s parameters, the object state
on which m is executed, and other state of the environment. Check ’n’ Crash ex-
tends ESC/Java by parsing and solving this constraint system. A solution is a set
of variable assignments that satisfy the constraint system. [Csallner and Smarag-
dakis 2005] discusses in detail how we process constraints over integers, arrays, and
reference types in general.

Once the variable assignments that cause the error are computed, Check ’n’ Crash
uses JCrasher to compile some of these assignments to JUnit [Beck and Gamma
1998] test cases. The test cases are then executed under JUnit. If the execution
does not cause an exception, then the variable assignment was a false warning: no
error actually exists. Similarly, some runtime exceptions do not indicate errors and
JCrasher filters them out. For instance, throwing an IllegalArgumentException
exception is the recommended Java practice for reporting illegal inputs. If the
execution does result in one of the tracked exceptions, an error report is generated
by Check ’n’ Crash.

ACM Journal Name, Vol. V, No. N, January 2008.

10 · Christoph Csallner et al.

3.4 Check ’n’ Crash Example

To see the difference between an error condition generated by ESC/Java and the
concrete test cases output by Check ’n’ Crash, consider the following method
swapArrays, taken from a student homework solution.

public static void swapArrays(double[] fstArray, double[] sndArray)

{ //..

for(int m=0; m<fstArray.length; m++) { //..

fstArray[m]=sndArray[m]; //..

}

}

The method’s informal specification states that the method swaps the elements
from fstArray to sndArray and vice versa. If the arrays differ in length the method
should return without modifying any parameter. ESC/Java issues the following
warning, which indicates that swapArrays might crash with an array index out-of-
bounds exception.

Array index possibly too large (IndexTooBig)

fstArray[m]=sndArray[m];

^

Optionally, ESC/Java emits the error condition in which this crash might occur.
This condition is a conjunction of constraints. For swapArrays, which consists of
five instructions, ESC/Java emits some 100 constraints. The most relevant ones are
0 < fstArray.length and sndArray.length == 0 (formatted for readability).

Check ’n’ Crash parses the error condition generated by ESC/Java and feeds the
constraints to its constraint solvers. In our example, Check ’n’ Crash creates two
integer variables, fstArray.length and sndArray.length, and passes their con-
straints to the POOC integer constraint solver by Schlenker and Ringwelski [2002].
Then Check ’n’ Crash requests a few solutions for this constraint system from its
constraint solvers and compiles each solution into a JUnit [Beck and Gamma 1998]
test case. For this example, the test case will create an empty and a random non-
empty array. This will cause an exception when executed and JCrasher will process
the exception according to its heuristics and conclude it is a language-level sound
failure and not a false bug warning.

4. DSD-CRASHER: INTEGRATING DAIKON AND CHECK ’N’ CRASH

We next describe the elements, scope, and ideas of DSD-Crasher.

4.1 Overview and Scope

DSD-Crasher works by first running a regression test suite over an application and
deriving invariants using a modified version of Daikon. These invariants are then
used to guide the reasoning process of Check ’n’ Crash, by influencing the possible
errors reported by ESC/Java. The constraint solving and test case generation ap-
plied to ESC/Java-reported error conditions remains unchanged. Finally, a slightly
adapted Check ’n’ Crash back-end runs the generated test cases, observes their ex-
ecution, and reports violations. Figure 3 illustrates this process with an example.

The scope of DSD-Crasher is the same as that of its component tools. In brief,
the tool aims to find errors in sequential code, with fixed-depth loop unrolling used
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 11

Static

Search Run test: Run tests:

Dynamic Dynamic

Existing tests:

m(1); m(2); ..

Search

for bug

Run test:

Confirm

New test:

{m(7);}

New result:
m crash

Inferred spec:

p>0

Run tests:

Infer spec

Testee:

m(int p)

Fig. 3. DSD-Crasher adds a dynamic analysis step at the front of the pipeline, to infer the intended

program behavior from existing test cases. It feeds inferred invariants to Check ’n’ Crash by
annotating the testee. This enables DSD-Crasher to suppress bug warnings that are not relevant

to the intended uses of the program. In this example, the inferred invariant excludes negative

input values. DSD-Crasher therefore does not produce a warning about -1 causing an exception
as Check ’n’ Crash did in figure 2.

to explore infinite loop paths. The errors that can be detected are of a few specific
kinds [Csallner and Smaragdakis 2005]:

—Assigning an instance of a supertype to an array element.
—Casting to an incompatible type.
—Accessing an array outside its domain.
—Allocating an array of negative size.
—Dereferencing null.
—Division by zero.

These cases are statically detected using ESC/Java [Leino et al. 2000, chapter 4]
but they also correspond to Java runtime exceptions (program crashes) that will
be caught during JCrasher-initiated testing.

4.2 Benefits

The motivation of Section 2 applies to the specific features of our tools. DSD-
Crasher yields the benefits of a DSD combination compared to just using its com-
posite analysis. This can be seen with a comparison of DSD-Crasher with its
predecessor and component tool, Check ’n’ Crash. Check ’n’ Crash, when used
without program annotations, lacks interprocedural knowledge. This causes the
following problems:

(1) Check ’n’ Crash may produce spurious error reports that do not correspond
to actual program usage. For instance, a method forPositiveInt under test may
throw an exception if passed a negative number as an argument: the automatic
testing part of Check ’n’ Crash will ensure that the exception is indeed possible
and the ESC/Java warning is not just a result of the inaccuracies of ESC/Java
analysis and reasoning. Yet, a negative number may never be passed as input

ACM Journal Name, Vol. V, No. N, January 2008.

12 · Christoph Csallner et al.

to the method in the course of execution of the program, under any user input
and circumstances. That is, an implicit precondition that the programmer has
been careful to respect makes the Check ’n’ Crash test case invalid. Precondition
annotations help Check ’n’ Crash eliminate such spurious warnings.

(2) Check ’n’ Crash does not know the conditions under which a method call
within the tested method is likely to terminate normally. For example, a method
under test might call forPositiveInt before performing some problematic op-
eration. Without additional information, Check ’n’ Crash might only generate
test cases with negative input values to forPositiveInt. Thus, no test case
reaches the problematic operation in the tested method that occurs after the call
to forPositiveInt. Precondition annotations help Check ’n’ Crash target its test
cases better to reach the location of interest. This increases the chance of confirming
ESC/Java warnings.

Integrating Daikon can address both of these problems. The greatest impact
is with respect to the first problem: DSD-Crasher can be more focused than
Check ’n’ Crash and issue many fewer false bug warnings because of the Daikon-
inferred preconditions.

4.3 Design and Implementation of DSD-Crasher

4.3.1 Treatment of Inferred Invariants as Assumptions or Requirements.
Daikon-inferred invariants can play two different roles. They can be used as as-
sumptions on a method’s formal arguments inside its body, and on its return value
at the method’s call site. At the same time, they can also be used as requirements
on the method’s actual arguments at its call site. Consider a call site of a method
int foo(int i) with an inferred precondition of i != 0 and an inferred post-
condition of \result < 0 (following JML notation, \result denotes the method’s
return value). One should remember that the Daikon-inferred invariants are only
reflecting the behavior that Daikon observed during the test suite execution. Thus,
there is no guarantee that the proposed conditions are indeed invariants. This
means that there is a chance that Check ’n’ Crash will suppress useful warnings
(because they correspond to behavior that Daikon deems unusual). In our exam-
ple, we will miss errors inside the body of foo for a value of i equal to zero, as
well as errors inside a caller of foo for a return value greater or equal to zero. We
are willing to trade some potential bugs for a lower false positive rate. We believe
this to be a good design decision, since false bug warnings are a serious problem
in practice. In our later evaluation, we discuss how this trade-off has not affected
DSD-Crasher’s bug finding ability (relative to Check ’n’ Crash) for any of our case
studies.

In contrast, it is more reasonable to ignore Daikon-inferred invariants when used
as requirements. In our earlier example, if we require that each caller of foo pass
it a non-zero argument, we will produce several false bug warnings in case the
invariant i != 0 is not accurate. The main goal of DSD-Crasher, however, is to
reduce false bug warnings and increase soundness for incorrectness. Thus, in DSD-
Crasher, we chose to ignore Daikon-inferred invariants as requirements and only
use them as assumptions. That is, we deliberately avoid searching for cases in
which the method under test violates some Daikon-inferred precondition of another
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 13

method it calls. Xie and Notkin [2003] partially follow a similar approach with
Daikon-inferred invariants that are used to produce test cases.

4.3.2 Inferred Invariants Excluded From Being Used. DSD-Crasher integrates
Daikon and Check ’n’ Crash through the JML language. Daikon can output JML
conditions, which Check ’n’ Crash can use for its ESC/Java-based analysis. We
exclude some classes of invariants Daikon would search for by default as we deemed
them unlikely to be true invariants. Almost all of the invariants we exclude have
to do with the contents of container structures viewed as sets (e.g., “the contents
of array x are a subset of those of y”), conditions that apply to all elements of a
container structure (e.g., “x is sorted”, or “x contains no duplicates”), and ordering
constraints among complex structures (e.g., “array x is the reverse of y”). Such
complex invariants are very unlikely to be correctly inferred from the hand-written
regression test suites of large applications, as in the setting we examine. We in-
herited (and slightly augmented) our list of excluded invariants from the study of
the Jov tool of Xie and Notkin [2003]. The Eclat tool by Pacheco and Ernst [2005]
excludes a similar list of invariants.

4.3.3 Adaptation and Improvement of Tools being Integrated. To make the
Daikon output suitable for use in ESC/Java, we also had to provide JML spec-
ifications for Daikon’s Quant class. Methods of this class appear in many Daikon-
inferred invariants. ESC/Java needs the specifications of these methods in order to
reason about them when used in such invariants.

To perform the required integration, we also needed to make a more general
change to Daikon. Daikon does not automatically ensure that inferred invariants
support behavioral subtyping [Leavens et al. 1998]. Behavioral subtyping is a stan-
dard object-oriented concept that should hold in well-designed programs (e.g., see
“subcontracting” in Design by Contract [Meyer 1997]). It dictates that a subclass
object should be usable wherever a superclass object is. This means that the im-
plementation of a subclass method (overriding method) should accept at least as
many inputs as the implementation of a superclass method (overridden method),
and for those inputs it should return values that the superclass could also return.
In other words, an overriding method should have weaker preconditions than the
preconditions of the method that it overrides. Additionally, for values satisfying
the (possibly narrower) preconditions of the overridden method, its postconditions
should also be satisfied by the overriding method. Daikon-inferred invariants can
easily violate this rule: executions of the overriding method do not affect the in-
variants of the overridden method and vice versa. Therefore, we extended Daikon
so that all behaviors observed for a subclass correctly influence the invariants of the
superclass and vice versa. This change was crucial in getting invariants of sufficient
consistency for ESC/Java to process automatically—otherwise we experienced con-
tradictions in our experiments that prevented further automatic reasoning. The
change is not directly related to the integration of Daikon and Check ’n’ Crash,
however. It is an independent enhancement of Daikon, valid for any use of the in-
ferred invariants. We are in the process of implementing this enhancement directly
on Daikon. We describe in a separate paper [Csallner and Smaragdakis 2006b] the
exact algorithm for computing the invariants so they are consistent with the ob-

ACM Journal Name, Vol. V, No. N, January 2008.

14 · Christoph Csallner et al.

served behaviors and as general as possible, while satisfying behavioral subtyping.
DSD-Crasher also modifies the Check ’n’ Crash back-end: the heuristics used

during execution of the generated test cases to decide whether a thrown exception
is a likely indication of a bug and should be reported to the user or not. For methods
with no inferred annotations (which were not exercised enough by the regression
test suite) the standard Check ’n’ Crash heuristics apply, whereas annotated meth-
ods are handled more strictly. Most notably, a NullPointerException is only
considered a bug if the throwing method is annotated with preconditions. This
is standard Check ’n’ Crash behavior [Csallner and Smaragdakis 2005] and doing
otherwise would result in many false error reports: as mentioned earlier, ESC/Java
produces an enormous number of warnings for potential NullPointerExceptions
when used without annotations [Rutar et al. 2004]. Nevertheless, for a Daikon-
annotated method, we have more information on its desired preconditions. Thus, it
makes sense to report even “common” exceptions, such as NullPointerException,
if these occur within the valid precondition space. Therefore, the Check ’n’ Crash
runtime needs to know whether or not a method was annotated with a Daikon-
inferred precondition. To accomplish this we extended Daikon’s Annotate feature
to produce a list of such methods. When an exception occurs at runtime, we check
if the method on top of the call stack is in this list. One problem is that the call
stack information at runtime omits the formal parameter types of the method that
threw the exception. Thus, overloaded methods (methods with the same name but
different argument types) can be a source for confusion. To disambiguate over-
loaded methods we use BCEL [Apache Software Foundation 2003] to process the
bytecode of classes under test. Using BCEL we retrieve the start and end line
number of each method and use the line number at which the exception occurred
at runtime to determine the exact method that threw it.

5. EVALUATING HYBRID TOOLS

An interesting question is how to evaluate hybrid dynamic-static tools. We next
discuss several simple metrics and how they are often inappropriate for such evalua-
tion. This section serves two purposes. First, we argue that the best way to evaluate
DSD-Crasher is by measuring the end-to-end efficiency of the tool in automatically
discovering bugs (which are confirmed by human inspection), as we do in subse-
quent sections. Second, we differentiate DSD-Crasher from the Daikon-ESC/Java
combination of Nimmer and Ernst [2002a].

The main issues in evaluating hybrid tools have to do with the way the dynamic
and static aspects get combined. Dynamic analysis excels in narrowing the domain
under examination. In contrast, static analysis is best at exploring every corner of
the domain without testing, effectively generalizing to all useful cases within the
domain boundaries. Thus it is hard to evaluate the integration in pieces: when
dynamic analysis is used to steer the static analysis (such as when Daikon produces
annotations for Check ’n’ Crash), then the accuracy or efficiency of the static analy-
sis may be biased because it operates on too narrow a domain. Similarly, when the
static analysis is used to create dynamic inputs (as in Check ’n’ Crash) the inputs
may be too geared towards some cases because the static analysis has eliminated
others (e.g., large parts of the code may not be exercised at all).
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 15

We discuss three examples of metrics that we have found to be inappropriate for
evaluating DSD-Crasher.

Formal Specifications and Non-Standard Test Suites. DSD-Crasher aims at find-
ing bugs in current, medium-sized, third-party software. These testees consist of
thousands of lines of code and come with the original developers’ test suites. They
have been developed and are used by people other than us. The open-source pro-
grams we are aware of do not contain formal specifications. So for classifying bugs
we are mainly relying on our subjective judgment, source code comments, and some
external prose. This approach is explicitly dissimilar from previous evaluations like
the one performed on Eclat by Pacheco and Ernst [2005], which mainly uses text
book examples, student homeworks, or libraries for which formal specifications were
written or already existed. Some of these testees seem to have large non-standard
test suites, e.g., geared towards finding programming errors in student homework
submissions. In contrast, typical third-party software is not formally specified and
often comes with small test suites.

Coverage. Coverage metrics (e.g., statement or branch coverage in the code) are
often used to evaluate the efficiency of analysis and testing tools. Nevertheless,
coverage metrics may not be appropriate when using test suites automatically gen-
erated after static analysis of the code. Although some static analysis tools, such
as Blast by Beyer et al. [2004] and SLAM by Ball [2003], have been adapted to gen-
erate tests to achieve coverage, static analysis tools generally exhaustively explore
statements and branches but only report those that may cause errors. ESC/Java
falls in this class of tools. The only reported conditions are those that may cause
an error, although all possibilities are statically examined. Several statements and
paths may not be exercised at all under the conditions in an ESC/Java report, as
long as they do not cause an exception.

Consider test cases generated by Check ’n’ Crash compared to test cases gener-
ated by its predecessor tool, JCrasher. JCrasher will create many more test cases
with random input values. As a result, a JCrasher-generated test suite will usually
achieve higher coverage than a Check ’n’ Crash-generated one. Nevertheless, this is
a misleading metric. If Check ’n’ Crash did not generate a test case that JCrasher
would have, it is potentially because the ESC/Java analysis did not find a possible
program crash with these input values. Thus, it is the role of static analysis to
intelligently detect which circumstances can reveal an error, and only produce a
test case for those circumstances. The result is that parts of the code will not be
exercised by the test suite, but these parts are unlikely to contain any of the errors
that the static analysis is designed to detect.

Precision and Recall. Nimmer and Ernst have performed some of the research
closest to ours in combining Daikon and ESC/Java. Reference [Nimmer and Ernst
2002b] evaluates how well Daikon (and Houdini) can automatically infer program
invariants to annotate a testee before checking it with ESC/Java. Reference [Nim-
mer and Ernst 2002a] also evaluates a Daikon-ESC/Java integration, concentrating
more on automatically computed metrics.

The main metrics used by Nimmer and Ernst are precision and recall. These are
computed as follows. First, Daikon is used to produce a set of proposed invariants

ACM Journal Name, Vol. V, No. N, January 2008.

16 · Christoph Csallner et al.

for a program. Then, the set of invariants is hand-edited until (a) the invariants
are sufficient for proving that the program will not throw unexpected exceptions
and (b) the invariants themselves are provable (“verifiable”) by ESC/Java. Then
“precision” is defined as the proportion of verifiable invariants among all invariants
produced by Daikon. “Recall” is the proportion of verifiable invariants produced by
Daikon among all invariants in the final verifiable set. Nimmer and Ernst measured
scores higher than 90% on both precision and recall when Daikon was applied to
their set of testees.

We believe that these metrics are perfectly appropriate for human-controlled
environments (as in the Nimmer and Ernst study) but inappropriate for fully auto-
matic evaluation of third-party applications. Both metrics mean little without the
implicit assumption that the final “verifiable” set of annotations is near the ideal
set of invariants for the program. To see this, consider what really happens when
ESC/Java “verifies” annotations. As discussed earlier, the Daikon-inferred invari-
ants are used by ESC/Java as both requirements (statements that need proof) and
assumptions (statements assumed to hold). Thus, the assumptions limit the space
of possibilities and may result in a certain false property being proven. ESC/Java
will not look outside the preconditions. Essentially, a set of annotations “verified”
by ESC/Java means that it is internally consistent: the postconditions only need
to hold for inputs that satisfy the preconditions.

This means that it is trivial to get perfect “precision” and “recall” by just doing
a very bad job in invariant inference! Intuitively, if we narrow the domain to only
the observations we know hold, they will always be verifiable under the conditions
that enable them. For instance, assume we have a method meth(int x) and a
test suite that calls it with values 1, 2, 3, and 10. Imagine that Daikon were to
do a bad job at invariant inference. Then a possible output would be the pre-
condition x=1 or x=2 or x=3 or x=10 (satisfied by all inputs) and some similar
postcondition based on all observed results of the executions. These conditions are
immediately verifiable by ESC/Java, as it will restrict its reasoning to executions
that Daikon has already observed. The result is 100% precision and 100% recall.

In short, the metrics of precision and recall are only meaningful under the as-
sumption that there is a known ideal set of annotations that we are trying to reach,
and the ideal annotations are the only ones that we accept as verifiable. Thus,
precision and recall will not work as automatable metrics that can be quantified for
reasonably-sized programs.

6. EVALUATION

We want to explore two questions.

(1) Can DSD-Crasher eliminate some false bug warnings Check ’n’ Crash pro-
duces? Reducing false bug warnings with respect to a static-dynamic tool like
Check ’n’ Crash was the main goal of DSD-Crasher.

(2) Does DSD-Crasher find deeper bugs than similar approaches that use a light-
weight bug search?

This evaluation will not establish that DSD-Crasher is generally better than its
competition (in all dimensions). DSD-Crasher trades improvements along the above
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 17

dimensions with disadvantages on other dimensions, such as the number of bugs
found or execution time. Instead, we would like to find evidence that a dynamic-
static-dynamic approach like DSD-Crasher can provide improved results in some
scenarios. Our goal is to provide motivation to use DSD-Crasher as part of a
multi-tool approach to automated bug-finding. To investigate the first question,
we are looking for cases in which Daikon-inferred invariants help DSD-Crasher rule
out cases that likely violate implicit user assumptions. To investigate the second
question, we are looking for bugs DSD-Crasher finds that elude a lightweight static
analysis such as a mostly random bug search.

6.1 JBoss JMS and Groovy

JBoss JMS is the JMS module of the JBoss open-source J2EE application server
(http://www.jboss.org/). It is an implementation of Sun’s Java Message Service
API [Hapner et al. 2002]. We used version 4.0 RC1, which consists of some five
thousand non-comment source statements (NCSS).

Groovy is an open-source scripting language that compiles to Java bytecode. We
used the Groovy 1.0 beta 1 version, whose application classes contain some eleven
thousand NCSS. We excluded low-level AST Groovy classes from the experiments.
The resulting set of testees consisted of 34 classes with a total of some 2 thousand
NCSS. We used 603 of the unit test cases that came with the tested Groovy version,
from which Daikon produced a 1.5 MB file of compressed invariants. (The source
code of the testee and its unit tests are available from http://groovy.codehaus.org/)

We believe that Groovy is a very representative test application for our kind of
analysis: it is a medium-size, third-party application. Importantly, its test suite was
developed completely independently of our evaluation by the application developers,
for regression testing and not for the purpose of yielding good Daikon invariants.
JBoss JMS is a good example of a third-party application, especially appropriate for
comparisons with Check ’n’ Crash as it was a part of Check ’n’ Crash’s past evalua-
tion [Csallner and Smaragdakis 2005]. Nevertheless, the existing test suite supplied
by the original authors was insufficient and we had to supplement it ourselves to
increase coverage for selected examples.

All experiments were conducted on a 1.2 GHz Pentium III-M with 512 MB of
RAM. We excluded those source files from the experiments which any of the tested
tools could not handle due to engineering shortcomings.

6.2 More Precise than Static-Dynamic Check ’n’ Crash

The first benefit of DSD-Crasher is that it produces fewer false bug warnings than
the static-dynamic Check ’n’ Crash tool.

6.2.1 JBoss JMS. Check ’n’ Crash reported five cases, which include the errors
reported earlier [Csallner and Smaragdakis 2005]. Two reports are false bug warn-
ings. We use one of them as an example on how DSD-Crasher suppresses false bug
warnings. Method org.jboss.jms.util.JMSMap.setBytes uses the potentially
negative parameter length as the length in creating a new array. Calling setBytes

ACM Journal Name, Vol. V, No. N, January 2008.

18 · Christoph Csallner et al.

Table I. Groovy results: The dynamic-static-dynamic DSD-

Crasher vs. the static-dynamic Check ’n’ Crash.

Runtime Exception NullPointer
[min:s] reports reports

Check ’n’ Crash classic 10:43 4 0

Check ’n’ Crash relaxed 10:43 19 15

DSD-Crasher 30:32 11 9

with a negative length parameter causes a NegativeArraySizeException.

public void setBytes(String name, byte[] value, int offset, int length)

throws JMSException {

byte[] bytes = new byte[length];

//..

}

We used unit tests that (correctly) call setBytes three times with consistent pa-
rameter values. DSD-Crasher’s initial dynamic step infers a precondition that in-
cludes requires length == daikon.Quant.size(value). This precondition im-
plies that the length parameter cannot be negative. So DSD-Crasher’s static step
does not warn about a potential NegativeArraySizeException and DSD-Crasher
does not produce this false bug warning.

6.2.2 Groovy. As discussed and motivated earlier, Check ’n’ Crash by default
suppresses most NullPointerExceptions because of the high number of false bug
warnings for actual code. Most Java methods fail if a null reference is passed
instead of a real object, yet this rarely indicates a bug, but rather an implicit
precondition. With Daikon, the precondition is inferred, resulting in the elimination
of the false bug warnings.

Table I shows these results, as well as the runtime of the tools (confirming
that DSD-Crasher has a realistic runtime). All tools are based on the current
Check ’n’ Crash implementation, which in addition to the published description
[Csallner and Smaragdakis 2005] only reports exceptions thrown by a method
directly called by the generated test case. This restricts Check ’n’ Crash’s re-
ports to the cases investigated by ESC/Java and removes accidental crashes in-
side other methods called before reaching the location of the ESC/Java warning.
Check ’n’ Crash classic is the current Check ’n’ Crash implementation. It sup-
presses all NullPointerExceptions, IllegalArgumentExceptions, etc. thrown
by the method under test. DSD-Crasher is our integrated tool and reports any
exception for a method that has a Daikon-inferred precondition. Check ’n’ Crash
relaxed is Check ’n’ Crash classic but uses the same exception reporting as DSD-
Crasher.

Check ’n’ Crash relaxed reports the 11 DSD-Crasher exceptions plus 8 others.
(These are 15 NullPointerExceptions plus the four other exceptions reported
by Check ’n’ Crash classic.) In 7 of the 8 additional exceptions, DSD-Crasher’s
ESC/Java step could statically rule out the warning with the help of the Daikon-
derived invariants. In the remaining case, ESC/Java emitted the same warning,
but the more complicated constraints threw off our prototype constraint solver.
(-1 - fromIndex) == size has an expression on the left side, which is not yet
supported by our solver. The elimination of the 7 false error reports confirms the
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 19

Table II. JBoss JMS results: ClassCastException (CCE) reports by the

dynamic-static-dynamic DSD-Crasher and the dynamic-dynamic Eclat. This ta-
ble omits all other exception reports as well as all of Eclat’s non-exception reports.

CCE Runtime
reports [min:s]

Eclat-default 0 1:20

Eclat-hybrid, 4 rounds 0 2:37
Eclat-hybrid, 5 rounds 0 3:34

Eclat-hybrid, 10 rounds 0 16:39
Eclat-exhaustive, 500 s timeout 0 13:39

Eclat-exhaustive, 1000 s timeout 0 28:29

Eclat-exhaustive, 1500 s timeout 0 44:29
Eclat-exhaustive, 1750 s timeout 0 1:25:44

DSD-Crasher 3 1:59

benefits of the Daikon integration. Without it, Check ’n’ Crash has no choice but
to either ignore potential NullPointerException-causing bugs or to report them,
resulting in a high false bug warning rate.

6.3 More Efficient than Dynamic-Dynamic Eclat

We compare DSD-Crasher with Eclat by Pacheco and Ernst [2005], since it is the
most closely related tool available to us. Specifically, Eclat also uses Daikon to
observe existing correct executions and employs random test case generation to
confirm testee behavior. This is not a perfect comparison, however: Eclat has a
broader scope than DSD-Crasher (Section 4.1). So our comparison is limited to
only one aspect of Eclat.

6.3.1 ClassCastExceptions in JBoss JMS. For the JBoss JMS experiment, the
main difference we observed between DSD-Crasher and the dynamic-dynamic Eclat
was in the reporting of potential dynamic type errors (ClassCastExceptions). The
bugs reported by Csallner and Smaragdakis [2005] were ClassCastExceptions.
(Most of the other reports concern NullPointerExceptions. Eclat produces 47 of
them, with the vast majority being false bug warnings. DSD-Crasher produces 29
reports, largely overlapping the Eclat ones.)

Table II compares the ClassCastExceptionss found by DSD-Crasher and Eclat.
As in the other tables, every report corresponds to a unique combination of excep-
tion type and throwing source line. We tried several Eclat configurations, also used
in our Groovy case study later. Eclat-default is Eclat’s default configuration, which
uses random input generation. Eclat-exhaustive uses exhaustive input generation
up to a given time limit. This is one way to force Eclat to test every method.
Otherwise a method that can only be called with a few different input values, such
as static m(boolean), is easily overlooked by Eclat. Eclat-hybrid uses exhaustive
generation if the number of all possible combinations is below a certain threshold;
otherwise, it resorts to the default technique (random).

We tried several settings trying to cause Eclat to reproduce any of the
ClassCastException failures observed with DSD-Crasher. With running times
ranging from eighty seconds to over an hour, Eclat was not able to do so. (In gen-
eral, Eclat does try to detect dynamic type errors: for instance, it finds a potential
ClassCastException in our Groovy case study. In fairness, however, Eclat is not

ACM Journal Name, Vol. V, No. N, January 2008.

20 · Christoph Csallner et al.

Table III. Groovy results: The dynamic-static-dynamic DSD-Crasher vs. the

dynamic-dynamic Eclat. This table omits all of Eclat’s non-exception reports.

Exception Runtime
reports [min:s]

Eclat-default 0 7:01

Eclat-hybrid, 4 rounds 0 8:24

Eclat-exhaustive, 2 rounds 2 10:02
Eclat-exhaustive, 500 s timeout 2 16:42

Eclat-exhaustive, 1200 s timeout 2 33:17

DSD-Crasher 4 30:32

a tool tuned to find crashes but to generate a range of tests.)
DSD-Crasher produces three distinct ClassCastException reports, which in-

clude the two cases presented in the past [Csallner and Smaragdakis 2005]. In the
third case, class JMSTypeConversions throws a ClassCastException when the
following method getBytes is called with a parameter of type Byte[] (note that
the cast is to a “byte[]”, with a lower-case “b”).

public static byte[] getBytes(Object value)

throws MessageFormatException {

if (value == null) return null;

else if (value instanceof Byte[]) {

return (byte[]) value;

} //..

}

6.3.2 Groovy. Table III compares DSD-Crasher with Eclat on Groovy. DSD-
Crasher finds both of the Eclat reports. Both tools report several other cases, which
we filtered manually to make the comparison feasible. Namely, we remove Eclat’s
reports of invariant violations, reports in which the exception-throwing method
does not belong to the testees under test specified by the user, etc.

One of the above reports provides a representative example of why DSD-Crasher
explores the test parameter space more deeply (due to the ESC/Java analysis). The
exception reported can only be reproduced for a certain non-null array. ESC/Java
derives the right precondition and Check ’n’ Crash generates a satisfying test
case, whereas Eclat misses it. The constraints are: arrayLength(sources) == 1,
sources:141.46[i] == null, i == 0. Check ’n’ Crash generates the input value
new CharStream[]{null} that satisfies the conditions, while Eclat just performs
random testing and tries the value null.

6.4 Summary of Benefits

The main question of our evaluation is whether DSD-Crasher is an improvement
over using Check ’n’ Crash alone. The answer from our experiments is positive,
as long as there is a regression test suite sufficient for exercising large parts of the
application functionality. We found that the simple invariants produced by Daikon
were fairly accurate, which significantly aided the ESC/Java reasoning. The reduc-
tion in false bug warnings enables DSD-Crasher (as opposed to Check ’n’ Crash) to
produce reasonable reports about NullPointerExceptions. Furthermore, we never
observed cases in our experiments where false Daikon invariants over-constrained a
method input domain. This would have caused DSD-Crasher to miss a bug found
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 21

by Check ’n’ Crash. Instead, the invariants inferred by Daikon are a sufficient
generalization of observed input values, so that the search domain for ESC/Java is
large enough to locate potential erroneous inputs.

Of course, inferred invariants are no substitute for human-supplied invariants.
One should keep in mind that we focused on simple invariants produced by Daikon
and eliminated more “ambitious” kinds of inferred invariants (e.g., ordering con-
straints on arrays), as discussed in Section 4.3. Even such simple invariants are
sufficient for limiting the false bug warnings that Check ’n’ Crash produces with-
out any other context information.

6.5 Applicability and Limitations

Our experience with DSD-Crasher yielded interesting lessons with respect to its ap-
plicability and limitations. Generally, we believe that the approach is sound and has
significant promise, yet at this point it has not reached sufficient maturity to be of
overwhelming practical value. This may seem to contradict our previously presented
experiments, which showcased benefits from the use of DSD-Crasher. It is, however,
important to note that those were performed in a strictly controlled, narrow-range
environment, designed to bring out the promise of DSD-Crasher under near-ideal
conditions. The environment indirectly reveals DSD-Crasher’s limitations.

Test suite. An extensive test suite is required to produce reliable Daikon invari-
ants. The user may need to supply detailed test cases with high coverage both of
program paths and of the value domain. We searched open-source repositories for
software with detailed regression test suites, and used Groovy partly because its
suite was one of the largest. A literature review reveals no instance of using Daikon
on non-trivial, third-party open-source software to infer useful invariants with the
original test suite that the software’s developers supply.

Scalability. The practical scalability of DSD-Crasher is less than ideal. The ap-
plications we examined were of medium size, mainly because scaling to large appli-
cations is not easily possible. For instance, Daikon can quickly exhaust the heap
when executed on a large application. Furthermore, the inferred invariants slow
down the ESC/Java analysis and may make it infeasible within reasonable time
bounds.

These shortcomings should be largely a matter of engineering. Daikon’s dynamic
invariant inference approach is inherently parallelizable, for instance. This is a good
property for future architectures and an easy way to eliminate scalability problems
due to memory exhaustion. By examining the invariants of a small number of
methods only, memory requirements should be low, at the expense of some loss in
efficiency, which can be offset by parallelism.

Kinds of bugs caught. As discussed earlier, DSD-Crasher is a tool that aims for
high degrees of automation. If we were to introduce explicit specifications, the tool
could target any type of error, since it would be a violation of an explicit specifica-
tion. Explicit specifications require significant human effort, however. Therefore,
the intended usage mode of the tool only includes violations of implicit precondi-
tions of language-level operations, which cause run-time exceptions, as described in
Section 4.1. Thus, semantic errors that do not result in a program crash but pro-

ACM Journal Name, Vol. V, No. N, January 2008.

22 · Christoph Csallner et al.

Table IV. Experience with SIR subjects. SIR contains three bug-seeded versions of the

Apache Xml Security distribution. NCSS are non-commented source statements. For all
analyzed subject versions, ESC/Java (with the usual DSD-Crasher settings) produces

the same warnings for the unseeded and seeded classes. (For the last version, we excluded

the one seeded fault labeled “conflicting” from our analysis.) Seeded methods are testee
methods that contain at least one SIR seed. Note that this includes cases where the

ESC/Java warning occurs before a seeded change, so the seeded bug may not necessarily

influence the ESC/Java warning site. “ESC/Java wp” stands for ESC/Java’s internal
weakest precondition computation when running within DSD-Crasher. The last column

gives the number of seeded bugs that change the local backward slice of an ESC/Java

warning.

Analyzed Size ESC/Java Seeded bugs

version of [kNCSS] warnings total affecting in slice of

Apache total in seeded ESC/Java ESC/Java
Xml Security methods wp warning

1.0.4 12.4 111 2 20 10 1
1.0.5 D2 12.8 104 3 19 10 1

1.0.71 10.3 120 5 13 7 2

duce incorrect results stay undetected. Furthermore, the thorough (due to the static
analysis) but relatively local nature of DSD-Crasher means that it is much better for
detecting violations of boundary conditions, than it is for detecting “deep” errors
involving complex state and multiple methods. To be more precise, DSD-Crasher
can detect bugs that hinge on prior state changes or interprocedural control- and
data-flow, only if these effects are captured well by the Daikon-inferred invariants.

To illustrate this, we analyzed different versions of a subject (the Apache Xml
Security module) from the software-artifact infrastructure repository (SIR), which
is maintained by Do et al. [2005]. The repository contains several versions of a
few medium-sized applications together with their respective test suites and seeded
bugs. Several other research groups have used subjects from this repository to
evaluate bug-finding techniques. Our results are summarized in Table IV. We
found that most of the seeded bugs are too deep for DSD-Crasher to catch. Indeed,
about half of the seeded bugs do not even affect ESC/Java’s internal reasoning,
independently of whether this reasoning leads to a bug warning or not. For instance,
for version 1.0.4 of our subject, only 10 of the 20 seeded bugs affect at all the
logical conditions computed during ESC/Java’s analysis. The eventual ESC/Java
warnings produced very rarely have any relevance to the seeded bug, even with a
liberal “relevance” condition (local backward slice). DSD-Crasher does not manage
to produce test cases for any of these warnings.

It is worth examining some of these bugs in more detail, for exposition purposes.
An example seeded bug that cannot be detected consists of changing the initial
value of a class field. The bug introduces the code

boolean _includeComments = true;

when the correct value of the field is false. However, this does not affect ESC/Java’s
reasoning, since ESC/Java generally assumes that a field may contain any value.
ESC/Java maps the unseeded and the seeded versions of this field to the same
abstract value. Hence the result of ESC/Java’s internal reasoning will not differ for
the unseeded and the seeded versions.
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 23

As another example, one of the seeded bugs consists of removing the call

super(doc);

from a constructor. Omitting a call to a method or constructor without speci-
fications does not influence ESC/Java’s weakest precondition computation, since
current ESC/Java versions assume purity for methods without specifications.

The next case is interesting because the bug is within the scope of DSD-Crasher,
yet the changed code influences the weakest precondition produced by ESC/Java
only superficially. In the following code, the seeded bug consists of comparing the
node type to Node.ELEMENT_NODE instead of the correct Node.TEXT_NODE.

for (int i = 0; i < iMax; i++) {

Node curr = children.item(i);

if (curr.getNodeType() == Node.ELEMENT_NODE) {

sb.append(((Text) curr).getData());

} ...

The ESC/Java analysis of the call to (specification-free) method getNodeType
results in a fresh unconstrained local variable. This local variable will not be used
outside this if test. Hence, in both the original and the seeded version, we can
simplify the equality tests between an unspecified value and a constant to the same
abstract unspecified value. The weakest precondition does not change due to this
seeded bug. Nevertheless, the test lies on an intraprocedural path to a warning.
ESC/Java warns about a potential class cast exception in the statement under
the if. Despite the warning, the original method is correct: the path to the cast
exception is infeasible. For the erroneous version, DSD-Crasher does not manage
to reproduce the error, since it involves values produced by several other methods.

7. DISCUSSION: CODE-COVERAGE-ORIENTED TEST GENERATION

Several code-based test generation tools [Korel 1990; Gupta et al. 1998] aim at
generating test inputs to achieve high code coverage metrics, such as statement
coverage or branch coverage [Zhu et al. 1997]. Symbolic execution [King 1976;
Clarke 1976] has been shown to be effective in generating test inputs to achieve
high code coverage. For example, the Java PathFinder (JPF) model checker by
Visser et al. [2000] has been extended to support symbolic execution [Khurshid et al.
2003; Visser et al. 2004; Anand et al. 2007]. A recent approach that has attracted
attention is concolic testing [Godefroid et al. 2005; Sen et al. 2005; Cadar et al.
2006]: a combination of concrete and symbolic execution. Concolic testing tools
explore a program path concretely for a value, while at the same time accumulating
a “path condition”: a set of symbolic constraints that an input needs to satisfy to
follow the path. In case of a control-flow branch, a concolic execution tool attempts
to solve the symbolic constraints to generate a value to also exercise the path not
taken by the concrete execution. The power of concolic execution comes from the
fact that the concrete execution has already demonstrated a way to solve many
of these constraints, thus making the constraint solving problem often easier in
practice.

Such symbolic and concolic execution tools can be generally described as code-
coverage-oriented (or just coverage-oriented) testing tools. In principle, these tools

ACM Journal Name, Vol. V, No. N, January 2008.

24 · Christoph Csallner et al.

also aim to discover bugs—the ultimate goal of all testing is to expose defects.
Nevertheless, they take a different approach from tools like ESC/Java or DSD-
Crasher. The domain-specific knowledge encoded in a coverage-oriented tool does
not focus on what constitutes a bug, unlike an analysis that tries to find, e.g.,
null pointer exceptions, division by zero, array dereferences outside bounds, etc.
Instead, the knowledge of a coverage-oriented tool is limited to the aspects that
enhance coverage: understanding what constitutes a control-flow branch, deriving
symbolic conditions, etc. This makes a coverage-oriented tool more general, in that
it has no preconceived notion of a “bug”, but also more limited, in that it will only
discover a bug if following a control-flow path exposes the bug with high probability
(i.e., for most, if not all, data values).

We believe that there are interesting insights in contrasting code-coverage-
oriented tools and bug finding tools, such as DSD-Crasher and others described
in Section 5. To expose them concretely, we analyzed the reports of DSD-Crasher
presented in the previous section and examined which of the bugs would be found by
the jCUTE [Sen and Agha 2006] concolic execution tool for Java and by JPF [Visser
et al. 2004]. We next discuss our experience, as well as ways to expose bug-specific
knowledge (e.g., the fact that a Java array throws an exception if referenced be-
yond its end) as control-flow branches. This would allow coverage-oriented tools to
capture bugs that they currently do not detect.

Note that the comparison with jCUTE and JPF is qualitative rather than quan-
titative: although we did run jCUTE on the subject programs (Groovy and JBoss
JMS) the handling was not automatic: we had to write explicit test drivers for each
of the errors reported by DSD-Crasher. In several cases, our test drivers needed
to be fairly contrived, in order to overcome engineering limitations in jCUTE and
expose the problem in terms that jCUTE can analyze (e.g., transform instanceOf
checks into checks on a numeric result returned by an oracle method). In essence, we
tried to approximate what an ideal version of jCUTE or JPF would do in principle,
beyond current specifics, and we base our discussion on that.

7.1 Errors Easily Exposed via Coverage

Some errors have little data-sensitivity and would be readily exposed by just cov-
ering the potentially erroneous statement. For instance, many of the errors that
DSD-Crasher reports for JBoss JMS and Groovy are due to direct null pointer
dereferencing of method arguments. In principle, a possible null dereference is
value-sensitive and exposed by very specific executions of the offending statements.
Nevertheless, both JPF and jCUTE can generate default null references for non-
primitive-type arguments, causing these null-pointer exceptions to be thrown. This
case is easy, exactly because the error is reproduced with a well-identified value.
Even for a tool that concentrates on control-flow, covering a single known offending
value is easy enough.

Some more of the errors reported by DSD-Crasher can be readily discovered with
jCUTE or JPF. For instance, consider the example code shown in Section 6.3.1.
This produces a class-cast exception within the true branch of an instanceof con-
ditional check. The bug is exposed every time the statement causing it is covered.
Although the current versions of jCUTE or JPF cannot handle the constraints re-
lated to instanceof, this is a matter of constraint solving, which is orthogonal to
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 25

the coverage-oriented nature of the tools—they can both be extended to handle
instanceof constraints, thus generating test inputs to expose the bug.

Class cast exceptions are generally fairly easy to reproduce semi-accidentally with
coverage-oriented tools, since they are not particularly data-sensitive: any object of
the wrong type will trigger the exception. For instance, consider one of the DSD-
Crasher reports for class Container in JBoss JMS. Method getContainer throws
a ClassCastException when called with an argument of type java.lang.Object.

public static Container getContainer(Object object) throws Throwable {

Proxy proxy = (Proxy) object;//an exception thrown here

return (Container) Proxy.getInvocationHandler(proxy);

}

The error does not always occur when the statement is covered: there is no
problem when the method is called with an argument of type Proxy. Although the
current versions of jCUTE or JPF do not instrument the Java library classes such as
java.lang.Object, this is a technicality. Both tools could potentially expose this
bug since they would create an object of type java.lang.Object as the method
argument.

7.2 Errors Not Easily Exposed via Coverage

Several errors that DSD-Crasher targets are fairly data-sensitive and, thus, not ex-
posed easily through simple increased code coverage. Good examples are arithmetic
exceptions, negative array size exceptions, or array index out-of-bounds exceptions.

We examined the negative-array-size exceptions that DSD-Crasher detects for
JBoss JMS and Groovy. The statements including these errors are not within
any conditionals. For a concise example, class Tuple in Groovy throws a
NegativeArraySizeException when the following method subList is called with
two integer arguments of 1 and 0.

public List subList(int fromIndex, int toIndex) {

int size = toIndex - fromIndex;

Object[] newContent = new Object[size];//exception thrown here

System.arraycopy(contents, fromIndex, newContent, 0, size);

return new Tuple(newContent);

}

This DSD-Crasher warning reveals two serious bugs, one being within the
specification of java.util. Groovy’s Tuple overrides the subList method of
java.util.AbstractList, which in turn implements the subList definition in
java.util.List. The JavaDoc specifications of List and AbstractList con-
flict for this case of fromIndex > toIndex amongst each other and the imple-
mentation of Tuple conflicts with both. Specifically, List requires to throw
an IndexOutOfBoundsException, its redefinition in AbstractList requires an
IllegalArgumentException, and Tuple throws a NegativeArraySizeException
(but none of these runtime exceptions are a subtype of another).

Neither jCUTE nor JPF can detect this error because there is no branching point
in the methods for either tool to collect constraints in the path condition. Conse-
quently, the tool assigns a default value (e.g., 0) to the integer-type arguments. Of
course, the exception could be thrown by randomly selecting inputs, but the essence

ACM Journal Name, Vol. V, No. N, January 2008.

26 · Christoph Csallner et al.

of the problem is that the analysis in jCUTE or JPF has no insight to guide it to
construct inputs where fromIndex is greater than toIndex.

7.3 Exposing Data Conditions as Branches

Combining ideas from coverage-oriented tools and DSD-Crasher-like approaches
seems quite promising. Perhaps surprisingly, it seems to also be very much in the
spirit of both kinds of tools. DSD-Crasher already has a symbolic engine (in the
form of ESC/Java) but it can probably benefit from the idea of concolic execution
to increase its constraint-solving abilities. At the same time, coverage-oriented tools
can benefit in their goal to increase code coverage by integrating knowledge about
errors in language-level operations, such as arithmetic exceptions or array accesses
out-of-bounds.

To do this, a coverage-oriented tool needs to understand values that violate oper-
ation preconditions, in addition to understanding branches. The duality of control
and data-flow is well-known in the study of compilers: standard program trans-
formations can map a data-flow property into a control-flow property, and vice
versa. Interestingly, in the case of values that violate preconditions of language-
level operations (as in most of the bugs DSD-Crasher finds), the properties are
really control-flow properties to begin with: the program would throw an exception
during its execution, which would change the flow of control. The only reason that
code-coverage-oriented tools, such as jCUTE and JPF, do not detect these errors
is that they do not recognize the possible execution branch.

To provide a concrete example, consider a statement such as:

f = i / j;

The division operation constitutes an implicit branch: it can throw a division-
by-zero exception (arithmetic exception). An equivalent way to view the above
statement is as:

if (j == 0) throw new ArithmeticException();

else f = i / j;

This simple observation leads to a somewhat counterintuitive conclusion. Code-
coverage-oriented tools need to recognize language-level exceptional conditions to
achieve true high coverage of all program paths. Implicit branches are as real as
explicit ones, and exploring them enhances the bug detection capabilities of a testing
tool. In short, adding knowledge about illegal arguments of low-level operations
to a code-coverage-oriented tool is both effective and very much in the spirit of
increasing code coverage. To our knowledge, except for Pex [Anand et al. 2008;
Csallner et al. 2008], no current code-coverage-oriented tool follows this approach.

8. RELATED WORK

There is an enormous amount of work on automated bug-finding tools. We discuss
representative recent work below. We deliberately include approaches from multiple
research communities in our discussion. Particularly, we compare DSD-Crasher
with tools from the testing, program analysis, and verification communities. We
believe this is a valuable approach, since many tools produced by these closely
related communities have overlapping goals, i.e., to find bugs. We also discuss our
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 27

choice of component analyses from which we constructed DSD-Crasher. This should
highlight that other analysis combinations are possible and may provide superior
properties than our concrete instantiation in the DSD-Crasher tool.

8.1 Bug-Finding Tools and False Bug Warnings

The surveys of automated bug-finding tools conducted by Zitser et al. [2004], Wag-
ner et al. [2005], and Rutar et al. [2004] concur with our estimate that an important
problem is not just reporting potential errors, but minimizing false bug warnings so
that inspection by humans is feasible. Zitser et al. [2004] evaluate five static analysis
tools on 14 known buffer overflow bugs. They found that the tool with the highest
detection rate (PolySpace) suffered from one false alarm per twelve lines of code.
They conclude “[..] that while state-of-the-art static analysis tools like Splint and
PolySpace can find real buffer overflows with security implications, warning rates
are unacceptably high.” Wagner et al. [2005] evaluate three automatic bug find-
ing tools for Java (FindBugs by Hovemeyer and Pugh [2004], PMD, and QJ Pro).
They conclude that “as on average two thirds of the warnings are false positives,
the human effort could be even higher when using bug finding tools because each
warning has to be checked to decide on the relevance of the warning.” Rutar et al.
[2004] evaluate five tools for finding bugs in Java programs, including ESC/Java2,
FindBugs, and JLint. The number of reports differs widely between the tools. For
example, ESC/Java2 reported over 500 times more possible null dereferences than
FindBugs, 20 times more than JLint, and six times more array bounds violations
than JLint. Overall, Rutar et al. conclude: “The main difficulty in using the tools
is simply the quantity of output.”

8.2 Bug-Finding Tools That Reduce Language-Level And User-Level False Bug Warn-
ings

Tools in this category are most similar to DSD-Crasher in that they attack false bug
warnings at the language level and at the user level. The common implementation
techniques are to infer program specifications from existing test executions and to
generate test cases to produce warnings only for language-level sound bugs.

Symclat by d’Amorim et al. [2006] is a closely related tool that, like DSD-Crasher,
uses the Daikon invariant detector to infer a model of the testee from existing test
cases. Symclat uses Java PathFinder for its symbolic reasoning, which has different
tradeoffs than ESC/Java, e.g., Java PathFinder does not incorporate existing JML
specifications into its reasoning. Unlike our tools, Symclat has a broader goal of
discovering general invariant violations. It appears to be less tuned towards finding
uncaught exceptions than our tools since it does not seem to try to cover all control
flow paths implicit in primitive Java operations as we discussed in Section 7.

Palulu by Artzi et al. [2006] derives method call sequence graphs from existing
test cases. It then generates random test cases that follow the call rules encoded in
the derived call graphs. Such method call graphs capture implicit API rules (e.g.,
first create a network session object, then send some initialization message, and
only then call the testee method), which are essential in generating meaningful test
cases. It would be interesting to integrate deriving such API rules into our first
dynamic analysis step.

ACM Journal Name, Vol. V, No. N, January 2008.

28 · Christoph Csallner et al.

8.3 Bug-Finding Tools That Reduce Language-Level False Bug Warnings

Tools in this category use an overapproximating search to find as many bugs as
possible. Additionally, they use some technique to reduce the number of false bug
warnings, focusing on language-level unsound bug warnings. Our representative of
this category is Check ’n’ Crash [Csallner and Smaragdakis 2005].

Tomb et al. [2007] present a direct improvement over Check ’n’ Crash by mak-
ing their overapproximating bug search interprocedural (up to a user-defined call
depth). The tool otherwise closely follows the Check ’n’ Crash approach by gen-
erating test cases to confirm the warnings of their static analysis. On the other
hand, their tool neither seems to incorporate pre-existing specifications (which pro-
vides an alternative source of interprocedurality) nor address user-level unsound
bug warnings.

Kiniry et al. [2006] motivate their recent extensions of ESC/Java2 similarly:
“User awareness of the soundness and completeness of the tool is vitally impor-
tant in the verification process, and lack of information about such is one of the
most requested features from ESC/Java2 users, and a primary complaint from
ESC/Java2 critics.” They list several sources of unsoundness for correctness and
incorrectness in ESC/Java2 including less known problems like Simplify silently
converting arithmetic overflows to incorrect results. They propose a static analysis
that emits warnings about potential shortcomings of the ESC/Java2 output, namely
potentially missing bug reports and potentially unsound bug reports. On the bug
detection side their analysis is only concerned with language-level soundness and
does not worry about soundness with regard to user-level (and potentially informal)
specifications like DSD-Crasher does. DSD-Crasher also provides a more extreme
solution for language-level unsound bug reports as it only reports cases that are
guaranteed to be language-level sound. We believe our approach is more suitable
for automated bug finding since it provides the user with concrete test cases that
prove the existence of offending behavior. On the other hand, DSD-Crasher only ad-
dresses the unsoundness of ESC/Java2 bug reports. On the sound-for-correctness
side, DSD-Crasher would greatly benefit from such static analysis to reduce the
possibility of missing real errors. DSD-Crasher needs such analysis even more than
ESC/Java2 does, as it may miss sound bug reports of ESC/Java2 due to its limited
constraint solving.

Several dynamic tools like the one by Xie and Notkin [2003] generate candidate
test cases and execute them to filter out false error reports. Xie and Notkin [2003]
present an iterative process for augmenting an existing test suite with complemen-
tary test cases. They use Daikon to infer a specification of the testee when executed
on a given test suite. Each iteration consists of a static and a dynamic analysis,
using Jtest and Daikon. In the static phase, Jtest generates more test cases, based
on the existing specification. In the dynamic phase, Daikon analyzes the execution
of these additional test cases to select those that violate the existing specification—
this violation represents previously uncovered behavior. For the subsequent round,
the extended specification is used. Thus, the approach by Xie and Notkin is also a
DSD hybrid, but Jtest’s static analysis is rather limited (and certainly provided as a
black box, allowing no meaningful interaction with the rest of the tool). Therefore,
their approach is more useful for a less directed augmentation of an existing test
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 29

suite aiming at high testee coverage—as opposed to our more directed search for
fault-revealing test cases.

Concolic execution (see Godefroid et al. [2005], Sen et al. [2005], Cadar et al.
[2006], and Godefroid [2007]) uses concrete execution to overcome some of the
limitations of symbolic execution, which goes back to King [1976] and Clarke
[1976]. This makes it potentially more powerful than static-dynamic sequences
like Check ’n’ Crash. But unlike DSD-Crasher, concolic execution alone does not
observe existing test cases and therefore does not address user-level soundness.

Systematic modular automated random testing (SMART) makes concolic execu-
tion more efficient by exploring each method in isolation [Godefroid 2007]. SMART
summarizes the exploration of a method in pre- and postconditions and uses this
summary information when exploring a method that calls a previously summarized
method. DSD-Crasher also summarizes methods during the first dynamic analy-
sis step in the form of invariants, which ESC/Java later uses for modular static
analysis. DSD-Crasher would benefit from SMART-inferred method summaries for
methods that were not covered by our initial dynamic analysis. SMART seems like
a natural replacement for the SD-part (ESC/Java and JCrasher) of DSD-Crasher.
Designing such a dynamic-concolic tool (“DC-Crasher”) and comparing it with
DSD-Crasher is part of our future work.

The commercial tool Jtest by Parasoft Inc. [2002] has an automatic white-box
testing mode that generates test cases. Jtest generates chains of values, construc-
tors, and methods in an effort to cause runtime exceptions, just like our approach.
The maximal supported depth of chaining seems to be three, though. Since there
is little technical documentation, it is not clear to us how Jtest deals with issues
of representing and managing the parameter-space, classifying exceptions as errors
or invalid tests, etc. Jtest does, however, seem to have a test planning approach,
employing static analysis to identify what kinds of test inputs are likely to cause
problems.

8.4 Alternative Component Analyses

DSD-Crasher integrates the dynamic Daikon, the static ESC/Java, and the dy-
namic JCrasher component analyses. But these are certainly not the only compo-
nent analyses suitable for an automated bug-finding tool like DSD-Crasher. Future
variants of DSD-Crasher could be constructed from different components. The
following motivates our choice of component analyses and compares them with
competing ones.

8.4.1 Inferring Specifications To Enable Reducing User-Level False Bug Warn-
ings. Daikon is not the only tool for invariant inference from test case execution,
although it has pioneered the area and has seen the widest use in practice. For in-
stance, Hangal and Lam [2002] present the DIDUCE invariant inference tool, which
is optimized for efficiency and can possibly allow bigger testees and longer-running
test suites than Daikon. Agitar Agitator [Boshernitsan et al. 2006], a commercial
tool, also uses Daikon-like inference techniques to infer likely invariants (termed
“observations”) from test executions and suggests these observations to develop-
ers so that the developers can manually and selectively promote observations to
assertions. Then Agitator further generates test cases to confirm or violate these

ACM Journal Name, Vol. V, No. N, January 2008.

30 · Christoph Csallner et al.

assertions. Agitator requires manual effort in promoting observations to assertions
in order to avoid false warnings of observation violations, whereas our tools con-
centrate on automated use.

Inferring method call sequence rules is another valuable approach for capturing
implicit user assumptions. Whaley et al. [2002] present static and dynamic analy-
ses that automatically infer over- and underapproximating finite state machines
of method call sequences. Artzi et al. [2006] have used such finite state machines
to generate test cases. Henkel et al. [2007] automatically infer algebraic specifica-
tions from program executions, which additionally include the state resulting from
method call sequences. Algebraic specifications express relations between nested
method calls, like pop(push(obj)) == obj, which makes them well-suited for spec-
ifying container classes. It is unclear, though, how this technique scales beyond
container classes. Yet it would be very interesting to design an automated bug-
finding tool that is able to process algebraic specifications and compare it with
DSD-Crasher.

Taghdiri et al. [2006] offer a recent representative of purely static approaches
that summarize methods into specifications. Such method summaries would help
DSD-Crasher perform deeper interprocedural analysis in its overapproximating bug
search component. Summarization approaches typically aim at inferring total spec-
ifications, though. So they do not help us in distinguishing between intended
and faulty usage scenarios, which is key for a bug-finding tool as DSD-Crasher.
Kremenek et al. [2006] infer partial program specifications via a combination of
static analysis and expert knowledge. The static analysis is based on the assump-
tion that the existing implementation is correct most of the time. The thereby
inferred specifications helped them to correct and extend the specifications used
by the commercial bug finding tool Coverity Prevent [Coverity Inc. 2003]. Expert
knowledge is probably the most important source of good specifications, but also
the most expensive one, because it requires manual effort. An ideal bug finding
tool should combine as many specification sources as possible, including automated
static and dynamic analyses.

8.4.2 The Core Bug Search Component: Overapproximating Analysis For Bug-
Finding. The Check ’n’ Crash and DSD-Crasher approach is explicitly dissimilar
to a common class of static analysis tools that have received significant attention in
the recent research literature. We call these tools collectively “bug pattern match-
ers”. They are tools that statically analyze programs to detect specific bugs by
pattern matching the program structure to well-known error patterns (e.g., Hallem
et al. [2002], Hovemeyer and Pugh [2004], and Xie and Engler [2003]). Such tools
can be quite effective in uncovering a large number of suspicious code patterns
and actual bugs in important domains. But the approach requires domain-specific
knowledge of what constitutes a bug. In addition, bug pattern matchers often use a
lightweight static analysis, which makes it harder to integrate with automatic test
case generators. For example, FindBugs does not produce rich constraint systems
(like ESC/Java does) that encode the exact cause of a potential bug.

Model-checking techniques offer an alternative approach to overapproximating
program exploration and therefore bug searching. Recent model-checkers directly
analyze Java bytecode, which makes them comparable to our overapproximating
ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 31

bug search component ESC/Java. Well-known examples are Bogor/Kiasan by Deng
et al. [2006] and Java PathFinder with symbolic extensions by Khurshid et al. [2003].
Building on model-checking techniques is an interesting direction for bug-finding
and is being explored in the context of JML-like specification languages by Deng
et al. [2007].

Verification tools such as those by Beyer et al. [2004] or Kroening et al. [2004]
are powerful ways to discover deep program errors. Nevertheless, such tools are
often limited in usability or the language features that they support. Jackson and
Vaziri [2000] and Vaziri and Jackson [2003] enable automatic checking of complex
user-defined specifications. Counterexamples are presented to the user in the for-
mal specification language. Their method addresses bug finding for linked data
structures, as opposed to numeric properties, object casting, array indexing, etc.,
as in our approach.

8.4.3 Finding Feasible Executions. AutoTest by Meyer et al. [2007] is a closely
related automatic bug finding tool. It targets the Eiffel programming language,
which supports invariants at the language level in the form of contracts [Meyer
1997]. AutoTest generates random test cases, like JCrasher, but uses more sophis-
ticated test selection heuristics and makes sure that generated test cases satisfy
given testee invariants. It can also use the given invariants as its test oracle. Our
tools do not assume existing invariants since, unlike Eiffel programmers, Java pro-
grammers usually do not annotate their code with formal specifications.

Korat by Boyapati et al. [2002] generates all (up to a small bound) non-isomorphic
method parameter values that satisfy a method’s explicit precondition. Korat exe-
cutes a candidate and monitors which part of the testee state it accesses to decide
whether it satisfies the precondition and to guide the generation of the next candi-
date. The primary domain of application for Korat is that of complex linked data
structures. Given explicit preconditions, Korat will generate deep random tests very
efficiently. Thus, Korat will be better than DSD-Crasher for the cases when our
constraint solving does not manage to produce values for the abstract constraints
output by ESC/Java and we resort to random testing. In fact, the Korat approach
is orthogonal to DSD-Crasher and could be used as our random test generator for
reference constraints that we cannot solve. Nevertheless, when DSD-Crasher pro-
duces actual solutions to constraints, these are much more directed than Korat.
ESC/Java analyzes the method to determine which path we want to execute in
order to throw a runtime exception. Then we infer the appropriate constraints in
order to force execution along this specific path (taking into account the meaning
of standard Java language constructs) instead of just trying to cover all paths.

9. CONCLUSIONS AND FUTURE WORK

We have presented DSD-Crasher: a tool based on a hybrid analysis approach to
program analysis, particularly for automatic bug finding. The approach combines
three steps: dynamic inference, static analysis, and dynamic verification. The
dynamic inference step uses Daikon [Ernst et al. 2001] to characterize a program’s
intended input domains in the form of preconditions, the static analysis step uses
ESC/Java [Flanagan et al. 2002] to explore many paths within the intended input
domain, and the dynamic verification step uses JCrasher [Csallner and Smaragdakis

ACM Journal Name, Vol. V, No. N, January 2008.

32 · Christoph Csallner et al.

2004] to automatically generate tests to verify the results of the static analysis.
The three-step approach provides several benefits over existing approaches. The
preconditions derived in the dynamic inference step reduce the false bug warnings
produced by the static analysis and dynamic verification steps alone. The derived
preconditions can also help the static analysis to reach a problematic statement
in a method by bypassing unintended input domains of the method’s callees. In
addition, the static analysis step provides more systematic exploration of input
domains than the dynamic inference and dynamic verification alone.

The current DSD-Crasher implementation focuses on finding crash-inducing
bugs, which are exposed by inputs falling into intended input domains. As we
discussed in Section 4, intended input domains inferred by Daikon could be nar-
rower than the real ones; therefore, a crash-inducing bug could be exposed by an
input falling outside inferred input domains but inside the (real) intended input do-
main. In the future, we plan to develop heuristics to relax inferred input domains
to possibly detect more bugs. In addition, some bugs do not cause the program to
crash but violate real postconditions. The current DSD-Crasher implementation
does not consider inputs that satisfy inferred preconditions but violate inferred
postconditions, because this may lead to additional bug warnings, requiring much
inspection effort. We plan to develop heuristics (based on constraints generated
by ESC/Java for violating a certain postcondition) to select for inspection a small
number of inferred-postcondition-violating test inputs.

Our DSD-Crasher implementation and testees are available at:
http://www.cc.gatech.edu/cnc/

Acknowledgments

We thank Koushik Sen who offered help in using jCUTE and Willem Visser and
Saswat Anand who offered help in using Java Pathfinder’s symbolic execution. We
are especially grateful to the anonymous referees whose detailed responses greatly
improved this paper. We gratefully acknowledge support by the NSF under Grants
CCR-0735267 and CCR-0238289.

REFERENCES

Anand, S., Godefroid, P., and Tillmann, N. 2008. Demand-driven compositional symbolic ex-

ecution. In Proc. 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer, To appear.

Anand, S., Pasareanu, C., and Visser, W. 2007. JPF-SE: A symbolic execution extension
to Java Pathfinder. In Proc. 13th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS). Springer, 134–138.

Apache Software Foundation. 2003. Bytecode engineering library (BCEL).

http://jakarta.apache.org/bcel/. Accessed Dec. 2007.

Artzi, S., Ernst, M. D., Kieżun, A., Pacheco, C., and Perkins, J. H. 2006. Finding the

needles in the haystack: Generating legal test inputs for object-oriented programs. In Proc. 1st
International Workshop on Model-Based Testing and Object-Oriented Systems (M-TOOS).

Ball, T. 2003. Abstraction-guided test generation: A case study. Tech. Rep. MSR-TR-2003-86,
Microsoft Research. Nov.

Beck, K. and Gamma, E. 1998. Test infected: Programmers love writing tests. Java Report 3, 7
(July), 37–50.

Beyer, D., Chlipala, A. J., Henzinger, T. A., Jhala, R., and Majumdar, R. 2004. Generating

ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 33

tests from counterexamples. In Proc. 26th International Conference on Software Engineering

(ICSE). IEEE, 326–335.

Boshernitsan, M., Doong, R., and Savoia, A. 2006. From Daikon to Agitator: Lessons and

challenges in building a commercial tool for developer testing. In Proc. ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis (ISSTA). ACM, 169–180.

Boyapati, C., Khurshid, S., and Marinov, D. 2002. Korat: Automated testing based on Java

predicates. In Proc. ACM SIGSOFT International Symposium on Software Testing and Analy-

sis (ISSTA). ACM, 123–133.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and Engler, D. R. 2006. EXE:

Automatically generating inputs of death. In Proc. 13th ACM Conference on Computer and

Communications Security (CCS). ACM, 322–335.

Centonze, P., Flynn, R. J., and Pistoia, M. 2007. Combining static and dynamic analysis

for automatic identification of precise access-control policies. In Proc. 23rd Annual Computer

Security Applications Conference (ACSAC). IEEE, 292–303.

Clarke, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE

Transactions on Software Engineering 2, 3, 215–222.

Cok, D. R. and Kiniry, J. R. 2004. ESC/Java2: Uniting ESC/Java and JML: Progress and issues

in building and using ESC/Java2. Tech. Rep. NIII-R0413, Nijmegen Institute for Computing
and Information Science. May.

Coverity Inc. 2003. Coverity Prevent. http://www.coverity.com/. Accessed Dec. 2007.

Csallner, C. and Smaragdakis, Y. 2004. JCrasher: An automatic robustness tester for Java.
Software—Practice & Experience 34, 11 (Sept.), 1025–1050.

Csallner, C. and Smaragdakis, Y. 2005. Check ’n’ Crash: Combining static checking and

testing. In Proc. 27th International Conference on Software Engineering (ICSE). ACM, 422–
431.

Csallner, C. and Smaragdakis, Y. 2006a. DSD-Crasher: A hybrid analysis tool for bug finding.

In Proc. ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
ACM, 245–254.

Csallner, C. and Smaragdakis, Y. 2006b. Dynamically discovering likely interface invariants.

In Proc. 28th International Conference on Software Engineering (ICSE), Emerging Results
Track. ACM, 861–864.

Csallner, C., Tillmann, N., and Smaragdakis, Y. 2008. DySy: Dynamic symbolic execu-

tion for invariant inference. In Proc. 30th ACM/IEEE International Conference on Software
Engineering (ICSE). ACM, To appear.

d’Amorim, M., Pacheco, C., Xie, T., Marinov, D., and Ernst, M. D. 2006. An empirical

comparison of automated generation and classification techniques for object-oriented unit test-
ing. In Proc. 21st IEEE International Conference on Automated Software Engineering (ASE).

IEEE, 59–68.

Deng, X., Lee, J., and Robby. 2006. Bogor/Kiasan: A k-bounded symbolic execution for checking

strong heap properties of open systems. In Proc. 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 157–166.

Deng, X., Robby, and Hatcliff, J. 2007. Kiasan/KUnit: Automatic test case generation and

analysis feedback for open object-oriented systems. In Proc. Testing: Academia and Industry
Conference - Practice And Research Techniques (TAIC PART). IEEE, 3–12.

Detlefs, D., Nelson, G., and Saxe, J. B. 2003. Simplify: A theorem prover for program

checking. Tech. Rep. HPL-2003-148, Hewlett-Packard Systems Research Center. July.

Do, H., Elbaum, S. G., and Rothermel, G. 2005. Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Software Engineer-

ing 10, 4 (Oct.), 405–435.

Engler, D. and Musuvathi, M. 2004. Static analysis versus software model checking for bug

finding. In Proc. 5th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI). Springer, 191–210.

Ernst, M. D. 2003. Static and dynamic analysis: Synergy and duality. In Proc. ICSE Workshop
on Dynamic Analysis (WODA). 24–27.

ACM Journal Name, Vol. V, No. N, January 2008.

34 · Christoph Csallner et al.

Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. 2001. Dynamically discover-

ing likely program invariants to support program evolution. IEEE Transactions on Software
Engineering 27, 2 (Feb.), 99–123.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.

2002. Extended static checking for Java. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 234–245.

Godefroid, P. 2007. Compositional dynamic test generation. In Proc. 34th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 47–54.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: Directed automated random testing.

In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). ACM, 213–223.

Gupta, N., Mathur, A. P., and Soffa, M. L. 1998. Automated test data generation using

an iterative relaxation method. In Proc. 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, 231–244.

Hallem, S., Chelf, B., Xie, Y., and Engler, D. 2002. A system and language for building

system-specific, static analyses. In Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). ACM, 69–82.

Hangal, S. and Lam, M. S. 2002. Tracking down software bugs using automatic anomaly

detection. In Proc. 24th International Conference on Software Engineering (ICSE). ACM,

291–301.

Hapner, M., Burridge, R., Sharma, R., and Fialli, J. 2002. Java message service: Version
1.1. Sun Microsystems, Inc.

Henkel, J., Reichenbach, C., and Diwan, A. 2007. Discovering documentation for Java con-

tainer classes. IEEE Transactions on Software Engineering 33, 8 (Aug.), 526–543.

Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy. In Companion to the 19th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA). ACM, 132–136.

Jackson, D. and Rinard, M. 2000. Software analysis: A roadmap. In Proc. Conference on The
Future of Software Engineering. ACM, 133–145.

Jackson, D. and Vaziri, M. 2000. Finding bugs with a constraint solver. In Proc. ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA). ACM, 14–25.

Khurshid, S., Pasareanu, C. S., and Visser, W. 2003. Generalized symbolic execution for
model checking and testing. In Proc. 9th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS). Springer, 553–568.

King, J. C. 1976. Symbolic execution and program testing. Communications of the ACM 19, 7,

385–394.

Kiniry, J. R., Morkan, A. E., and Denby, B. 2006. Soundness and completeness warnings

in ESC/Java2. In Proc. 5th International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS). ACM, 19–24.

Korel, B. 1990. Automated software test data generation. IEEE Transactions on Software
Engineering 16, 8, 870–879.

Kremenek, T., Twohey, P., Back, G., Ng, A., and Engler, D. 2006. From uncertainty to belief:

Inferring the specification within. In Proc. 7th USENIX Symposium on Operating Systems
Design and Implemetation (OSDI). USENIX, 161–176.

Kroening, D., Groce, A., and Clarke, E. M. 2004. Counterexample guided abstraction refine-

ment via program execution. In Proc. 6th International Conference on Formal Engineering
Methods (ICFEM). Springer, 224–238.

Leavens, G. T., Baker, A. L., and Ruby, C. 1998. Preliminary design of JML: A behavioral in-

terface specification language for Java. Tech. Rep. TR98-06y, Department of Computer Science,

Iowa State University. June.

Leino, K. R. M., Nelson, G., and Saxe, J. B. 2000. ESC/Java user’s manual. Tech. Rep.
2000-002, Compaq Computer Corporation Systems Research Center. Oct.

McConnell, S. 2004. Code Complete, Second ed. Microsoft Press.

Meyer, B. 1997. Object-Oriented Software Construction, Second ed. Prentice Hall PTR.

ACM Journal Name, Vol. V, No. N, January 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding · 35

Meyer, B., Ciupa, I., Leitner, A., and Liu, L. 2007. Automatic testing of object-oriented

software. In Proc. 33rd Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM). Springer, 114–129.

Nimmer, J. W. and Ernst, M. D. 2002a. Automatic generation of program specifications. In

Proc. ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
ACM, 229–239.

Nimmer, J. W. and Ernst, M. D. 2002b. Invariant inference for static checking: An empiri-

cal evaluation. In Proc. 10th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE). ACM, 11–20.

Pacheco, C. and Ernst, M. D. 2005. Eclat: Automatic generation and classification of test

inputs. In Proc. 19th European Conference on Object-Oriented Programming (ECOOP).
Springer, 504–527.

Parasoft Inc. 2002. Jtest. http://www.parasoft.com/. Accessed Dec. 2007.

Rutar, N., Almazan, C. B., and Foster, J. S. 2004. A comparison of bug finding tools for

Java. In Proc. 15th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 245–256.

Schlenker, H. and Ringwelski, G. 2002. POOC: A platform for object-oriented constraint

programming. In Proc. Joint ERCIM/CologNet International Workshop on Constraint Solving
and Constraint Logic Programming. Springer, 159–170.

Sen, K. and Agha, G. 2006. CUTE and jCUTE: Concolic unit testing and explicit path model-

checking tools. In Proc. 18th International Conference on Computer Aided Verification (CAV).
Springer, 419–423.

Sen, K., Marinov, D., and Agha, G. 2005. CUTE: A concolic unit testing engine for C. In

Proc. 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). ACM, 263–272.

Smaragdakis, Y. and Csallner, C. 2007. Combining static and dynamic reasoning for bug

detection. In Proc. 1st International Conference on Tests And Proofs (TAP). Springer, 1–16.

Taghdiri, M., Seater, R., and Jackson, D. 2006. Lightweight extraction of syntactic specifi-

cations. In Proc. 14th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE). ACM, 276–286.

Tomb, A., Brat, G. P., and Visser, W. 2007. Variably interprocedural program analysis for run-

time error detection. In Proc. ACM/SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA). ACM, 97–107.

Vaziri, M. and Jackson, D. 2003. Checking properties of heap-manipulating procedures with
a constraint solver. In Proc. 9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS). Springer, 505–520.

Visser, W., Havelund, K., Brat, G., and Park, S. 2000. Model checking programs. In Proc.
15th IEEE International Conference on Automated Software Engineering (ASE). IEEE, 3–12.

Visser, W., Pasareanu, C. S., and Khurshid, S. 2004. Test input generation with Java

PathFinder. In Proc. ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, 97–107.

Wagner, S., Jürjens, J., Koller, C., and Trischberger, P. 2005. Comparing bug finding tools

with reviews and tests. In Proc. 17th IFIP TC6/WG 6.1 International Conference on Testing
of Communicating Systems (TestCom). Springer, 40–55.

Whaley, J., Martin, M. C., and Lam, M. S. 2002. Automatic extraction of object-oriented

component interfaces. In Proc. ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, 218–228.

Xie, T. and Notkin, D. 2003. Tool-assisted unit test selection based on operational violations. In

Proc. 18th IEEE International Conference on Automated Software Engineering (ASE). IEEE,
40–48.

Xie, Y. and Engler, D. 2003. Using redundancies to find errors. IEEE Transactions on Software

Engineering 29, 10 (Oct.), 915–928.

Young, M. 2003. Symbiosis of static analysis and program testing. In Proc. 6th International
Conference on Fundamental Approaches to Software Engineering (FASE). Springer, 1–5.

ACM Journal Name, Vol. V, No. N, January 2008.

36 · Christoph Csallner et al.

Zhu, H., Hall, P. A. V., and May, J. H. R. 1997. Software unit test coverage and adequacy.

ACM Computing Surveys 29, 4, 366–427.

Zitser, M., Lippmann, R., and Leek, T. 2004. Testing static analysis tools using exploitable
buffer overflows from open source code. In Proc. 12th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE). ACM, 97–106.

ACM Journal Name, Vol. V, No. N, January 2008.

