
Dynamically Discovering Likely Interface Invariants

Christoph Csallner, Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{csallner,yannis}@cc.gatech.edu

ABSTRACT
Dynamic invariant detection is an approach that has re-
ceived considerable attention in the recent research liter-
ature. A natural question arises in languages that sepa-
rate the interface of a code module from its implementa-
tion: does an inferred invariant describe the interface or the
implementation? Furthermore, if an implementation is al-
lowed to refine another, as, for instance, in object-oriented
method overriding, what is the relation between the inferred
invariants of the overriding and the overridden method? The
problem is of great practical interest. Invariants derived by
real tools, like Daikon, often suffer from internal inconsisten-
cies when overriding is taken into account, becoming unsuit-
able for some automated uses. We discuss the interactions
between overriding and inferred invariants, and describe the
implementation of an invariant inference tool that produces
consistent invariants for interfaces and overridden methods.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment—Restructuring, reverse engineering, and reengineer-

ing ; D.3.3 [Programming Languages]: Language Con-
structs and Features—Abstract data types, polymorphism,

and inheritance; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about
Programs—Pre- and post-conditions

General Terms: Algorithms, Documentation, Languages

Keywords: Dynamic analysis, invariant detection, inter-
faces, method overriding

1. INTRODUCTION
Dynamic invariant detection tools like Daikon [3] and

DIDUCE [4] have attracted a lot of attention in the re-
cent research literature. Such tools attempt to monitor a
large number of program executions and heuristically infer
abstract logical properties of the program. Empirically, the
invariant detection approach has proven effective for pro-
gram understanding tasks. Nevertheless, the greatest value
of program specifications is in automating program reason-
ing tasks. Indeed, Daikon produces specifications in several
formal specification languages (e.g., in JML [5] for Java) and
the resulting annotations have been used to automatically
guide tools such as test case generators [9, 7].

Using inferred invariants automatically in other tools

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

places a much heavier burden on the invariant inference en-
gine. Treating inferred invariants, which are heuristics, as
true invariants means that they need to be internally consis-
tent. Otherwise a single contradiction is sufficient to throw
off any automatic reasoning engine (be it a theorem prover,
a constraint solver, a model checker, or other) that uses
the invariants. In this paper, we discuss how an invariant
detection tool can produce consistent invariants in a lan-
guage that allows indirection in the calling of code. Object-
oriented languages are good representatives, as they allow
dynamically determining called code through the mecha-
nism of method overriding. The problem has two facets:

• When a method is called on an object with a different
static and dynamic type, should inferred invariants be
attributed to the static type, the dynamic type, or a
combination?

• How can inferred invariants be consistent under the
rule of behavioral subtyping, which states that the over-
riding method should keep or weaken the precondi-
tion and keep or strengthen the postcondition of each
method it overrides.

We discuss these issues in the context of Java, the JML
specification language, and the Daikon invariant inference
tool. Similar observations apply to different contexts. We
describe a solution and our in-progress implementation of a
dynamic invariant inference tool that supports it.

2. BACKGROUND AND MOTIVATING
EXAMPLES

We begin with the necessary Daikon and JML background
to give motivating examples of the problem.

2.1 Daikon, JML, Behavioral Subtyping
Daikon [3, 8] tracks a program’s variables during execu-

tion and generalizes their observed behavior to invariants—
preconditions, postconditions, and class invariants. Daikon
instruments the program, executes it (for example, on an ex-
isting test suite or during production use), and analyzes the
produced execution traces. At each method entry and exit,
Daikon instantiates some three dozen invariant templates,
including unary, binary, and ternary relations over scalars,
and relations over arrays (relations include linear equations,
orderings, implication, and disjunction). For each invariant
template, Daikon tries several combinations of method pa-
rameters, method results, and object state. For example, it
might propose that some method m never returns null. It



later ignores those invariants that are refuted by an execu-
tion trace—for example, it might process a situation where
m returned null and it will therefore ignore the above invari-
ant. So Daikon summarizes the behavior observed in the
execution traces as invariants and generalizes it by propos-
ing that the invariants might hold in all other executions
as well. Daikon can annotate the testee’s source code with
the inferred invariants as preconditions, postconditions, and
class invariants in the JML [5] specification language for
Java.

JML enforces the principle of behavioral inheritance or
behavioral subtyping [5] for overriding methods. Informally,
behavioral subtyping is the requirement that the overriding
method should be usable everywhere the method it over-
rides can be used. This is a common concept, employed
also in program analyzers (e.g., ESC/Java2 [2]) and design
methodologies (e.g., “subcontracting” in Design by Contract
[6]). To see behavioral subtyping more formally, consider the
following Java code with JML annotations:

public class Super {

//@ requires P;

//@ ensures Q;

public void m() {...} }

JML requires that a subclass’s preconditions and postcondi-
tions be specified with the also keyword, to denote behav-
ioral subtyping:

public class C extends Super {

//@ also

//@ requires R;

//@ ensures S;

public void m() {...} }

R and S are not the precondition and postcondition of
method C.m, however. Instead, JML derives the precon-
ditions and postconditions from the also clauses and the
behavior of the overridden method Super.m:

• C.m’s precondition is P | R (read “P or R”)

• C.m’s postcondition is (P ==> Q) & (R ==> S) (read
“if P holds as a precondition, Q holds as a postcon-
dition and if R holds as a precondition, S holds as a
postcondition”).

This is exactly the formal embodiment of behavioral sub-
typing: the precondition of the subtype method allows all
the preconditions of the methods it overrides, plus possibly
some more. The postcondition of the subtype method is
at least that of the overridden method if the precondition
falls inside the original domain, and may also have more
constraints.

2.2 The Problem with Overriding
With the above background, we can now see the two issues

arising in the interaction of invariant inferencing tools and
overriding.

The first issue is whether a precondition or postcondition
is really a property of the static or the dynamic type of an
object. Daikon associates any method execution with the
executed method body, not with the method definition of
the call’s static receiver. It then infers invariants from the
execution trace, maintaining the association with the exe-
cuted method. According to this behavior, Daikon never

infers pre- or postconditions of methods defined by a Java
interface, since interface methods do not have a body. Yet,
this behavior is counter-intuitive: even though postcondi-
tions are a property of the called code, preconditions are
established by the calling environment. When these are in-
ferred by actual program behavior, they should also be as-
sociated with the type known to the caller, regardless of the
actual type of an object.

In the following example, the Client class was written
against interface I. Method Client.foo calls I.m, so foo has
to honor all preconditions of I.m. (These might be specified
informally in the Javadoc comments of I.m or elsewhere.)
The conditions that hold when method m gets called reflect
the preconditions of the abstract method I.m, and not just
those of the called method Impl.m.

public interface I {

public void m(int arg); }

class Client {

void foo(I i) { //called with i = new Impl()

i.m(...); } }

public class Impl implements I {

public void m(int arg) {...} }

The second issue with invariant inferencing and overriding
is thornier. Since invariant inference is heuristic, it is easy
to derive invariants that do not respect behavioral subtyp-
ing and, thus, lead to a contradiction. Consider a method
m defined in a class Super and overridden in a subclass C.
Assume a scenario where, under the observed program be-
havior, Super.m is consistently called with an input value of
1 and always returns (in the observed executions) the output
value 1. It is reasonable to infer precondition i == 1 and
postcondition \result == 1 for Super.m. At the same time,
if C.m is also consistently called with input value 1 and al-
ways returns (in the observed executions) the output value
0, then it is reasonable to infer precondition i == 1 and
postcondition \result == 0 for C.m. Daikon just outputs
the invariants for both methods, with the also clause used
for the invariants of C.m, as dictated by JML for overriding
methods:

public class Super {

//@ requires i == 1;

//@ ensures \result == 1;

public int m(int i) {...} }

public class C extends Super {

//@ also

//@ requires i == 1;

//@ ensures \result == 0;

public int m(int i) {...} }

Then, according to the JML rules discussed earlier, the com-
plete invariants for C.m become:

• Precondition: i == 1

• Postcondition:
((i==1) ==> (\result==1)) &

((i==1) ==> (\result==0)).
We can simplify this to:
((i==1) ==> (\result==1) & (\result==0)),
which is equivalent to: i != 1.



The derived precondition means that calling C.m(1) is legal.
It is impossible for the method to reach its postcondition,
though, since the method cannot change the state (i == 1)
that existed before its own execution. (Any method para-
meter appearing in a postcondition is evaluated to its value
before method execution—it is implicitly enclosed by \old).
So the method cannot terminate normally without violat-
ing its postcondition. But it cannot go into an infinite loop
or terminate abnormally by throwing an exception either,
since such behavior is ruled out in JML when left unspec-
ified. Thus, every possible implementation of method C.m

(including the actual implementation observed by Daikon)
violates the derived specification.

This contradictory postcondition is very undesirable for
any automatic use of the derived specifications. The prob-
lem is that the behavior of the overriding method, C.m, in-

directly reveals that there is more behavior of the overridden

method, Super.m, than seen during the execution of the test

suite.1 Nevertheless, there is no easy way to take this into
account during the inference of the invariants for method
Super.m. It is tempting to think that there may be a differ-
ent set of conditions that can be output for C.m so that no
contradiction occurs. While we could explicitly manipulate
the C.m invariants to narrow the precondition (in this case to
false) to address the contradiction, this would also render
the invariants of C.m useless. The problem is fundamentally
with the invariants of Super.m and not C.m.

3. SOLUTION DESIGN
To solve both problems described earlier, we designed a

general algorithm that invariant detection tools can follow.
The algorithm is oblivious to the actual strategy of the tool
for deriving invariants from executions, and instead concen-
trates on what method observes which execution (i.e., which
input and output values). The algorithm can be described
informally as follows: values at input are used for computing
the precondition of the method executed (dynamic receiver)
and all methods it overrides up to and including the static
receiver. Values at output are used to compute the postcon-
dition of the method executed and all methods it overrides
as long as the values satisfy the methods’ preconditions.

Figure 1 illustrates the algorithm, which has the following
two phases:

• Phase A: the test suite is run and values at the begin-
ning of each call are registered for the dynamic receiver
of a method call and for all methods it overrides up to
and including the static receiver. Preconditions are
inferred from these values, in the same way as they
would be otherwise. No postconditions are inferred.
The phase completes with all preconditions computed.

• Phase B: the test suite is run again (or a trace is
replayed) and for a call to method C.m with inputs
i1..iN we find all methods (including C.m itself) that
C.m overrides. For each such method, S.m, if the in-
puts i1..iN satisfy the inferred precondition of S.m

then the execution of the method is used in the com-
putation of the postcondition of S.m.

1The implicit assumption for every dynamic invariant detec-
tion tool is that the derived invariants have to be consistent
with the observed behavior. So a future execution of the ob-
served behavior should pass any invariant checks compiled
from the derived invariants.

��������	�
�

������
��
�

���	�������

������
��
�

���	�������

��
����������

���������	�
�

��������������

���	�������

��������
�����

�����������������

�
�
��
��
�����

��������
�����

������
�����
��
����

����
���
�����������
	�

Figure 1: Phase A (left) and Phase B (right).

This approach solves both problems identified earlier.
First, preconditions are computed for both the static and
the dynamic receiver of a method call. Second, an execution
of an overriding method is also used to compute postcondi-
tions for all its overridden methods, as long as the inputs do
not fall outside the domain of the overridden method. Since
that domain is fixed (from Phase A), we are guaranteed that
no contradictory postconditions can be computed (because
the overriding and overridden methods have seen the same
behavior for all inputs in their common domain).

Note that there are several other ways to remove the
symptoms of the second problem (i.e., the derivation of a
contradiction). Generally, we can strengthen (i.e., narrow)
the inferred precondition of the overriding method or weaken
its postcondition until the contradiction disappears. Never-
theless, all such approaches result in artificial overapproxi-
mations. In contrast, our above algorithm solves the prob-
lem by ensuring that we take into account all relevant be-
havior for every method when computing its pre- and post-
condition.

4. SOLUTION IMPLEMENTATION
We are in the process of implementing a variant of Daikon

using the above algorithm to guide the invariant inference
logic. There are several implementation complications in
adopting our approach. First, we need to efficiently carry
information about the static type used to call a method dur-
ing method execution. Then, we need to compile inferred
JML preconditions into actual runtime checks that we will
perform during Phase B of our algorithm to determine which
methods’ postconditions may be affected by a given execu-
tion.

4.1 Keeping Track of Static Receivers
For the first issue, consider a method Impl.m dynamically

dispatched through an interface I.m. The problem is that
the executed method (Impl.m) does not have direct access
to the static receiver type (I) against which the method was
called (Figure 2).

We could rewrite the call site to observe the entry val-
ues and possibly update the static receiver’s preconditions.



Figure 2: The static receiver type I is not readily
available during the execution of Impl.

Nevertheless, this is awkward, since a similar task also needs
to be performed inside the body of the dynamic receiver. In-
stead, we want to pass the static receiver type information
to the dynamic receiver body to use its existing invariant
inference routines. To avoid synchronization problems with
centralized data stores we transform methods to pass the
static receiver type information with the method call (Fig-
ure 3). That is, a call to method m in class Impl will be
transformed to calling the jump-through method m___I for
all its calls through a reference with static type I:

public interface I {

public void m(int arg);

public void m___I(int arg); }

class Client {

void foo(I i) { //called with i = new Impl()

i.m___I(...); } }

public class Impl implements I {

public void m___I(int arg) {

trace.add(I);

return m(arg);

}

public void m___Impl(int arg) {

return m(arg);

}

public void m(int arg) {...} }

Figure 3: The static receiver type I is encoded in
the method name m I.

We use BCEL [1] for the program transformation at the
bytecode level.

4.2 Checking Invariants During Execution
After Phase A we add the derived preconditions as spe-

cial checks to the application. At the beginning of each
method body we add instructions that check if the precon-
dition of any overridden method holds as well. We associate
the traced values with every so determined method.

Up front we determine all method definitions that are
overridden by a given method D.m. Note that m may over-
ride methods in more than one direct super-types (e.g., in
interfaces) and in transitive super-types. If m has a method
body (is not abstract), we compile the precondition derived
for every overridden method into a separate runtime check

and add it to the beginning of m. If a runtime check succeeds
then the current invocation also satisfies the precondition of
the overridden method and we associate the invocation with
this method definition. In the following example, an invo-
cation of method D.m may contribute to the postconditions
of C.m, B.m, and A.m, in addition to D.m.

public interface A {

public void m(int i); }

public interface B extends A {

public void m(int i); }

public class C {

public void m(int i) {...} }

public class D extends C implements B {

public void m(int i) {

if A.m.pre(i) {trace.add(A);}

if B.m.pre(i) {trace.add(B);}

if C.m.pre(i) {trace.add(C);} ... } }

5. CONCLUSIONS
We presented an algorithm for dynamic invariant detec-

tion that supports interfaces and method overriding. We
have outlined an implementation in the context of the
Daikon dynamic invariant detector. Future work includes
an empirical evaluation of the algorithm.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grants No. CCR-0220248 and
CCR-0238289.

6. REFERENCES
[1] Apache Software Foundation. Bytecode engineering library

(BCEL). http://jakarta.apache.org/bcel/, Apr. 2003. Accessed
Feb. 2006.

[2] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java
and JML: Progress and issues in building and using
ESC/Java2. Technical Report NIII-R0413, Nijmegen Institute
for Computing and Information Science, May 2004.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, Feb. 2001.

[4] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the 24th
International Conference on Software Engineering, pages
291–301, May 2002.

[5] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for Java.
Technical Report TR98-06y, Department of Computer Science,
Iowa State University, June 1998.

[6] B. Meyer. Object-Oriented Software Construction. Prentice
Hall PTR, 2nd edition, 1997.

[7] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and
classification of test inputs. In Proc. 19th European
Conference on Object-Oriented Programming, pages 504–527,
July 2005.

[8] J. H. Perkins and M. D. Ernst. Efficient incremental algorithms
for dynamic detection of likely invariants. In Proceedings of
the ACM SIGSOFT 12th Symposium on the Foundations of
Software Engineering (FSE 2004), pages 23–32, Nov. 2004.

[9] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. In Proc. 18th Annual International
Conference on Automated Software Engineering (ASE 2003),
pages 40–48, Oct. 2003.


