
Scoping Constructs for Software Generators

Yannis Smaragdakis and Don Batory
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{smaragd,dsb}@cs.utexas.edu

Abstract. A well-known problem in program generation isscoping. When iden-
tifiers (i.e., symbolic names) are used to refer to variables, types, or functions,
program generators must ensure that generated identifiers arebound to their
intendeddeclarations. This is the standard scoping issue in programming lan-
guages, only automatically generated programs can quickly become too com-
plex and maintaining bindings manually is hard. In this paper we present
generation scoping: a language mechanism to facilitate the handling of scoping
concerns. Generation scoping offers control over identifier scoping beyond the
scoping mechanism of the target programming language (i.e., the language in
which the generator output is expressed). Generation scoping was originally
implemented as an extension of the code template operators in the Intentional
Programming platform, under development by Microsoft Research. Subse-
quently, generation scoping has also been integrated in the JTS language exten-
sibility tools. The capabilities of generation scoping were invaluable in the
implementation of two actual software generators: DiSTiL (implemented using
the Intentional Programming system), and P3 (implemented using JTS).

Keywords: software generators, program transformations, generation scoping,
hygienic macro expansion

1  Introduction

Program generationis the process of generating code in a high-level programming
language. A well-known problem with program generation has to do with the resolu-
tion of names used to refer to various entities (e.g., variables, types, and functions) in
the generated program. This is the standard scoping issue of programming languages
but scoping problems are exacerbated when programs are generated automatically. For
instance, often the same macro or template is used to create multiple code fragments,
which all exist in the same scope of the generated program. In that case, care should be
taken so that the generated fragments do not contain declarations that conflict (e.g.,
variables with the same name in the same lexical scope).

Avoiding scoping problems in program generation can be done manually: Lisp pro-
grammers are familiar with thegensym function for creating new symbols. Using
gensym to create unique names for generated variable declarations is one of the com-
monly recommended practices for Lisp programmers. Unfortunately, this practice is
tedious; it complicates program generation and makes the generator code harder to
read and maintain. Mechanisms have been invented to relieve the programmer of the
obligation to keep track of declared variables and generate new symbols for their
names. These mechanisms fall under the general heading ofhygienic macro-expansion
(e.g., [7], [8], [10]) and address the scoping problem for macros: self-contained trans-



formations that are both specified and applied in thesameprogram. A desirable prop-
erty in this setting is referential transparency: identifiers introduced by a
transformation refer to declarations lexically visible at the site where the transforma-
tion is defined—not where it is applied. In this paper we adapt the ideas of hygienic
macro-expansion to a more general program generation setting, where referential
transparency is not meaningful. Our mechanism can be used forsoftware generators,
which are essentially stand-alone compilers. The definition of transformations in soft-
ware generators has no lexical connection to the program generated by these transfor-
mations (for instance, the generator program and the generated program may be in
different programming languages). Our mechanism is calledgeneration scopingand
gives the generator programmer explicit and convenient control over the scoping of the
generated code. (In fact, the generation scoping idea was invented independently of
hygienic macro-expansion techniques, but in the process we essentially re-invented the
principles that are common to both generation scoping and hygienic macro expansion.)

Generation scoping has been implemented on two language extensibility plat-
forms: Microsoft Research’s Intentional Programming system [13] and the Jakarta
Tool Suite (JTS) [1]. Two component-based software generators, DiSTiL [14] and P3
[1], were built using generation scoping. In both cases, generation scoping proved
invaluable, as it simplified the generator code and accentuated the distinction between
executed and generated code.

2  Background: Scoping for Generated Programs

For a quick illustration of some of the scoping issues in program generation, we

will use an (imaginary1) extension of the C language withcode template operators.
We introduce two such operators:quote (abbreviated as‘ ) andunquote (abbreviated
as$). quote designates the beginning of a code template andunquote escapes from

it to evaluate a code generating expression.2 Consider generating code to iterate over a
text file and perform some actions on its data. A possible implementation in our exam-
ple language is shown below, with the quoted code appearing in bold:

CODE CreateForAllInFile (CODE filename, CODE actions)
{ return ‘ { FILE * fp;

if ((fp = fopen( $filename , “r”)) == NULL)
FatalError(FILE_OPEN_ERROR);

while ( feof(fp) == FALSE) {
int byte = fgetc(fp);
$actions ;

}
}

} (1)

1 Actually, this extension of C with meta-programming constructs corresponds closely to the
state of the Intentional Programming system in 1995, when generation scoping was imple-
mented.

2 These operators are analogous to the LISP “backquote” and “comma” macro pair or the
Schemequasiquote  andunquote  primitives [6].



The first scoping issue in the above code has to do with the scope used to bind the
references in the generated code fragment. That is, the generated code fragment only
has meaning in a lexical environment whereFILE , FatalError , fopen , etc., are
defined. We will disregard this issue for now and concentrate on the scope of generated
declarations.

In the above example, two declarations are generated (these are underlined in the
code). The scope of these declarations should be quite different. The first is the decla-
ration of file pointerfp . This variable should be invisible to user code—the code frag-
ment represented byactions should not be able to refer tofp . This is the rule of
hygienicprogram generation and it ensures that no accidental capture of references can
occur: the code fragment represented byactions may contain a reference to some
fp , but this will never be confused with thefp generated by the code above. Obvi-
ously, this is a good property to guarantee. Thefp variable is just an implementation
detail and its name should be protected from accidental clashes with other names that
may be in use.

The generated declaration of variablebyte , on the other hand, demonstrates the
need forbreaking the hygiene. Variablebyte represents the current character being
read from the text file. The code represented byactions should be able to access
byte —in fact,byte is the only interface for exploiting the functionality of traversing
the text file.

To illustrate the above points, consider an example use of theCreateForAllIn-

File function. A program can have a file pointer,fp , that points to a text file. We may
want to generate code that determines whether a file is a prefix of the file pointed to by
fp :

CreateForAllInFile( ‘(“prefix.txt”) ,
‘{if (byte != fgetc(fp)) return -1;}  );

The fp identifier above isnot the same as thefp introduced accidentally by the
CreateForAllInFile function in (1). Nevertheless, a naive generation process will
result intofp (above) accidentally referring to the internal variable ofCreateForAl-

lInFile . This is a scoping problem that we want to avoid, so that the client ofCre-

ateForAllInFile can be oblivious to the choice of name used for the internal file
pointer variable. On the other hand, the reference tobyte shouldrefer to the variable
whose declaration is generated in (1). Clearly, it is hard to satisfy both requirements
with code fragment (1), as the two declarations are never differentiated. We now dis-
cuss two existing approaches to scoping and why they are not sufficient for our pur-
poses.

First Approach: Generating Unique Symbols Manually.The simplest way to sat-
isfy this dual requirement is manually. We can generate a unique symbol for all decla-
rations that should be hidden from other code. This is, for instance, a common practice
for Lisp programmers, who can use thegensym function to create unused, unique
names in generated code. With our example language and the code fragment in (1), we
get:



CODE CreateForAllInFile (CODE filename, CODE actions)
{ CODE mfp = gensym();

return ‘ {
FILE * $mfp ;
if (( $mfp  = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof( $mfp ) == FALSE) {

int byte = fgetc( $mfp );
$actions ;

}
}

} (2)

For typical software generators, where many code fragments are created and com-
posed, this solution is clearly unsatisfactory. The code becomes immediately harder to
read and maintain, with many alternations between generated (quoted) and evaluated
(unquoted) code. The intention that themfp (for meta-file-pointer) variable holds a sin-
gle variable name (and not an entire expression) is not enforced at the language level.
Furthermore, understanding the code generated by code fragment (2) requires under-
standing the control flow of (2) (e.g., to ensure that the value ofmfp  never changes).

The most important disadvantage of the “manual” creation of unique identifiers,
however, is that the generator programmer has toanticipatewhich identifiers may
cause name clashes and need to be hidden. The most likely problem with code frag-
ment (2) is that the generated code will be used in a lexical environment where an
identifier like FILE , FatalError , etc., does not have the meaning intended by the
author of (2). The only way to avoid this problem is to use unique symbol names for
all definitions. Then the new names will have to be passed around in the generator
code so that only their legitimate clients have access to them. For instance, one can
imagine that the actual name for procedureFatalError will need to be a new, unique
symbol (to avoid accidental capture), which is then passed as a parameter toCreate-

ForAllInFile , resulting in a more complicated code fragment:

CODE CreateForAllInFile (CODE mFatalError, CODE filename, CODE
actions)
{ CODE mfp = gensym();

return ‘ {
FILE * $mfp ;
if (( $mfp  = fopen( $filename , “r”)) == NULL)

$mFatalError (FILE_OPEN_ERROR);
while ( feof( $mfp ) == FALSE) {

int byte = fgetc( $mfp );
$actions ;

}
}

} (3)

If we take this approach to an extreme (e.g., doing the same for
FILE_OPEN_ERROR, FALSE, and all other generated variables), the code will become
completely unreadable and the programmer will have an obligation to keep close track
of all generated declarations as well as their clients.



Second Approach: Hygienic Macros.Another way to satisfy the scoping require-
ments for the two generated variables, is through a hygienic mechanism, such as those
proposed in the work on hygienic macro expansion (e.g., [5], [7], [8], [10], [11]).
Hygienic mechanisms work by making generated declarationsby default invisibleout-
side the pattern or template (e.g., macro) that introduced them. In the example of (1),
this would mean that both the declaration offp and that ofbyte will be invisible to
code inactions . Since this is not desirable in the case ofbyte , the hygiene must be
explicitly broken. In the hygienic macros work, this case is considered to be a rare

exception.3 Carl’s hygienic mechanism [5] even attempts to automatically detect com-
mon patterns that require breaking the hygiene. Additionally, lexically-scoped
hygienic macros [7][8] use the lexical environment of the generation site as the lexical
environment of the generated code (a property calledreferential transparency).

The problem with using this approach in software generators is that it is not possi-
ble to reliably deduce the scope of a variable from the lexical location of the code that
generates its declaration. In particular there are two important differences between
macros and software generators:

1. Macros are (more or less) self-contained units. There is a clear distinction between
the macro code and the code that is passed as a parameter to the macro. This is not the
case with software generators. The code generating a declaration is not, in general, in
close lexical proximity of the code generating a reference to that declaration.

2. The lexical environment of a program-generating code fragment cannot be identi-
fied with the lexical environment of the generated code in software generators. (In
hygienic macro terminology: referential transparency is not meaningful.) For instance,
we could even have the generator be in a different language than the generated code
(e.g., unquoted code could be in Java, quoted code in C). In contrast, lexically scoped
macros use the lexical environment of the macro definition to determine the binding of
all references generated by the macro.

The first point is a result of observation. The transformations in most software gen-
erators interleave generating code with arbitrary computation more often than macros.
In this way, it is hard to identify a self-contained program fragmentin the generator
that will be identified with a scope in the generated program.

To see the second point, consider again code fragment (1), reproduced below for
easy reference.

CODE CreateForAllInFile (CODE filename, CODE actions)
{ return ‘ {

FILE * fp;
if ((fp = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof(fp) == FALSE) {

3 For instance, we read in [7]: “We here ignore the occasional need to escape from hygiene.”



int byte = fgetc(fp);
$actions ;

}
}

}

CreateForAllInFile has several dependencies to other generated code (e.g., the
FILE type identifier, theFatalError function, theFALSEconstant, etc.). In the case
of lexically-scoped macros such dependencies are resolved at the site of the macro def-
inition. This would be equivalent to trying to find bindings forFILE , FatalError ,
etc., in the program site whereCreateForAllInFile is defined. This approach is not
valid for software generators.For instance, theFatalError routine may not be
declared as a routine in the generator or a standard library, but instead exist only in
the generated program. Hence, the declaration ofFatalError must be non-hygienic
so that the code fragment generated byCreateForAllInFile  can access it.

3  Generation Scoping

3.1  Generation Environments

Because of the differences between macros and software generators, we cannot
hope to achieve the same degree of automation for software generators as with
hygienic lexically-scoped macros. Nevertheless, we can still do better than manually
generating new symbols, as in example (3) of Section 2. This is the purpose of genera-
tion scoping. Generation scoping is a mechanism that represents lexical environments
in the generated program as first-class entities. In this way, the generator has control of
the scoping of the generated program, beyond that offered by the target programming
language.

To support lexical environments as first-class entities, generation scoping adds a
new keyword,environment , to the language in which the program generator is writ-
ten. Its syntax is:

environment (<generation-environment>) <statement>;

wherestatement contains one or more quoted expressions. Thegeneration-

environment is an expression that yields a value of typeENV. ENV is a type used to
represent environments and only has a constructor and equality function defined (i.e.,
we can only create new values of typeENVand compare them with existing ones). The
constructor for environments,new_env , can take an arbitrary number of arguments
whose values are other environments. These environments become theparentsof the
newly created environment (thechild). All variable declarations in a parent become
visible to the child environment. Like traditional scoping mechanisms, variable bind-
ings of the child eclipse bindings with the same name in the parent.

An example use ofenvironment in code implementing our example text file tra-
versal follows below:



CODE CreateForAllInFile (ENV p, CODE mtbyte, CODE filename,
CODE actions)

{
environment(new_env(p))

return ‘ {
FILE *fp;
if ((fp = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof(fp) == FALSE) {

int $mtbyte  = fgetc(fp);
$actions ;

}
}

} (4)

To generate code using thequote operator, an environment needs to be specified.
In this way, the code represented byactions can never access variablefp (as fp is
generated in a new environment—which becomes a child of an environment passed
into the function). At the same time, if the variable represented bymtbyte is gener-
ated in the same environment asactions , they are visible to each other. This is the
case with most straightforward uses of this function. For instance:

environment(e)
result =

CreateForAllInFile(global_env, ‘byte , ‘(“file.txt”) ,
‘putchar(byte)  ); (5)

Comparing code fragments (4) and (3), we can see why using environments is
more convenient than manually handling variables by creating new symbols. In partic-
ular, there are several important advantages:

1. The generator programmer does not need to explicitly state which variables get
“closed” in the right lexical environment.All declarations generated under anenvi-

ronment statement will be automatically added to the corresponding environment.
Additionally, the generator programmer does not need to explicitly retrieve the binding
for a certain identifier.All references (e.g., tofp , but also toFILE , FatalError ,
fopen , etc., above) are interpreted relative to that environment.This means that, if a
code fragment is generated in the intended environment, it can later be used without
problems in a local context, even if the local context contains different bindings for the
same identifiers.For example, in code fragment (5), above, ifglobal_env has the
intended declaration for, e.g.,FILE , it will not subsequently matter if the generated
code fragment is output in the middle of a function whereFILE means something dif-
ferent. The reference will always be to theFILE type variable defined in the environ-
ment represented byglobal_env .

2. The alternation between executed and generated code is avoided. There is no need
to unquote code just to supply a unique symbol name.

3. Declarations are treated as a group, instead of individually. In the above example



there is only one variable declared, so this is not really an advantage. In quoted code
with several generated declarations, however, handling environments is easier than
handling all new symbols individually. Of course, the same grouping effect could be
achieved by using a mapping data structure in the generator code. The advantage of
generation scoping is that the data structure is now integrated in the language and
insertions and lookups are implicit (i.e., the programmer never has to specify them—
see the first point above).

3.2  Implementation Issues

It is perhaps worth stressing again that the main advantage of generation scoping is
that the generator programmer is relieved of the responsibility of adding declarations
to environments and looking up identifier bindings in those environments. That is, the
implementation ofquote will determine whether a generated identifier is actually a
declaration (of a variable, function, type, etc.) or a reference to an existing entity. Each
environment has a symbol table and a collection of pointers to the parent environ-
ments. In case an identifier represents a declared entity, it is added to the current envi-
ronment’s symbol table together with a corresponding generated unique name for the
declared entity. When a generated identifier is a reference, it will be looked up in the
appropriate environment’s table and, if it is not there, in the parent environments recur-

sively.4 The result of the identifier lookup is the unique generated name for the match-
ing declaration. In this way, no accidental reference to the wrong variable, type,
function, etc., can occur, as long as the environments are set up properly.

As is well-documented in the work on hygienic macros [7][10], determining the
syntactic role of an identifier (i.e., whether it is a declaration or a reference) is hard
when the entire program has not yet been generated. For instance, consider the pro-
gram-generating function:

CODE CreateDclOrRef (CODE type) {
return ‘{ $type  newvar = 10 } ;

}

In most programming environments,5 it is impossible to tell before the code is gen-
erated whether the generated code declaresnewvar or refers to an existing variable of
the same name. If the parameter type holds the type specifier‘int , thennewvar is
being declared. If, on the other hand, it holds the operator‘* , it is not. This problem
has been studied extensively in the hygienic macro community and the common
approach is to employ a “painting” algorithm that marks each identifier with the envi-
ronment where it was created. It is easy to adapt this approach to generation scoping:

4 In case a matching declaration is found in multiple parent environments, the unique name
returned is determined by a depth-first search of the parent tree, based on the order parents
were specified in thenew_env constructor. This is, however, an arbitrary default and not fun-
damental to the system’s operation.

5 This is not true for the Intentional Programming system, where the most mature version of
generation scoping was implemented. The system fundamentally distinguishes (at the editor
level, even) between declarations and references, so that a single code fragment cannot be
used to create both.



After all the code has been generated, the marked declarations can be matched to
marked references (assuming they came from the same environment). Remaining ref-
erences can then be just unmarked, so that they become free references and can refer to
externally declared symbols. A more thorough discussion on implementing a “paint-
ing” algorithm for program generation can be found in [11].

4  Generation Scoping in DiSTiL

Generation scoping was implemented as part of IP (Intentional Programming) [13],
a general-purpose transformation system under development by Microsoft Research. It
was subsequently used to build the DiSTiL software generator [14] as a domain-spe-
cific extension to IP. DiSTiL is a generator that follows the GenVoca [3] design para-
digm. GenVoca generators are a class of sophisticated software generators that
synthesize high-performance, customized programs by composing pre-written compo-
nents calledlayers. Each layer encapsulates the implementation of a primitive feature
in a target domain. The DiSTiL generator is essentially a compiler for the domain of
container data structures. Complex container data structures are synthesized by com-
posing primitive layers, where each layer implements either a primitive data structure
(e.g., ordered linked lists, binary trees, etc.) or feature (sequential or random storage,
logical element deletion, element encryption, etc.). Code for each data structure opera-
tion is generated by having each layer manufacture a code fragment (that is specific to
the operation whose code is being generated) and by assembling these fragments into a
coherent algorithm.

Generation scoping was indispensable in the implementation of DiSTiL. Even rela-
tively short DiSTiL specifications (around 10-20 lines) could generate thousands of
lines of optimized code. Due to the complexity of the generated code, as well as the
flexibility of parameterization (a layer could be composed with a wide variety of other
layers), maintaining correct scoping for generated code would have been a nightmare
without generation scoping. In fact, initially we had attempted to implement DiSTiL
with manual resolution of generated references (by generating unique symbols, as in
code fragment (3)).The sheer difficulty of this task was what motivated generation
scoping in the first place.

Generation scoping is used in DiSTiL not only to ensure the correctness of refer-
ences to global declarations (e.g., library functions) but also to overcome the scoping
limitations of the target language (C). With generation scoping, DiSTiL effectively
manages different namespaces for every layer in a composition. In this way, there are
no clashes between identically named variables introduced by different layers (or dif-
ferent instances of the same layer). At the same time, the code is simplified by having
namespaces connected appropriately so that generated code can access all the required
declarations without explicit qualification.

DiSTiL data structures consist of three distinct entities: a container, elements, and
iterators (calledcursors). Generated variables are grouped together into a common
environment according to the entity to which they are related. For instance, all declara-
tions related to the cursor part of a doubly linked list will belong in a single generation
environment. These variables neednotbelong to a single lexical context. For example,
variables in an environment may be global, or local, or fields of a record type. Thus,



variables of an environment could belong to slices of many different lexical contexts in
the generated program. In this way, the environment acts as a generator-managed
namespace mechanism for the target language.

Consider the following organization used in DiSTiL (and, in fact, also in P3). In
general, there is a many-to-one relationship between cursors and containers (i.e., there
can be many cursors—each with a different retrieval predicate—per container). So
using a single generation environment to encapsulate both cursorand container data
members is not possible. Instead, separate environments are defined for every cursor
and container. TheContGeneric environment encapsulates element data members
(because element types are in one-to-one correspondence with container types) and
generic container-related variables (including thecontainer identifier). TheCurs-

Generic environment encapsulates generic cursor-related variables (including the
cursor identifier). By makingContGeneric a parent ofCursGeneric , code for
operations on containers (which do not need cursors) can be generated using the
ContGeneric environment, while code for operations on cursors (which also refer-
ence container fields) is generated using theCursGeneric environment. Figure 1(a)
depicts this relationship.

As mentioned earlier, a hallmark of GenVoca layers is that they encapsulate refine-
ments of multiple classes. Each DiSTiL layer refines cursor, container, and element
types by adding layer-specific data members. The data members added to the container
and element types by layerLi are encapsulated by environmentCont i which is a child
of ContGeneric . Similarly, data members added byLi to the cursor type are encapsu-
lated by environmentCurs i which is a child of bothCursGeneric and Cont i

(because cursors of layerLi reference layer-specific container-data members as well as
layer-specific cursor data members). Figure 1(b) shows this hierarchical organization
of environments.

To illustrate these ideas, consider an ordered doubly-linked list layer. This layer
would refine elements by addingnext andprev fields, and would refine containers by
addingfirst and last fields. This refinement can be accomplished by aRefine-

...

...

pc

Legend:

ContGeneric

CursGeneric

Cont 1 Cont 2 Cont 3

Curs 1 Curs 2 Curs 3

ContGeneric

CursGenericp is parent

(a)

(b)

Figure 1: Hierarchical Organizations of Environments in DiSTiL

of c



Types() method:elem_type , cont_type , andcurs_type are code fragments that
respectively define the set of variables (data members) in element, container, and cur-
sor classes. WhenRefineTypes() is called with these code fragments as parameters,
thenext , prev , first , andlast fields are added to the element and container types.
As these fields are always used together, they are declared within a single environment
Cont  (which is equal to someCont i of Figure 1):

void RefineTypes( CODE *elem_type, CODE *cont_type, ENV Cont) {
environment(Cont) {

*elem_type = ‘{ $(*elem_type) ; element *next, *prev; } ;
*cont_type = ‘{ $(*cont_type) ; element *first, *last; } ;

}
}

It is common in a composition of GenVoca layers that a single layer appears multi-
ple times. An example in DiSTiL would be linking elements of a container onto two
(or more) distinct ordered lists, where each list has a unique sort key. Every list layer
adds its own fields to the element and container types. Maintaining the distinction
among these fields (so that the code for the j-th list will only reference its own fields
next j, prev j, etc.) is simple using generation environments as organized in Figure 1.
Each copy of the list layer will have its own generation environmentsCont j andCurs j,
and all code generated by that copy would always use these environment variables.

For an example, consider theRemove method for ordered doubly-linked lists,
appearing below. LetRemove_Code be the code that is to be generated for removing
an element from a container. TheRemove method for ordered doubly-linked lists adds
its code (to unlink the element) when it is called (the code that actually deletes the ele-
ment is added by another layer). Thus, givenRemove_Code and the environmentCurs

(equal to someCurs i of Figure 1),Remove() adds the unlinking code where the
next , prev , etc. identifiers are bound to their correct variable definitions.

void Remove( CODE *Remove_Code, ENV Curs ) {
environment(Curs) {

*Remove_Code = ‘{ Element * next_el = cursor->next;
Element * prev_el = cursor->prev;
$(*Remove_Code) ;

 if (next_el != null)
next_el->prev = prev_el;

if (prev_el != null)
prev_el->next = next_el;

if (container->first == cursor.obj)
container->first = next_el;

 if (container->last == cursor.obj)
container->last = prev_el; } ;

}
}

Note that the bindings of identifierscursor , container , andnext in this tem-
plate exist in three different generation environments:container is in ContGen-

eric , cursor in CursGeneric , andnext in Cont i. Nevertheless, all of them can be



accessed from environmentCurs (following its parent links), so this is the only envi-
ronment that needs to be specified. Note also that there are two generated temporary
declarations in this code fragment, which are completely protected from accidental ref-
erence.

This example is convenient for demonstrating the benefits of generation scoping.
We attempt to show these benefits by speculating on the alternatives. Clearly the above
code fragment has many external generated references, so default hygiene is not really
an option. The generator writer has to explicitly create new symbols (as in code frag-
ment (3)) for the declarations ofcontainer , cursor , etc. (not shown). Instead of
managing all the new symbols individually, the generator writer could set up a data
structurein the generator (unquoted) codeto maintain the mappings of identifiers to
variables. Then the writer could use explicit unquotes to introduce the right bindings.
Given that declarations need to be inserted in the data structure explicitly and refer-
ences need to be looked up explicitly, the code would be much more complicated. One
can add some syntactic sugar to make the code more appealing. For instance, we can
use$$(ds, id) to mean “unquote and lookup identifierid in bindings data structure
ds ”. Similarly, we can use$%(ds, id) to mean “unquote and add variableid in
bindings data structureds ”. Even then, the code would be practically unreadable:

void Remove( CODE *Remove_Code, BindingDS ds ) {
*Remove_Code =

‘{ $$(ds, Element)  * $%(ds, next_el)  =
$$(ds, cursor) -> $$(ds, next) ;

$$(ds, Element)  * $%(ds, prev_el)  =
$$(ds, cursor) -> $$(ds, prev) ;

$(*Remove_Code) ;
 if ( $$(ds, next_el)  != null)

$$(ds, next_el) -> $$(ds, prev)  = $$(ds, prev_el) ;
if ( $$(ds, prev_el)  != null)

$$(ds, prev_el) -> $$(ds, next)  = $$(ds, next_el) ;
if ( $$(ds, container) -> $$(ds, first)  ==

$$(ds, cursor) . $$(ds, obj) )
$$(ds, container) -> $$(ds, first)  = $$(ds, next_el) ;

 if ( $$(ds, container) -> $$(ds, last)  ==
$$(ds, cursor) . $$(ds, obj) )

$$(ds, container) -> $$(ds, last)  = $$(ds, prev_el) ; } ;
}

As outlined earlier, generation scoping improves over this code in three ways:
First, no explicit data structure insertions/lookups need to be performed (e.g., there are
no$$ and$%operators). Second, no explicit escapes are introduced—there is no alter-
nation between quoted and unquoted code. Third, the grouping of variables is
implicit—there is no need to repeatedly refer to a data structure likeds .

5  Related Work

Given our prior discussion of hygienic macros, here we will only touch upon a few
other pieces of related work.

The environments used in generation scoping are similar to syntactic environments



in the syntactic closureswork [4][9]. In syntactic closures, environments are first-class
entities and code fragments can be explicitly “closed” in a lexical environment. Never-
theless, there are significant differences between the two approaches: Syntactic clo-
sures environments can only capture the set of variables that are lexically visible at a

specific point in a program.6 In contrast, our environments can be arbitrary collections
of bindings (i.e., smaller sets of lexically visible variables) and can be organized hier-
archically. More importantly, however, declarations are added to generation scoping
environments implicitly by generating (quoting) code that declares new variables.
Thus, our approach is much more automated than syntactic closures and is ideally
suited to software generators (where the lexical environment is being built while code
is generated). Also, generation scoping can be used to implement the hygienic, lexi-
cally-scoped macros of [7], unlike syntactic closures, which cannot be used to imple-
ment hygienic macro expansion, as explained in [7].

Generation scoping is concerned only with maintaining correct scoping for gener-
ated code fragments. Other pieces of work deal with various other correctness proper-
ties of composed code fragments. Selectively, we mention some work on the problem
of ensuring type correctness for generated programs, both for two-stage code [12] (i.e.,
generator and generated code) and multi-stage code [15] (i.e., code generating code
that generates other code, etc.).

6  Conclusions

Program generation is a valuable technique for software development that will
become progressively more important in the future. In this paper we have shown how
to address the scoping issues that arise in software generators. We have presented gen-
eration scoping: a general-purpose, domain-independent mechanism to address all
scoping needs of generated programs. Generation scoping can make writing and main-
taining software generators easier. Its capabilities were proven in the implementation
of the DiSTiL [14] and P3 [1] generators.

The future of software engineering lies in the automated development of well-
understood software. Program generators will play an increasingly important role in
future software development. We consider generation scoping to be a valuable lan-
guage mechanism for generator writers and hope that it will be adopted in even more
extensible languages and transformation systems in the future.

Acknowledgments

Support for this work was provided by Microsoft Research, and the Defense
Advanced Research Projects Agency (Cooperative Agreement F30602-96-2-0226).
We would like to thank an anonymous referee for his/her useful suggestions.

6 In the original syntactic closures work [4] this point was almost always the site of the macro
call. Later, syntactic environments were used to represent macro definition sites, as well (see,
for instance, [9]).



References
[1] D. Batory, G. Chen, E. Robertson, and T. Wang, “Web-Advertised Generators and Design

Wizards”,International Conference on Software Reuse (ICSR), 1998.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-
Specific Languages”,International Conference on Software Reuse (ICSR), 1998.

[3] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”,ACM Transactions on Software Engineering and
Methodology, October 1992.

[4] A. Bawden and J. Rees, “Syntactic Closures”. InProceedings of the SIGPLAN ‘88 ACM
Conference on Lisp and Functional Programming, 86-95.

[5] S. P. Carl, “Syntactic Exposures—A Lexically-Scoped Macro Facility for Extensible
Languages”. M.A. Thesis, University of Texas, 1996. Available through the Internet at
ftp://ftp.cs.utexas.edu/pub/garbage/carl-msthesis.ps .

[6] W. Clinger, J. Rees (editors), “The Revised4 Report on the Algorithmic Language
Scheme”.Lisp Pointers IV(3), July-September 1991, 1-55.

[7] W. Clinger and J. Rees, “Macros that Work”. inConference Record of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, January 1991, 155-
162.

[8] R.K. Dybvig, R. Hieb, and C. Bruggeman, “Syntactic Abstraction in Scheme”, inLisp
and Symbolic Computation, 5(4), December 1993, 83-110.

[9] C. Hanson, “A Syntactic Closures Macro Facility”,Lisp Pointers IV(4), October-
December 1991, 9-16.

[10] E. Kohlbecker, D.P. Friedman, M. Felleisen, and B. Duba, “Hygienic Macro Expansion”,
in Proceedings of the SIGPLAN ‘86 ACM Conference on Lisp and Functional
Programming, 151-161.

[11] J. Rees, “The Scheme of Things: Implementing Lexically Scoped Macros”,Lisp Pointers
VI(1), January-March 1993.

[12] T. Sheard and N. Nelson, “Type Safe Abstractions Using Program Generators”, Oregon
Graduate Institute Tech. Report 95-013.

[13] C. Simonyi, “The Death of Computer Languages, the Birth of Intentional Programming”,
NATO Science Committee Conference,1995.

[14] Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Data Structures”,
USENIX Conference on Domain-Specific Languages (DSL), 1997.

[15] W. Taha and T. Sheard, Multi-stage programming with explicit annotations,ACM Symp.
Partial Evaluation and Semantics-Based Program Manipulation (PEPM ‘97), 1997.


