
Hybrid Context-Sensitivity for Points-To Analysis

George Kastrinis Yannis Smaragdakis
Department of Informatics

University of Athens
{gkastrinis,smaragd}@di.uoa.gr

Abstract
Context-sensitive points-to analysis is valuable for achieving high
precision with good performance. The standard flavors of context-
sensitivity are call-site-sensitivity (kCFA) and object-sensitivity.
Combining both flavors of context-sensitivity increases precision
but at an infeasibly high cost. We show that a selective combi-
nation of call-site- and object-sensitivity for Java points-to anal-
ysis is highly profitable. Namely, by keeping a combined context
only when analyzing selected language features, we can closely
approximate the precision of an analysis that keeps both contexts
at all times. In terms of speed, the selective combination of both
kinds of context not only vastly outperforms non-selective combi-
nations but is also faster than a mere object-sensitive analysis. This
result holds for a large array of analyses (e.g., 1-object-sensitive,
2-object-sensitive with a context-sensitive heap, type-sensitive) es-
tablishing a new set of performance/precision sweet spots.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis; D.3.4 [Programming Languages]: Processors—
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis; context-sensitivity; object-
sensitivity; type-sensitivity

1. Introduction
Points-to analysis is a static program analysis that consists of com-
puting all objects (typically identified by allocation site) that a pro-
gram variable may point to. The area of points-to analysis (and
its close relative, alias analysis) has been the focus of intense re-
search and is among the most standardized and well-understood of
inter-procedural analyses. The emphasis of points-to analysis algo-
rithms is on combining fairly precise modeling of pointer behavior
with scalability. The challenge is to pick judicious approximations
that will allow satisfactory precision at a reasonable cost. Further-
more, although increasing precision often leads to higher asymp-
totic complexity, this worst-case behavior is rarely encountered in
actual practice. Instead, techniques that are effective at maintaining
good precision often also exhibit better average-case performance,
since smaller points-to sets lead to less work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

One of the major tools for exploiting sweet spots in the pre-
cision/performance tradeoff has been context-sensitivity. Context-
sensitivity consists of qualifying local variables and objects with
context information: the analysis unifies executions that map to the
same context value, while separating executions that map to differ-
ent contexts. This approach tries to counter the loss of precision that
naturally results in any static analysis from conflating information
from different dynamic program paths. Two main kinds of context-
sensitivity have been explored in the literature: call-site-sensitivity
[22, 23] and object-sensitivity [18, 19, 24].

A call-site-sensitive/kCFA analysis uses method call-sites (i.e.,
labels of instructions that may call the method) as context elements.
That is, the analysis separates information on local variables (e.g.,
method arguments) per call-stack (i.e., sequence of k call-sites) of
method invocations that led to the current method call. Similarly,
the analysis separates information on heap objects per call-stack of
method invocations that led to the object’s allocation. For instance,
in the code example below, a 1-call-site-sensitive analysis (unlike
a context-insensitive analysis) will distinguish the two call-sites of
method foo on lines 7 and 9. This means that the analysis will treat
foo separately for two cases: that of its formal argument, o, pointing
to anything obj1 may point to, and that of o pointing to anything
obj2 may point to.

class C {1

void foo(Object o) { ... }2

}3

4

class Client {5

void bar(C c1, C c2) { ...6

c1.foo(obj1);7

...8

c2.foo(obj2);9

}10

}11

In contrast, object-sensitivity uses object allocation sites (i.e., labels
of instructions containing a new statement) as context elements.
(Hence, a better name for “object-sensitivity” might have been
“allocation-site sensitivity”.) That is, when a method is called on
an object, the analysis separates the inferred facts depending on
the allocation site of the receiver object (i.e., the object on which
the method is called), as well as other allocation sites used as
context. Thus, in the above example, a 1-object-sensitive analysis
will analyze foo separately depending on the allocation sites of the
objects that c1 and c2 may point to. It is not apparent from this code
fragment neither whether c1 and c2 may point to different objects,
nor to how many objects: the allocation site of the receiver object
may be remote and unrelated to the method call itself. Similarly,
it is not possible to compare the precision of an object-sensitive
and a call-site-sensitive analysis in principle. In this example, it is
not even clear whether the object sensitive analysis will examine
all calls to foo as one case, as two, or as many more, since this

depends on the allocation sites of all objects that the analysis itself
computes to flow into c1 and c2.

The question behind our work is whether the two kinds of
contexts can be fruitfully combined, since they are quite dissimilar.
In order to address this question, we map the design space of
hybrid call-site- and object-sensitive analyses and describe the
combinations that arise. Naive hybrids, such as always maintaining
as context both a call-site and an allocation site, do not pay off,
due to extremely high cost. For instance, keeping one call-site and
one allocation site as context yields a very expensive analysis, on
average 3.9x slower than a simple 1-object-sensitive analysis.

However, we find that more sophisticated hybrids are highly
beneficial. Specifically, we show that we can switch per-language-
feature between a combined context and an object-only context.
For instance, contexts for static method calls are computed differ-
ently from contexts for dynamic method calls. This approach yields
analyses with both low cost and high precision. Furthermore, adapt-
ing contexts per program feature defines a complex design space
and allows even further optimization. Design choices arise, such
as, how should the context adapt when a dynamic method call, or
an object allocation are made inside a static method?

The end result is analyses that closely track the precision of
combined call-site-and-object-sensitivity while incurring none of
the cost. In fact, the cost of the resulting analysis is usually less
(and occasionally much less) than that of just an object-sensitive
analysis, due to increased precision. This effect is shown to apply
widely, to several variants of analyses. Accordingly, this outcome
establishes new sweet spots for the analyses most relevant for prac-
tical applications: 1-object-sensitive, 2-object-sensitive with a 1-
context-sensitive heap, and analogous type-sensitive [24] analyses.
For all of them, a selective hybrid context is typically both more
precise and faster than the original analysis.

In all, our paper makes the following contributions:

• We model the parameter space of context-sensitive points-to
analysis in a way that allows both call-site- and object-sensitivity,
as well as combinations and switching of context at key points
(virtual calls vs. static calls). In this space, we map out choices
that produce entirely different flavors of algorithms.

• We introduce the idea of hybrid call-site- and object-sensitivity
where the two kinds of context are freely mixed and the mix is
adjusted in response to analyzing different program features. The
goal is to achieve the precision of keeping both kinds of context
together, but at the same cost as keeping only one.

• We implement our approach in the DOOP framework by Braven-
boer et al. [4] and apply it to a large variety of algorithms with
varying context depth.

• We show experimentally, over large Java benchmarks and the
Java JDK, that hybrid context-sensitivity works remarkably well.
The selective application of a combined context achieves the
same effective precision as keeping both contexts at all times, at
a fraction of the cost, and is typically faster even than keeping
only an object context. For instance, in the practically important
case of a 2-object-sensitive analysis with a context-sensitive heap,
we get an average speedup of 1.53x and a more precise analysis.
Similarly, for the simple and popular 1-object-sensitive analysis,
we get an average speedup of 1.12x combined with significant
increase in precision.

The rest of the paper introduces a model for points-to analysis
(Section 2) and shows how instantiating the model yields several
well-known analyses. In Section 3 we discuss the many choices
for combining object- and call-site-sensitivity, as well as the most
promising points in this design space. Our evaluation results follow
in Section 4, before describing related work (Section 5).

2. Modeling of Points-To Analysis
We begin with a concise modeling of the relevant points-to analyses
and their context choices.

2.1 Background: Parameterizable Model
We model a spectrum of flow-insensitive points-to analyses and
joint (online) call-graph construction as a parametric Datalog pro-
gram. Datalog rules are monotonic logical inferences that repeat-
edly apply to infer more facts until fixpoint. Our rules do not use
negation in a recursive cycle, or other non-monotonic logic con-
structs, resulting in a declarative specification: the order of evalu-
ation of rules or examination of clauses cannot affect the final re-
sult. The same abstract model applies to a wealth of analyses. We
use it to model a context-insensitive Andersen-style [2] analysis, as
well as several context-sensitive analyses, both call-site-sensitive
and object-sensitive.

The input language is a representative simplified intermediate
language with a) a “new” instruction for allocating an object; b) a
“move” instruction for copying between local variables; c) “store”
and “load” instructions for writing to the heap (i.e., to object fields);
d) a “virtual method call” instruction that calls the method of the
appropriate signature that is defined in the dynamic class of the
receiver object; e) a “static method call” instruction that calls a
statically known target method. This language models well the
Java bytecode representation, but also other high-level intermediate
languages. (It does not, however, model languages such as C or
C++ that can create pointers through an address-of operator. The
techniques used in that space are fairly different—e.g., [8, 9]—
although our main hybrid approach is likely to be applicable. Also,
even though we model regular object fields and static methods, we
omit static fields. Their treatment is a mere engineering complexity,
as it does not interact with context choice.) The specification of our
points-to analysis as well as the input language are in line with
those in past literature [6, 16], although we also integrate elements
such as on-the-fly call-graph construction, static calls, and field-
sensitivity.

Specifying the analysis logically as Datalog rules has the ad-
vantage that the specification is close to the actual implementation.
Datalog has been the basis of several implementations of program
analyses, both low-level [4, 11, 20, 30, 31] and high-level [5, 7].
Indeed, the analysis we show is a faithful model of the implemen-
tation in the DOOP framework [4], upon which our work builds.
Our specification of the analysis (Figures 1-2) is an abstraction of
the actual implementation in the following ways:

• The implementation has many more rules. It covers the full
complexity of Java, including rules for handling reflection, na-
tive methods, static fields, string constants, implicit initialization,
threads, and a lot more. The DOOP implementation1 currently
contains over 600 rules in the common core of all analyses, and
several more rules specific to each analysis, as opposed to the
9 rules we examine here. (Note, however, that these few rules
are the most crucial for points-to analysis. They also correspond
fairly closely to the algorithms specified in other formalizations
of points-to analyses in the literature [17, 24].)

• The implementation also reflects considerations for efficient exe-
cution. The most important is that of defining indexes for the key
relations of the evaluation. Furthermore, it designates some rela-
tions as functions, defines storage models for relations (e.g., how
many bits each variable uses), designates intermediate relations
as “materialized views” or not, etc. No such considerations are
reflected in our model.

1 Available at http://doop.program-analysis.org/

V is a set of program variables
H is a set of heap abstractions (i.e., allocation sites)
M is a set of method identifiers
S is a set of method signatures (including name, type signature)
F is a set of fields
I is a set of instructions (mainly used for invocation sites)
T is a set of class types
N is the set of natural numbers
C is a set of contexts
HC is a set of heap contexts
ALLOC (var : V, heap : H, inMeth : M) # var = new ...
MOVE (to : V, from : V) # to = from
LOAD (to : V, base : V, fld : F) # to = base.fld
STORE (base : V, fld : F, from : V) # base.fld = from
VCALL (base : V, sig : S, invo : I, inMeth : M) # base.sig(..)
SCALL (meth : M, invo : I, inMeth : M) # Class.meth(..)

FORMALARG (meth : M, i : N, arg : V)
ACTUALARG (invo : I, i : N, arg : V)
FORMALRETURN (meth : M, ret : V)
ACTUALRETURN (invo : I, var : V)
THISVAR (meth : M, this : V)
HEAPTYPE (heap : H, type : T)
LOOKUP (type : T, sig : S, meth : M)
VARPOINTSTO (var : V, ctx : C, heap : H, hctx : HC)
CALLGRAPH (invo : I, callerCtx : C, meth : M, calleeCtx : C)
FLDPOINTSTO (baseH: H, baseHCtx: HC, fld: F, heap: H, hctx: HC)
INTERPROCASSIGN (to : V, toCtx : C, from : V, fromCtx : C)
REACHABLE (meth : M, ctx : C)
RECORD (heap : H, ctx : C) = newHCtx : HC
MERGE (heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C
MERGESTATIC (invo : I, ctx : C) = newCtx : C

Figure 1: Our domain, input relations (representing program
instructions—with the matching program pattern shown in a
comment—and type information), output relations, and construc-
tors of contexts.

Figure 1 shows the domain of our analysis (i.e., the different
value sets that constitute the space of our computation), its input re-
lations, the intermediate and output relations, as well as three con-
structor functions, responsible for producing new contexts. Figure 2
shows the points-to analysis and call-graph computation. The rule
syntax is simple: the left arrow symbol (←) separates the inferred
facts (i.e., the head of the rule) from the previously established facts
(i.e., the body of the rule). For instance, the first rule states that, if
we have computed a call-graph edge between invocation site invo
and method meth (under some contexts—see later), then we infer
an inter-procedural assignment to the i-th formal argument of meth
from the i-th actual argument at invo, for every i.

We explain the contents of both figures in more detail below:

• The input relations correspond to the intermediate language for
our analysis. They are logically grouped into relations that rep-
resent instructions and relations that represent name-and-type in-
formation. For instance, the ALLOC relation represents every in-
struction that allocates a new heap object, heap, and assigns it
to local variable var inside method inMeth. (Note that every lo-
cal variable is defined in a unique method, hence the inMeth ar-
gument is also implied by var but is included to simplify later
rules.) There are similar input relations for all other instruction
types (MOVE, LOAD, STORE, VCALL, and SCALL). Similarly,
there are relations that encode pertinent symbol table information.
Most of these are self-explanatory but some deserve explanation.
LOOKUP matches a method signature to the actual method defini-
tion inside a type. HEAPTYPE matches an object to its type, i.e.,

INTERPROCASSIGN (to, calleeCtx, from, callerCtx)←
CALLGRAPH (invo, callerCtx, meth, calleeCtx),
FORMALARG (meth, i, to), ACTUALARG (invo, i, from).

INTERPROCASSIGN (to, callerCtx, from, calleeCtx)←
CALLGRAPH (invo, callerCtx, meth, calleeCtx),
FORMALRETURN (meth, from), ACTUALRETURN (invo, to).

RECORD (heap, ctx) = hctx,
VARPOINTSTO (var, ctx, heap, hctx)←

REACHABLE (meth, ctx), ALLOC (var, heap, meth).

VARPOINTSTO (to, ctx, heap, hctx)←
MOVE (to, from), VARPOINTSTO (from, ctx, heap, hctx).

VARPOINTSTO (to, toCtx, heap, hctx)←
INTERPROCASSIGN (to, toCtx, from, fromCtx),
VARPOINTSTO (from, fromCtx, heap, hctx).

VARPOINTSTO (to, ctx, heap, hctx)←
LOAD (to, base, fld), VARPOINTSTO (base, ctx, baseH, baseHCtx),
FLDPOINTSTO (baseH, baseHCtx, fld, heap, hctx).

FLDPOINTSTO (baseH, baseHCtx, fld, heap, hctx)←
STORE (base, fld, from), VARPOINTSTO (from, ctx, heap, hctx),
VARPOINTSTO (base, ctx, baseH, baseHCtx).

MERGE (heap, hctx, invo, callerCtx) = calleeCtx,
REACHABLE (toMeth, calleeCtx),
VARPOINTSTO (this, calleeCtx, heap, hctx),
CALLGRAPH (invo, callerCtx, toMeth, calleeCtx)←

VCALL (base, sig, invo, inMeth), REACHABLE (inMeth, callerCtx),
VARPOINTSTO (base, callerCtx, heap, hctx),
HEAPTYPE (heap, heapT), LOOKUP (heapT, sig, toMeth),
THISVAR (toMeth, this).

MERGESTATIC (invo, callerCtx) = calleeCtx,
REACHABLE (toMeth, calleeCtx),
CALLGRAPH (invo, callerCtx, toMeth, calleeCtx)←

SCALL (toMeth, invo, inMeth), REACHABLE (inMeth, callerCtx).

Figure 2: Datalog rules for the points-to analysis and call-graph
construction.

is a function on its first argument. (Note that we are shortening
the term “heap object” to just “heap” and represent heap objects
as allocation sites throughout.) ACTUALRETURN is also a func-
tion on its first argument (a method invocation site) and returns
the local variable at the call-site that receives the method call’s
return value.

• There are five output or intermediate computed relations
(VARPOINTSTO, . . ., REACHABLE). Every occurrence of a
method or local variable in computed relations is qualified with
a context (i.e., an element of set C), while every occurrence of a
heap object is qualified with a heap context (i.e., an element of
HC). The main output relations are VARPOINTSTO and CALL-
GRAPH, encoding our points-to and call-graph results. The VAR-
POINTSTO relation links a variable (var) to a heap object (heap).
Other intermediate relations (FLDPOINTSTO, INTERPROCAS-
SIGN, REACHABLE) correspond to standard concepts and are
introduced for conciseness. For instance, INTERPROCASSIGN
(which encodes all parameter and return value passing) unifies
much of the treatment of static and virtual method calls.

• The base rules are not concerned with what kind of context-
sensitivity is used. The same rules can be used for a context-
insensitive analysis (by only ever creating a single context object
and a single heap context object), for a call-site-sensitive anal-
ysis, or for an object-sensitive analysis, for any context depth.
These aspects are completely hidden behind constructor func-
tions RECORD, MERGE, and MERGESTATIC. The first two fol-
low the usage and naming convention of Smaragdakis et al. [24],
while MERGESTATIC is new and used to differentiate the treat-
ment of static calls—this is a crucial element of our approach.

RECORD is the function that creates a new heap context. It
is invoked whenever an object allocation site (input relation AL-
LOC) is analyzed. Thus, RECORD is only used in the rule treating
allocation instructions (3rd rule in Figure 2). RECORD takes all
available information at the allocation site of an object and com-
bines it to produce a new heap context. The rule merely says that
an allocation instruction in a reachable method leads us to infer
a points-to fact between the allocated object and the variable it is
directly assigned to.

MERGE and MERGESTATIC are used to create new calling
contexts (or just “contexts”). These contexts are used to qualify
method calls, i.e., they are applied to all local variables in a pro-
gram. The MERGE and MERGESTATIC functions take all avail-
able information at the call-site of a method (virtual or static) and
combine it to create a new context (if one for the same combi-
nation of parameters does not already exist). These functions are
sufficient for modeling a very large variety of context-sensitive
analyses, as we show in Sections 2.2 and 3.

Note that the use of constructors, such as RECORD, MERGE,
and MERGESTATIC, is not part of regular Datalog and can result
in infinite structures (e.g., one can express unbounded call-site
sensitivity) if care is not taken. All our later definitions statically
guarantee to create contexts of a pre-set depth.

• The rules of Figure 2 show how each input instruction leads to the
inference of facts for the five output or intermediate relations. The
most complex rule is the second-to-last, which handles virtual
method calls (input relation VCALL). The rule says that if a
reachable method of the program has an instruction making a
virtual method call over local variable base (this is an input fact),
and the analysis so far has established that base can point to heap
object heap, then the called method is looked up inside the type
of heap and several further facts are inferred: that the looked up
method is reachable, that it has an edge in the call-graph from the
current invocation site, and that its this variable can point to heap.
Additionally, the MERGE function is used to possibly create (or
look up) the right context for the current invocation.

2.2 Instantiating the Model: Standard Analyses
By modifying the definitions of the RECORD, MERGE and
MERGESTATIC functions as well as domains HC and C, one can
create endless variations of points-to analyses. We next discuss the
most interesting combinations from past literature, before we intro-
duce our own (in Section 3). For every analysis name we also list a
common abbreviation, which we often use later.

Context-insensitive (insens). As already mentioned, our context-
sensitive analysis framework can yield a context-insensitive analy-
sis by merely picking singleton C and HC sets (i.e., C = HC = {?},
where ? is merely a name for a distinguished element) and con-
structor functions that return the single element of the set:

RECORD (heap,ctx) = ?
MERGE (heap, hctx, invo, ctx) = ?

MERGESTATIC (invo, ctx) = ?

Note that the absence of contexts does not mean that the identity
of input elements is forgotten. Objects are still represented by their
allocation site (i.e., the exact program instruction that allocated the
object) and local variables are still distinguished (e.g., by their dec-
laration location in the input program). The absence of context just
means that there is no extra distinguishing information. This can
also be seen in the rules of Figure 2, where the var and heap predi-
cate arguments are present, separately from the context arguments.

1-call-site-sensitive (1call). A 1-call-site-sensitive analysis has
no heap context to qualify heap abstractions (HC = {?}) and uses
the current invocation site as a context (C = I). The following
definitions describe such an analysis.

RECORD (heap, ctx) = ?

MERGE (heap, hctx, invo, ctx) = invo
MERGESTATIC (invo, ctx) = invo

In words: the analysis stores no context when an object is created
(RECORD) and keeps the invocation site as context in both virtual
and static calls.

1-call-site-sensitive with a context-sensitive heap (1call+H).
The analysis is defined similarly to 1call.2 The heap context as well
as the main context consist of an invocation site (HC = C = I).

RECORD (heap, ctx) = ctx
MERGE (heap, hctx, invo, ctx) = invo
MERGESTATIC (invo, ctx) = invo

In words: the analysis uses the current method’s context as a heap
context for objects allocated inside the method. The invocation site
of a method call is the context of the method for both virtual and
static calls.

1-object-sensitive (1obj). Object sensitivity uses allocation sites
as context components. A 1-object-sensitive analysis has no heap
context (HC = {?}) and uses the allocation site of the receiver
object as context (C = H). The following definitions complete the
description.

RECORD (heap, ctx) = ?

MERGE (heap, hctx, invo, ctx) = heap
MERGESTATIC (invo, ctx) = ctx

In words: the analysis stores no context for allocated objects. For
virtual method calls, the context is the allocation site of the receiver
object. For static method calls, the context for the called method is
that of the calling method.

The above definition offers a first glimpse of the possibilities
that we explore in this paper, and can serve as motivation. In
static calls, the context of the caller method is copied, i.e., the
receiver object of the caller method is used as the new context.
Why not try MERGESTATIC (invo, ctx) = invo, instead of the current
MERGESTATIC (invo, ctx) = ctx? Isn’t it perhaps better to use call-
sites to differentiate static invocations, instead of blindly copying
the context of the last non-static method called? A simple answer
is that invo is an entity of the wrong type, since C = H. The only
entity of type H we have available at a static call-site is the current
context, ctx. But if we let C = H ∪ I, we have a context type that
is a hybrid of both an allocation site and an invocation site, and
which allows the above alternative definition of MERGESTATIC.
We explore this and other such directions in depth in Section 3.

2-object-sensitive with a 1-context-sensitive heap (2obj+H). In
this case, the heap context consists of one allocation site (HC = H)

2 The standard convention in the points-to analysis literature is to name an
analysis first according to the context of methods, and, if a heap context
exists, designate it in a suffix such as context-sensitive heap or heap cloning.

and the context consists of two allocation sites (C = H × H). The
definitions of constructor functions are:3

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = pair(heap, hctx)
MERGESTATIC (invo, ctx) = ctx

In words: the context of a virtual method (see MERGE) is a 2-
element list consisting of the receiver object and its (heap) context.
The heap context of an object (fixed at allocation, via RECORD) is
the first context element of the allocating method, i.e., the receiver
object on which it was invoked. Therefore, the context of a virtual
method is the receiver object together with the “parent” receiver
object (the receiver object of the method that allocated the receiver
object of the virtual call). Again, static calls just copy the context
of the caller method.

Although there can be other definitions of the MERGE function,
yielding alternative 2-obj+H analyses, it has been shown [24] that
the above is the most precise and scalable. In intuitive terms, we
use as method context the most precise abstraction of the receiver
object available to the analysis.

2-type-sensitive with a 1-context-sensitive heap (2type+H). A
type-sensitive analysis is step-by-step analogous to an object-
sensitive one, but instead of using allocation sites (i.e., instruc-
tions) a type-sensitive analysis uses the name of the class contain-
ing the allocation site. In this way, all allocation sites in methods de-
clared in the same class (though not inherited methods) are merged.
This approximation was introduced by Smaragdakis et al. [24] and
yields much more scalable analyses at the expense of moderate pre-
cision loss (as we also determine in our experiments).

In order to define type-sensitive analyses we need an auxiliary
function which maps each heap abstraction to the class containing
the allocation.
CA : H → T

Now we can define a 2type+H analysis by mapping CA over the
context of a 2obj+H analysis. The heap context uses a type instead
of an allocation site (HC = T) and the calling context uses two types
(C = T × T).

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = pair(CA(heap), hctx)
MERGESTATIC (invo, ctx) = ctx

Other Analyses. The above discussion omits several analyses in
the literature, in order to focus on a manageable set with practical
relevance. We do not discuss a 1-object-sensitive analysis with
a context-sensitive heap (1obj+H) because it is a strictly inferior
choice to other analyses (especially 2type+H) in practice: it is
both much less precise and much slower. We do not present other
varieties of type-sensitivity for a similar reason. Deeper contexts or
heap contexts (e.g., 2call+H, 2obj+2H, 3obj, etc.) quickly make an
analysis intractable for a substantial portion of realistic programs
and modern JDKs. In short, we focus on the specific analyses
(1call, 1call+H, 1obj, 2obj+H, 2type+H) that are of most practical
interest: they are quite scalable over a variety of medium-to-large
programs, and no other analysis supplants them by being uniformly
better in both precision and performance.

3 We use auxiliary constructor functions pair, triple and accessors first,
second, and third, with the expected meaning, in order to construct and
deconstruct contexts with 2 or 3 elements. This has the added advantage that
our context-depth is statically bounded—we never create lists of unknown
length. Since our most complex constructor is triple, the possible number
of distinct contexts is cubic in the size of the input program.

3. Hybrid Context-Sensitive Analyses
We can now explore interesting combinations of call-site- and
object-sensitivity. The design space is large and we will be selective
in our presentation and later experiments. Our choice of analyses
in this space leverages insights from past studies on what kinds of
context are beneficial.4 Such insights include:

• A call-site-sensitive heap is far less attractive than an object-
sensitive heap. Generally, adding a heap context to a call-site-
sensitive analysis increases precision very slightly, compared to
the overwhelming cost.

• When there is a choice between keeping an object-context or
a call-site-context, the former is typically more profitable. This
is well validated in extensive past measurements by Lhoták and
Hendren [14], comparing call-site-sensitive and object-sensitive
analyses of various depths. In other words, call-site-sensitivity is
best added as extra context over an object-sensitive analysis and
will almost never pay off as a replacement context, for an object-
oriented language.

3.1 Uniform Hybrid Analyses
The first kind of context combination is a straightforward one: both
kinds of context are kept. We term such combinations uniform
hybrid analyses. In the variants we describe, a uniform hybrid
analysis is guaranteed to be more precise5 than the base analysis
being enhanced. The question is whether such precision will justify
the added cost.

Uniform 1-object-sensitive hybrid (U-1obj). Enhancing a 1-
object-sensitive analysis with call-site sensitivity results in an anal-
ysis with an empty heap context (HC = {?}) but with a context that
consists of both the allocation site of the receiver object and the in-
vocation site of the method (C = H × I). The following definitions
describe the analysis:

RECORD (heap, ctx) = ?
MERGE (heap, hctx, invo, ctx) = pair(heap, invo)
MERGESTATIC (invo, ctx) = pair(first(ctx), invo)

In words: a virtual method has as context the abstraction of its
receiver object, extended with the method’s invocation site. A static
method keeps a context consisting of the most significant part of the
caller’s context and the method’s invocation site.

Note that under the above definitions, the context of a U-1obj
analysis is always a superset of that of 1obj, hence the analysis is
strictly more precise.

Uniform 2-object-sensitive with 1-context-sensitive heap hy-
brid (U-2obj+H). A 2-object-sensitive analysis with a context-
sensitive heap can be enhanced in the same way. A heap context
consists of an allocation site (HC = H) and a method context con-
sists of two allocation sites and one invocation site (C = H × H ×
I). The constructor definitions for the analysis are:

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = triple(heap, hctx, invo)
MERGESTATIC (invo, ctx) = triple(first(ctx), second(ctx), invo)

In words: an object’s heap context is the receiver object of the
method doing the allocation. A virtual method’s context is its re-
ceiver object’s allocation site and context (the latter being the allo-
cation site of the object that allocated the receiver), followed by the

4 We have validated these insights with extensive measurements on our
experimental setup, and have generally explored a much larger portion of
the design space than is possible to present in our evaluation section.
5 We use the term “more precise” colloquially. Strictly speaking, the analy-
sis is guaranteed to be “at least as precise”.

invocation site of the method. On a static call, the heap part (i.e.,
first two elements) of the method context is kept unchanged, and
extended with the invocation site of the call.

This analysis is also strictly more precise than the “plain” anal-
ysis it is based on, 2obj+H. Note that this is achieved partly by
placing the receiver object’s allocation site in the most significant
position of the context triple. In this way, the RECORD function
produces the same heap context as 2obj+H on an object’s alloca-
tion. Alternative definitions are possible for the same sets of con-
texts, C and HC. For instance, one could choose to place hctx in
the most significant position. Similarly, one could produce a hybrid
analysis based on 2obj+H but with a different kind of heap context,
e.g., HC = I, therefore using the invocation site in a method’s con-
text as an allocation context. These definitions make decisively less
sense, however, per the insights mentioned earlier: invocation sites
are rarely advantageous as heap contexts, and, similarly, it is not
reasonable to invert the natural significance order of heap vs. hctx.
(We have also verified experimentally that such combinations yield
bad analyses.)

Uniform 2-type-sensitive with 1-context-sensitive heap hybrid (U-
2type+H). Isomorphically to object-sensitivity, we can enhance
type-sensitive analyses with call-site information in the same way.
When applied to a 2-type-sensitive analysis with a context-sensitive
heap, this results in an analysis with a heap context of one type
(HC = T) and a context of two types and an invocation site (C = T
× T × I)—mirroring the 2-object-sensitive analysis with a context
sensitive heap. The definitions are almost identical:

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = triple(CA(heap), hctx, invo)
MERGESTATIC (invo, ctx) = triple(first(ctx), second(ctx), invo)

3.2 Selective Hybrid Analyses
Another approach to hybrid call-site- and object-sensitive analyses
is to maintain a context that varies inside the same analysis. We
call such analyses selective hybrid analyses, as opposed to the ear-
lier “uniform hybrid” ones. In a selective hybrid analysis, the sets
of contexts, C and HC, will be formed as the cartesian product of
unions of sets. Depending on the information available at different
analysis points where new contexts are formed, we shall create con-
texts of a different kind, instead of always keeping a combination
of rigid form. We have already hinted at such opportunities in Sec-
tion 2.2: at a static method call, an object-sensitive analysis does
not have a heap object available to create a new context, hence it
can at best propagate the context of the caller. Yet, an invocation
site is available and can be used to distinguish different static calls,
as long as we are allowed to use it as context. This observation
generalizes: static invocations are a language feature that benefits
highly from the presence of call-site-sensitive elements in the con-
text. This is not hard to explain: For object-sensitive analyses, when
analyzing a static invocation, we do not have much information to
use in creating a new context, in contrast to a “normal” virtual invo-
cation. Consequently, it is beneficial to be able to use the invocation
site as a differentiator of static calls.

Selective hybrid analyses are among the most interesting parts
of our work and, to our knowledge, have never before arisen in the
literature, far less specified, implemented, and evaluated.

Selective 1-object-sensitive hybrid A (SA-1obj). Trying to selec-
tively enhance a 1-object-sensitive analysis (HC = {?}) with call-
site sensitive elements, we are presented with two options, relative
to how contexts are created in static invocations. The first option
is quite simple: we can keep only a single context element in both
virtual and static invocations. Consequently, in virtual invocations
the context will be an allocation site, but in static invocations it will

be an invocation site (C = H ∪ I). The definitions needed are the
following:

RECORD (heap, ctx) = ?
MERGE (heap, hctx, invo, ctx) = heap
MERGESTATIC (invo, ctx) = invo

Note that this analysis is not guaranteed to be more precise than the
1obj analysis it is based on. Nevertheless, it should be an excellent
reference point for comparison and insights: it will suggest how
much precision can be gained or lost by call-site-sensitivity as a
replacement of object-sensitivity in static method calls.

Selective 1-object-sensitive hybrid B (SB-1obj). The second op-
tion for a selective hybrid enhancement of a 1-object-sensitive anal-
ysis is to add extra information to the context of static calls. This
means that context in virtual invocations is still an allocation site,
but context in static invocations now consists of both the allocation
site copied from the caller and the invocation site. In this way, C
= H × (I ∪ {?}). That is, the context can be either just an alloca-
tion site or an allocation site and an invocation site. (This could
also be written equivalently as C = H ∪ (H × I), but the earlier form
streamlines the definitions of constructors, as it makes all contexts
be pairs, thus avoiding case-based definitions.) In this way the con-
structor definitions become:

RECORD (heap, ctx) = ?
MERGE (heap, hctx, invo, ctx) = pair(heap, ?)
MERGESTATIC (invo, ctx) = pair(first(ctx), invo)

This analysis has a context that is always a superset of the 1obj
context and, therefore, is guaranteed to be more precise.

Selective 2-object-sensitive with 1-context-sensitive heap hybrid
(S-2obj+H). When dealing with deeper analyses, the possible
design decisions start to vary. For example, for a 2-object-sensitive
analysis with a context-sensitive heap, an interesting choice is to
have allocation sites as heap contexts (HC = H), and for method
contexts to keep standard object-sensitive information for virtual
calls but favor call-site-sensitivity for static calls. The constructor
definitions for the above analysis are:

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = triple(heap, hctx, ?)
MERGESTATIC (invo, ctx) = triple(first(ctx), invo, second(ctx))

(In this way, we have C = H × (H ∪ I) × (H ∪ I ∪ {?}).) Note
the interesting behavior of such an analysis: for virtual calls, the
context is equivalent to that of 2obj+H. For the first static call (i.e.,
from inside a virtually called method), the context is a superset
of 2obj+H, augmented by an invocation site. For further static
calls (i.e., static calls inside statically called methods), however,
the analysis favors call-site sensitivity (both the last two elements
of context are invocation sites) and otherwise only remembers
the most-significant element of the object-sensitive context. (The
latter is important for creating high-quality heap contexts, when
allocating objects.) It is interesting to see how this analysis fares
relative to 2obj+H, since the analyses are in principle incomparable
in precision.

Selective 2-type-sensitive with 1-context-sensitive heap hybrid (S-
2type+H). Finally, type-sensitive analyses can be enhanced with
call-site sensitive information in much the same way. Mirroring
our choices in S-2obj+H, the S-2type+H analysis has heap context
HC = T and method context C = T × (T ∪ I) × (T ∪ I ∪ {?}). The
constructor definitions are isomorphic to the S-2obj+H analysis:

RECORD (heap, ctx) = first(ctx)
MERGE (heap, hctx, invo, ctx) = triple(CA(heap), hctx, ?)
MERGESTATIC (invo, ctx) = triple(first(ctx), invo, second(ctx))

Other analyses. The above discussion does not nearly exhaust
the space of hybrid combinations. Consider selective hybrids for
a 2obj+H analysis: Many more design choices are possible than
the one shown. One could change the heap context into an invo-
cation site, or into a union of invocation and call-site (HC = H ∪
I). This combination is a bad choice, due to the poor payoff of
call-site heap contexts. One could create context structures that let
call-site- and object-sensitive context elements freely merge, e.g.,
C = (H ∪ I) × (H ∪ I) × (H ∪ I ∪ {?}). This allows several differ-
ent definitions of context constructors, but has the drawback of di-
verging significantly from object-sensitivity (i.e., allowing to skip
even the most-significant object-sensitive context element), which
misses the well documented precision and performance advantages
of object-sensitivity, especially as a heap context.

4. Evaluation
We implemented and evaluated all aforementioned analyses using
the DOOP framework [4]. There are interesting and subtle aspects
in our measurements, but the executive summary is clear: uniform
hybrid analyses are typically not good choices in practice: their pre-
cision is offset by a very high performance cost. (A relative ex-
ception is the uniform type-sensitive hybrid analysis, U-2type+H,
which, although higher-cost, is not prohibitively expensive and
offers a reasonable precision/performance tradeoff.) Selective hy-
brid analyses, on the other hand, are not just interesting tradeoffs
but clear winners: they match or (usually) outperform the object-
sensitive analyses they are based on, while offering better precision,
closely approaching the precision of the much more costly uniform
hybrids. Overall, the best analyses in our evaluation set, both for
highest-precision and for high performance with good precision,
are selective hybrids.

Our evaluation setting uses the LogicBlox Datalog engine,
v.3.9.0, on a Xeon X5650 2.67GHz machine with only one thread
running at a time and 24GB of RAM (i.e., ample for the analyses
studied). We analyze the DaCapo benchmark programs (v.2006-
10-MR2) under JDK 1.6.0 37. (This is a much larger set of li-
braries than earlier work [4, 24], which also results in differences
in measurements, since the numbers shown integrate application-
and library-level metrics.) (All numbers shown are medians of three
runs.) All runtime numbers are medians of three runs. As in other
published work [1, 24], jython and hsqldb are analyzed with reflec-
tion disabled and hsqldb has its entry point set manually in a special
harness.

4.1 Illustration
For an illustration of the precision and performance spectrum, con-
sider Figure 3, which plots analyses on precision/performance axes.
The figure plots execution time against precision in the “may-fail
casts” metric, i.e., the number of casts that the analysis cannot stat-
ically prove safe. Lower numbers are better on both axes, thus an
analysis that is to the left and below another is better in both pre-
cision and performance. Values that are disproportionately high on
the Y axis (i.e., large execution times) are clipped and plotted at the
top of the figure, with the actual number included in parentheses.
(Note that the Y axis starts at zero, while the X axis starts at an ar-
bitrary point—we cannot know what is the “ideal” reference value
for this metric.)

In terms of pre-existing analyses, Figure 3 illustrates what has
been past experience: 2obj+H is the most precise analysis, but often
heavy. 1obj and 2type+H are both quite fast, with 2type+H also
showing very good precision, often approaching 2obj+H. The two
call-site-sensitive analyses (1call, 1call+H) are mostly shown for
reference and to demonstrate the insights discussed in Section 3.
1call is a fast analysis but vastly imprecise, while 1call+H is a bad
tradeoff: its cost grows quite significantly relative to 1call without

much precision added—call-site sensitivity is a bad choice for heap
contexts.

As can be seen, the selective hybrid analyses (SA-1obj, SA-
1obj, S-2obj+H, S-2type+H) usually offer an advantage over the
corresponding base analysis (1obj, 2type+H, 2obj+H) in both pre-
cision and performance. In fact, selective hybrids are typically im-
perceptibly less precise than the corresponding uniform hybrid, yet
much more precise than the base analysis. For instance, the plot
points for S-2obj+H are always barely to the right of those for
the theoretically more precise U-2obj+H (but significantly lower—
uniform hybrids are very expensive), while they are clearly to the
left of 2obj+H.

4.2 Detailed Results
Detailed results of our experiments are presented in Table 1. The
table shows precision and performance metrics for all analyses. The
precision metrics are the average points-to set size (i.e., average
over all variables of their points-to sets sizes), the number of edges
in the computed call-graph (which is typically a good proxy for the
overall precision of the analysis, in broad strokes), and the results
of two client analyses: the number of virtual calls that could not be
de-virtualized, and the number of casts that could not be statically
proven safe. A combination of these four metrics gives a reliable
picture of the precision of an analysis. (Note that the average
points-to set size alone is not necessarily reliable, because it is
influenced by a small number of library variables with enormous
points-to sets. For comparison, the median points-to set size is 1,
for all analyses and benchmarks.)

Performance is shown with two metrics: time and total size
of all context-sensitive points-to sets. Although time is the ulti-
mate performance metric, it is brittle: one can argue that our time
measurements are influenced by a multitude of implementation or
environment factors, among which are the choice of underlying
data structures, indexing, and the overall implementation of the
points-to analysis, especially since it is running on a Datalog en-
gine, with its own complex implementation choices hidden. The
context-sensitive points-to set size metric does not suffer from any
such measurement or implementation bias. It is the foremost in-
ternal complexity metric of a points-to analysis, and typically cor-
relates well with time, for analyses of the same flavor. Note that
analysis implementations that fundamentally differ from ours also
try hard to minimize this metric in order to achieve peak perfor-
mance: Lhoták’s PADDLE framework [12] is using binary decision
diagrams (BDDs) for representing relations. The best BDD vari-
able ordering (yielding “impressive results” [3]) is one that mini-
mizes the total size of context-sensitive points-to sets. In short, it is
reasonable to expect that improvements in this internal metric rein-
force the verdict of which analysis yields better performance, not
just in our setting but generally. Furthermore, the size of context-
sensitive points-to sets serves as a valuable indicator of the inter-
nally different computation performed by various analyses: Analy-
ses with almost identical precision metrics (e.g., context-insensitive
points-to set sizes, call-graph edges) have vastly different context-
sensitive points-to set sizes.

Since Table 1 has a high information density, we guide the
reader through some of the most important findings below (see also
a partial illustration in Figure 3, later).

• General observations. The analyses shown are in 4 groups of
closely related analyses: call-site sensitive, 1-object-sensitive,
2-object-sensitive with a 1-context-sensitive heap, and 2-type-
sensitive with a 1-context-sensitive heap. These analyses span a
large performance and precision spectrum. For instance, for the
chart benchmark, the least precise analysis, 1call, runs for under
5mins and computes an average points-to size of over 45, while
the most precise, U-2obj+H, runs for over 53mins and computes

 0

 100

 200

 300

 400

 500

 600

 500 600 700 800 900 1000 1100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for antlr)

S-2type+H2-type+H 1call

SA-1objS-2obj+H 1obj

SB-1obj
U-2type+H

2obj+H

1call+H

U-1objU-2obj+H

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1300 1400 1500 1600 1700 1800 1900 2000 2100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for bloat)

2-type+H
S-2type+H 1call

SA-1obj
U-2type+H

1obj

SB-1obj

1call+H

U-1obj

S-2obj+H(5045)

2obj+H(5060)

 0

 500

 1000

 1500

 2000

 2500

 3000

 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for chart)

2-type+H
S-2type+H

1call

U-2type+H

2obj+H 1call+H
SA-1obj

S-2obj+H 1obj

SB-1obj

U-2obj+H

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 600 700 800 900 1000 1100 1200 1300

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for eclipse)

1call
SA-1obj 1obj

SB-1obj

S-2type+H2-type+H

U-2type+H

S-2obj+H
U-1obj

1call+H

2obj+H

U-2obj+H(1332)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 400 500 600 700 800 900

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for luindex)

1call
SA-1objS-2type+H 2-type+H 1obj

SB-1objS-2obj+H

2obj+H

U-2type+H
1call+H

U-1obj

U-2obj+H

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 400 500 600 700 800 900 1000

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for lusearch)

1callS-2type+H 2-type+H
SA-1obj 1obj

SB-1obj
U-2type+H

S-2obj+H

2obj+H 1call+H

U-1obj

U-2obj+H

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 700 800 900 1000 1100 1200 1300 1400

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for pmd)

1call
S-2type+H

2-type+H SA-1obj 1obj

SB-1obj

S-2obj+H
2obj+H

U-2type+H

1call+H

U-1obj

U-2obj+H

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 600 700 800 900 1000 1100 1200 1300

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#casts that may fail

Performance/Precision comparison of analyses (for xalan)

1call
S-2type+H SA-1obj

2-type+H
1obj

SB-1obj
U-2type+H

1call+H

U-1obj

S-2obj+H

U-2obj+H(3364)
2obj+H(4521)

Figure 3: Graphical depiction of performance vs. precision metrics for eight of our benchmarks over all analyses. Lower is better on both
axes. The Y axis is truncated for readability. Out-of-bounds points are included at lower Y values, with their real running time in parentheses.

1c
al

l

1c
al

l+
H

1o
bj

U
-1

ob
j

S A
-1

ob
j

S B
-1

ob
j

2o
bj

+H

U
-2

ob
j+

H

S-
2o

bj
+H

2t
yp

e+
H

U
-2

ty
pe

+H

S-
2t

yp
e+

H

an
tlr

avg. objs per var 29.79 29.58 24.86 24.55 24.90 24.61 6.42 6.26 6.27 17.60 7.14 17.39
edges (over ∼8.8K meths) 60999 60999 60194 60194 60202 60194 55548 55548 55548 55850 55765 55850

poly v-calls (of ∼33K) 1994 1994 1933 1933 1936 1933 1707 1707 1707 1759 1746 1759
may-fail casts (of ∼1.7K) 1049 1038 1074 989 996 994 609 521 526 752 640 665

elapsed time (s) 110 366 166 544 142 182 217 532 162 108 184 106
sensitive var-points-to (M) 16 54.8 14.3 65 10.5 17.3 19.9 39.5 13.9 5.3 8.9 4.8

bl
oa

t

avg. objs per var 43.96 43.94 41.26 41.16 41.32 41.18 13.25 - 13.10 16.28 14.71 16.10
edges (over ∼10.2K meths) 70506 70506 69501 69501 69511 69501 60726 - 60726 62115 61753 62115

poly v-calls (of ∼31K) 2138 2138 2076 2076 2080 2076 1640 - 1640 1888 1827 1888
may-fail casts (of ∼2.8K) 2008 2008 2013 1928 1935 1933 1403 - 1320 1720 1611 1633

elapsed time (s) 186 1351 374 2473 353 391 5060 - 5045 142 353 140
sensitive var-points-to (M) 32.9 150.5 21.9 287.1 20.1 24 153.5 - 149.8 11.4 30.3 11

ch
ar

t

avg. objs per var 45.12 45.11 40.80 - 40.72 40.11 5.30 4.99 5.00 7.02 5.89 6.57
edges (over ∼15K meths) 82156 82078 81423 - 81075 81012 59162 59142 59152 62290 62172 62280

poly v-calls (of ∼35K) 2900 2897 2821 - 2815 2808 1610 1603 1610 1775 1756 1775
may-fail casts (of ∼3.5K) 2500 2488 2548 - 2385 2378 1062 915 920 1498 1309 1343

elapsed time (s) 288 957 1240 - 1059 1477 896 2363 1199 211 362 276
sensitive var-points-to (M) 49.6 120.9 62.5 - 39.7 89.7 67.6 115.7 53 13.3 21.3 16.5

ec
lip

se

avg. objs per var 21.84 21.65 18.65 18.41 18.59 18.43 5.75 5.60 5.61 7.93 6.41 7.61
edges (over ∼9.3K meths) 53006 53001 52114 51935 51958 51936 44900 44899 44900 45318 45123 45235

poly v-calls (of ∼23K) 1515 1514 1429 1404 1412 1404 1163 1163 1163 1233 1202 1229
may-fail casts (of ∼2K) 1156 1155 1204 1089 1096 1094 727 616 621 879 744 766

elapsed time (s) 81 478 117 406 105 126 532 1332 359 152 278 135
sensitive var-points-to (M) 12.3 61.5 9.4 42.3 7.6 10.8 44.6 89.8 32.3 13.6 24.4 11.5

hs
ql

db

avg. objs per var 18.56 18.53 15.41 15.30 15.58 15.32 - - - 7.92 6.71 7.74
edges (over ∼10K meths) 54619 54619 53726 53724 53730 53724 - - - 49421 49319 49421

poly v-calls (of ∼26K) 1552 1552 1480 1479 1482 1479 - - - 1276 1263 1276
may-fail casts (of ∼2K) 1360 1360 1385 1302 1320 1308 - - - 1031 923 948

elapsed time (s) 90 332 218 1351 183 329 - - - 195 583 238
sensitive var-points-to (M) 9.6 39.8 13.9 74.3 9.6 29.5 - - - 13.7 42.9 20.5

jy
th

on

avg. objs per var 20.64 20.57 18.21 18.01 18.19 18.09 - - - 8.55 7.18 8.30
edges (over ∼8.5K meths) 50494 50480 49622 49614 49622 49614 - - - 43269 43138 43269

poly v-calls (of ∼21K) 1525 1524 1448 1448 1453 1448 - - - 1268 1236 1268
may-fail casts (of ∼1.9K) 1140 1140 1157 1087 1094 1092 - - - 909 822 840

elapsed time (s) 88 401 119 375 102 138 - - - 731 1363 676
sensitive var-points-to (M) 10.4 50.6 8.7 43.2 6.7 10.8 - - - 52 118.4 56.5

lu
in

de
x

avg. objs per var 17.65 17.58 14.94 14.81 14.97 14.83 4.77 4.55 4.55 6.20 5.15 5.92
edges (over ∼7.9K meths) 41992 41992 41103 41103 41111 41103 36580 36580 36580 36889 36796 36889

poly v-calls (of ∼18K) 1180 1180 1119 1119 1122 1119 894 894 894 949 932 949
may-fail casts (of ∼1.4K) 838 838 864 779 786 784 494 406 411 622 507 535

elapsed time (s) 59 172 76 227 70 81 131 377 105 75 132 73
sensitive var-points-to (M) 7.8 26.1 5.4 26.3 4.1 6.4 11.1 22.4 7.2 4.5 7.6 3.5

lu
se

ar
ch

avg. objs per var 18.64 18.47 15.71 15.57 15.79 15.60 4.71 4.49 4.50 6.13 5.10 5.86
edges (over ∼8.4K meths) 45270 45270 44371 44365 44379 44371 39452 39446 39452 39763 39662 39763

poly v-calls (of ∼19K) 1360 1360 1299 1299 1302 1299 1065 1065 1065 1122 1103 1122
may-fail casts (of ∼1.5K) 939 939 961 874 884 880 506 410 416 662 537 568

elapsed time (s) 63 187 89 279 84 95 183 464 158 76 137 74
sensitive var-points-to (M) 8.7 28.5 6.2 30.3 5.3 7.2 13.2 26.3 10 4.2 7.8 3.6

pm
d

avg. objs per var 19.94 19.82 17.36 17.22 17.37 17.24 4.87 4.68 4.68 6.35 5.28 6.10
edges (over ∼9.2K meths) 49097 49097 48250 48250 48258 48250 43068 43067 43067 43401 43315 43400

poly v-calls (of ∼21K) 1249 1249 1187 1187 1190 1187 937 937 937 988 976 988
may-fail casts (of ∼2K) 1274 1274 1304 1215 1222 1220 844 752 757 1000 876 909

elapsed time (s) 90 245 135 420 128 142 167 465 145 114 201 113
sensitive var-points-to (M) 11.4 35.9 7.9 42.6 6.9 9.2 13.2 30.5 10 4.5 9.7 3.9

xa
la

n

avg. objs per var 25.50 25.38 21.86 21.59 21.84 21.69 5.48 5.22 5.23 7.52 6.19 7.16
edges (over ∼10.5K meths) 57168 57168 56412 56158 56404 56395 50148 50054 50054 50539 50432 50526

poly v-calls (of ∼26K) 1976 1976 1920 1905 1921 1918 1619 1615 1615 1677 1660 1677
may-fail casts (of ∼2K) 1213 1213 1236 1132 1140 1138 718 613 619 946 806 844

elapsed time (s) 108 470 189 591 161 205 4521 3364 1105 168 299 161
sensitive var-points-to (M) 14.5 59.8 15.5 67.5 10.9 18.2 166.6 171.7 63.3 10.2 17.4 9

Table 1: Precision and performance metrics for all benchmarks and analyses, grouped by relevance. In all cases lower is better. Dash (-)
entries are for analyses that did not terminate in 90mins. The 4 precision metrics shown are the average size of points-to sets (how many heap
objects are computed to be pointed-to per-var), the number of edges in the computed call-graph, the number of virtual calls whose target
cannot be disambiguated by the analysis, and the number of casts that cannot be statically shown safe by the analysis. Reference numbers
(e.g., total reachable casts in the program) are shown in parentheses in the metric’s heading. These numbers change little per-analysis.
Performance is shown as running time and size of context-sensitive var-points-to data (the main platform-independent internal complexity
metric). Best performance numbers per-analysis-group are in bold.

an average points-to size of under 5. The difference in precision is
also vividly shown in the “may-fail casts” metric: the 1call anal-
ysis cannot prove 2500 casts safe, while the U-2obj+H fails to
prove safe just 915 casts (both numbers from a total of about 3.5K
reachable casts—the exact number varies slightly due to method
reachability variation per analysis).

• Uniform hybrid analyses. Recall that uniform hybrid analyses
(U-1obj, U-2obj+H, U-2type+H) were defined to always keep a
combination of object-sensitive and call-site-sensitive context. As
a result, the analyses are more precise than their respective base
analyses (1obj, 2obj+H, 2type+H), especially in the “may-fail
casts” metric. However, this precision comes at great cost: uni-
form hybrid analyses are often 3x or more slower than their base
analyses with twice as large, or more, context-sensitive points-to
sets. U-1obj and U-2obj+H are plainly bad tradeoffs in the design
space: for a slight increase in precision, the performance cost is
heavy. U-2type+H is a bit more reasonable: it achieves more sig-
nificant precision gains and its performance toll is often under
2x while still terminating comfortably for all our benchmarks. In
fact, a surprising finding was that U-2type+H is a tempting alter-
native to 2obj+H for applications that need very high precision,
given its good scalability.

• 1obj hybrids. We presented two selective hybrids of a 1-object-
sensitive analysis: SA-1obj (which keeps either an allocation site
or a call-site as context, but not both) and SB-1obj (which al-
ways keeps an allocation site as context and occasionally adds
a call-site to it). They both turn out to be interesting analyses
from a practical standpoint. The former is consistently faster than
the base 1obj analysis, with roughly similar precision and occa-
sionally (for the “may-fail casts” metric) higher precision. The
size of context-sensitive points-to sets also confirms that this is
a “lighter” analysis that is likely to cost less in any context. The
SB-1obj analysis is always more precise than 1obj (as is statically
guaranteed) for a slight extra cost. Indeed, SB-1obj is a good ap-
proximation of the uniform hybrid analysis, U-1obj, in terms of
precision, for a fraction (typically less than a third) of the cost.

• 2obj+H hybrids. The selective hybrid idea yields even more
dividends when applied to the very precise 2obj+H analysis.
S-2obj+H is more precise than 2obj+H and only very slightly
less precise than the uniform hybrid, U-2obj+H. In terms of
performance, however, the analysis is typically well over 3 times
faster than U-2obj+H, and significantly faster (an average of 53%
speedup) than 2obj+H. This is interesting, given the practical
value of 2obj+H, since it establishes a new sweet spot in the
space of relatively scalable but highly precise analyses: S-2obj+H
is both more precise than 2obj+H (especially for “may-fail casts”)
and substantially faster.

• 2type+H hybrids. The 2type+H analysis variations are also
highly interesting in practice. This is an analysis space that yields
excellent precision relative to its low cost. There are few cases
in which one might prefer some other inexpensive analysis over
2type+H given the combination of precision and competitive
performance of the latter. As we saw, the uniform hybrid, U-
2type+H, is an interesting tradeoff in this space. The selective
hybrid, S-2type+H, also performs quite well. It is just as fast or
slightly faster than the base analysis 2type+H, while also being
more precise.

5. Related Work
We have discussed directly related work throughout the paper. Here
we selectively mention a few techniques that, although not directly
related to ours, offer alternative approaches to sweet spots in the
precision/performance tradeoff.

Special-purpose combinations of context-sensitivity have been
used in the past, but have required manual identification of classes
to be treated separately (e.g., Java collection classes, or library
factory methods). An excellent representative is the TAJ work for
taint analysis of Java web applications [27]. In contrast, we have
sought to map the space and identify interesting hybrids for general
application of context-sensitivity, over the entire program.

The analyses we examined are context-sensitive but flow-
insensitive. We can achieve several of the benefits of flow-
sensitivity by applying the analysis on the static single assignment
(SSA) intermediate form of the program. This is easy to do with a
mere flag setting on the DOOP framework. However, the impact
of the SSA transformation on the input is minimal. The default
intermediate language used as input in DOOP (the Jimple repre-
sentation of the Soot framework [28, 29]) is already close to SSA
form, although it does not guarantee that every variable is strictly
single-assignment without requesting it explicitly. Recent work by
Lhoták and Chung [13] has shown that much of the benefit of
flow-sensitivity derives from the ability to do strong updates of the
points-to information. Lhoták and Chung then exploited this insight
to derive analyses with similar benefit to a full flow-sensitive anal-
ysis at lower cost.

A demand-driven evaluation strategy reduces the cost of an
analysis by computing only those results that are necessary for a
client program analysis [10, 25, 26, 32]. This is a useful approach
for client analyses that focus on specific locations in a program, but
if the client needs results from the entire program, then demand-
driven analysis is typically slower than an exhaustive analysis.

Reps [21] showed how to use the standard magic-sets optimiza-
tion to automatically derive a demand-driven analysis from an ex-
haustive analysis (like ours). This optimization combines the ben-
efits of top-down and bottom-up evaluation of logic programs by
adding side-conditions to rules that limit the computation to just
the required data.

An interesting recent approach to demand-driven analyses was
introduced by Liang and Naik [15]. Their “pruning” approach con-
sists of first computing a coarse over-approximation of the points-to
information, while keeping the provenance of this derivation, i.e.,
recording which input facts have affected each part of the output.
The input program is then pruned so that parts that did not affect
the interesting points of the output are eliminated. Then a precise
analysis is run, in order to establish the desired property.

6. Conclusions and Future Work
We presented a comprehensive map for the exploration of context
combinations in points-to analysis, and used it to discover several
interesting design points. Object-sensitivity and call-site-sensitivity
had never been fruitfully combined in the past, although the idea
is clearly tempting. We speculate that the reasons for the paucity
of hybrid context-sensitivity results have been a) the difficulty of
having a good enough model for the space of combinations and a
convenient implementation to explore it; b) a belief that nothing
fruitful will come out of such a combination, because call-site
sensitivity incurs a high performance cost, which is more profitably
spent on an extra level of object-sensitivity. The latter insight is
mostly true, but only if one considers uniform hybrid analyses.
As we saw, much of the benefit of call-site and object-sensitive
hybrids comes from allowing the context to vary between pure
object-sensitive and extended. The result of our work has been new
sweet spots, in both precision and performance, for some of the
most practically relevant analysis variations.

There are several interesting directions for further work that
open up. First, our model gives the ability for further experimen-
tation, e.g., with deeper-context analyses. Furthermore, it is inter-
esting to examine if a hybrid context should perhaps change form

more aggressively. The MERGE and MERGESTATIC functions
could examine the context passed to them as argument and create
different kinds of contexts in return. For instance, the context of a
statically called method could have a different form (e.g., more el-
ements) for a call made inside another statically called method vs.
a call made in a virtual method. Similarly, objects could have dif-
ferent context, via the RECORD function, depending on the context
form of their allocating method. To explore this space without blind
guessing, one needs to understand what programming patterns are
best handled by hybrid contexts and how. For deep contexts this
remains a challenge, as it is hard to reason about how context el-
ements affect precision. (E.g., past work had to offer involved ar-
guments for why the allocator object of the receiver object of a
method is a better context element than the caller object [24].) This
challenge is, however, worth addressing for the next level of benefit
in context-sensitive points-to analysis.

Acknowledgments
We gratefully acknowledge funding by the European Union under a
Marie Curie International Reintegration Grant and a European Re-
search Council Starting/Consolidator grant; and by the Greek Sec-
retariat for Research and Technology under an Excellence (Aris-
teia) award. We thank the anonymous reviewers, who offered sev-
eral valuable suggestions, and LogicBlox Inc. for providing our
Datalog engine, as well as technical and material support.

References
[1] K. Ali and O. Lhoták. Application-only call graph construc-

tion. In European Conf. on Object-Oriented Programming
(ECOOP), 2012.

[2] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[3] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Umanee.
Points-to analysis using BDDs. In Conf. on Programming
Language Design and Implementation (PLDI), 2003.

[4] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Conf. on Ob-
ject Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), 2009.

[5] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini.
Defining and continuous checking of structural program de-
pendencies. In Int. Conf. on Software engineering (ICSE),
2008.

[6] S. Guarnieri and B. Livshits. GateKeeper: mostly static en-
forcement of security and reliability policies for Javascript
code. In Proceedings of the 18th USENIX Security Sympo-
sium, 2009.

[7] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable
source code queries with Datalog. In European Conf. on
Object-Oriented Programming (ECOOP), 2006.

[8] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In
Conf. on Programming Language Design and Implementation
(PLDI), 2007.

[9] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. In Symposium on Principles of Programming Lan-
guages (POPL), 2009.

[10] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In Conf. on Programming Language Design and Implementa-
tion (PLDI), 2001.

[11] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis
as database queries. In Symposium on Principles of Database
Systems (PODS), 2005.

[12] O. Lhoták. Program Analysis using Binary Decision Dia-
grams. PhD thesis, McGill University, 2006.

[13] O. Lhoták and K.-C. A. Chung. Points-to analysis with effi-
cient strong updates. In Symposium on Principles of Program-
ming Languages (POPL), 2011.

[14] O. Lhoták and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implementa-
tion. ACM Trans. Softw. Eng. Methodol., 18(1):1–53, 2008.

[15] P. Liang and M. Naik. Scaling abstraction refinement via
pruning. In Conf. on Programming Language Design and
Implementation (PLDI), 2011.

[16] M. Madsen, B. Livshits, and M. Fanning. Practical static anal-
ysis of Javascript applications in the presence of frameworks
and libraries. Technical Report MSR-TR-2012-66, Microsoft
Research, 2012.

[17] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving
and exploiting the k-CFA paradox: Illuminating functional vs.
object-oriented program analysis. In Conf. on Programming
Language Design and Implementation (PLDI), 2010.

[18] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In International Symposium on Software Testing and
Analysis (ISSTA), 2002.

[19] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans.
Softw. Eng. Methodol., 14(1):1–41, 2005.

[20] T. Reps. Demand interprocedural program analysis using
logic databases. In Applications of Logic Databases, 1994.

[21] T. W. Reps. Solving demand versions of interprocedural
analysis problems. In Int. Conf. on Compiler Construction
(CC), 1994.

[22] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In Program Flow Analysis, 1981.

[23] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, 1991.

[24] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: Understanding object-sensitivity (the making
of a precise and scalable pointer analysis). In Symposium on
Principles of Programming Languages (POPL), 2011.

[25] M. Sridharan and R. Bodı́k. Refinement-based context-
sensitive points-to analysis for Java. In Conf. on Programming
Language Design and Implementation (PLDI), 2006.

[26] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-
driven points-to analysis for Java. In Conf. on Object Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), 2005.

[27] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. Taj: effective taint analysis of web applications. In
Conf. on Programming Language Design and Implementation
(PLDI), 2009.

[28] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Int. Conf. on Compiler
Construction (CC), 2000.

[29] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon,
and P. Co. Soot - a java optimization framework. In Proceed-
ings of CASCON 1999, 1999.

[30] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
Datalog with binary decision diagrams for program analysis.
In APLAS, 2005.

[31] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Conf. on Programming Language Design and Implementation
(PLDI), 2004.

[32] X. Zheng and R. Rugina. Demand-driven alias analysis for
c. In Symposium on Principles of Programming Languages
(POPL), 2008.

