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ABSTRACT
DSD-Crasher is a bug finding tool that follows a three-step
approach to program analysis:

D. Capture the program’s intended execution behavior
with dynamic invariant detection. The derived invariants
exclude many unwanted values from the program’s input
domain.

S. Statically analyze the program within the restricted
input domain to explore many paths.

D. Automatically generate test cases that focus on veri-
fying the results of the static analysis. Thereby confirmed
results are never false positives, as opposed to the high false
positive rate inherent in conservative static analysis.

This three-step approach yields benefits compared to past
two-step combinations in the literature. In our evaluation
with third-party applications, we demonstrate higher preci-
sion over tools that lack a dynamic step and higher efficiency
over tools that lack a static step.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, reliability ; D.2.5 [Software En-
gineering]: Testing and Debugging—testing tools; I.2.2
[Artificial Intelligence]: Automatic Programming—pro-
gram verification

General Terms
Reliability, Verification

Keywords
Automatic testing, bug finding, dynamic analysis, dynamic
invariant detection, extended static checking, false positives,
static analysis, test case generation, usability

1. INTRODUCTION
Dynamic program analysis offers the semantics and ease

of concrete program execution. Static analysis lends itself
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to obtaining generalized properties from the program text.
The need to combine the two approaches has been repeat-
edly stated in the software engineering community [4, 9,
13, 33, 35]. In this paper, we present DSD-Crasher: a tool
that uses dynamic analysis to infer likely program invariants,
explores the space defined by these invariants exhaustively
through static analysis, and finally produces and executes
test cases to confirm that the behavior is observable under
some real inputs and not just due to overgeneralization in
the static analysis phase. Thus, our combination has three
steps: dynamic inference, static analysis, and dynamic ver-
ification (DSD).

More specifically, we employ the Daikon tool [14] to infer
likely program invariants from an existing test suite. The
results of Daikon are exported as JML annotations [22] that
are used to guide our CnC tool [9]. Daikon-inferred in-
variants are not trivially amenable to automatic process-
ing, requiring some filtering and manipulation (e.g., for in-
ternal consistency according to the JML behavioral sub-
typing rules). CnC employs the ESC/Java static analy-
sis tool [15], applies constraint-solving techniques on the
ESC/Java-generated error conditions, and produces and ex-
ecutes concrete test cases. The exceptions produced by the
execution of generated test cases are processed in a way
that takes into account which methods were annotated by
Daikon, for more accurate error reporting.

Several past research tools follow an approach similar
to ours, but omit one of the three stages of our analysis.
Clearly, CnC is a representative of a static-dynamic (SD)
approach. There are several DD tools with the closest ones
(because of the concrete techniques used) being the Eclat
tool by Pacheco and Ernst [27]. Just like our DSD approach,
Eclat produces program invariants from test suite executions
using Daikon. Eclat also generates test cases and disqual-
ifies the cases that violate inferred preconditions. Never-
theless, there is no static analysis phase to exhaustively at-
tempt to explore program paths and yield a directed search
through the test space. Instead, Eclat’s test case generation
is largely random. Finally, a DS approach is implemented
by combinations of invariant detection and static analysis.
A good representative, related to our work, is Nimmer and
Ernst’s [25] Daikon-ESC/Java (DS) combination. Neverthe-
less, Nimmer and Ernst’s domain was significantly different
from ours and we show that their metrics are not applicable
to fully automatic bug finding (it is easy to optimize the
metrics without improving the quality of reports). These
metrics are appropriate when Daikon-inferred invariants are
inspected by humans, as in Nimmer and Ernst’s evaluation.



The benefit of DSD-Crasher over past approaches is either
in enhancing the ability to detect errors, or in limiting false
positives (i.e., false error reports). For instance, compared
to CnC, DSD-Crasher produces more accurate error reports
with significantly fewer false positives. CnC is by nature lo-
cal and intra-procedural when no program annotations are
employed. As the Daikon-inferred invariants summarize ac-
tual program executions, they provide assumptions on cor-
rect code usage. Thus, DSD-Crasher can disqualify illegal
inputs by using the precondition of the method under test to
exclude cases that violate common usage patterns. As a sec-
ondary benefit, DSD-Crasher can concentrate on cases that
satisfy called methods’ preconditions. This increases the
chance of returning from these method calls normally and
reaching the actual problem in the calling method. With-
out preconditions, CnC is more likely to cause a crash in a
method that is called by the tested method before the actual
problematic statement is reached. Compared to the Eclat
tool, DSD-Crasher is more efficient in finding more bugs be-
cause of its deeper static analysis, relative to Eclat’s mostly
random testing.

We evaluated our approach on medium-sized third-party
applications (the Groovy scripting language and the JMS
module of the JBoss application server). We show that
DSD-Crasher is helpful in removing false positives relative
to just using the CnC tool. Overall, we found DSD-Crasher
to be a strict improvement over CnC, provided that the ap-
plication has a regression test suite that exercises well the
functionality under test. At the same time, the approach is
more powerful than Eclat. The static analysis allows more
directed generation of test cases and, thus, uncovers more
errors in the same amount of time.

2. BACKGROUND
Our three-step DSD-Crasher approach is based on two

existing tools: Daikon (Section 2.1) and CnC (Section 2.3),
which combines ESC/Java (Section 2.2) and the JCrasher
test case generator [8]. This section presents background
information on these tools.

2.1 Daikon: Guessing Invariants
Daikon [14] tracks a testee’s variables during execution

and generalizes their observed behavior to invariants—pre-
conditions, postconditions, and class invariants. Daikon in-
struments a testee, executes it (for example, on an existing
test suite or during production use), and analyzes the pro-
duced execution traces. At each method entry and exit,
Daikon instantiates some three dozen invariant templates,
including unary, binary, and ternary relations over scalars,
and relations over arrays (relations include linear equations,
orderings, implication, and disjunction) [14, 26]. For each
invariant template, Daikon tries several combinations of
method parameters, method results, and object state. For
example, it might propose that some method m never re-
turns null. It later ignores those invariants that are refuted
by an execution trace—for example, it might process a sit-
uation where m returned null and it will therefore ignore
the above invariant. So Daikon summarizes the behavior
observed in the execution traces as invariants and general-
izes it by proposing that the invariants might hold in all
other executions as well. Daikon can annotate the testee’s
source code with the inferred invariants as JML precondi-
tions, postconditions, and class invariants [22].

2.2 ESC: Guessing Invariant Violations
The Extended Static Checker for Java (ESC/Java) [15] is

a compile-time program checker that detects potential in-
variant violations. ESC/Java recognizes invariants stated
in the Java Modeling Language (JML) [22]. (We use the
ESC/Java2 system [7]—an evolved version of the original
ESC/Java, which supports JML specifications and recent
versions of the Java language.) We use ESC/Java to derive
abstract conditions under which the execution of a method
under test may terminate abnormally. Abnormal termina-
tion means that the method would throw a runtime excep-
tion because it violated the precondition of a primitive Java
operation. In many cases this will lead to a program crash
as few Java programs catch and recover from unexpected
runtime exceptions.

ESC/Java compiles the Java source code under test to a
set of predicate logic formulae [15]. ESC/Java checks each
method m in isolation, expressing as logic formulae the prop-
erties of the class to which the method belongs, as well as
Java semantics. Each method call or invocation of a prim-
itive Java operation in m’s body is translated to a check of
the called entity’s precondition followed by assuming the
entity’s postcondition. In addition to the explicitly stated
invariants, ESC/Java knows the implicit pre- and postcon-
ditions of primitive Java operations—for example, array ac-
cess, pointer dereference, class cast, or division. Violating
these implicit preconditions means accessing an array out-of-
bounds, dereferencing null pointers, mis-casting an object,
dividing by zero, etc. ESC/Java uses the Simplify theorem
prover [11] to derive error conditions for a method.

Like many other static analysis systems, ESC/Java is im-
precise, also called unsound : it can produce spurious er-
ror reports because of inaccurate modeling of the Java se-
mantics. ESC/Java is also incomplete: it may miss some
errors—for example, because ESC/Java ignores all itera-
tions of a loop beyond a fixed limit. 1

2.3 CnC: Confirming Guessed Violations
CnC [9] is a tool for automatic bug finding. It combines

ESC/Java and the JCrasher random testing tool [8]. CnC
takes error conditions that ESC/Java infers from the testee,
derives variable assignments that satisfy the error condition
(using a constraint solver), and compiles them into concrete
test cases that are executed with JCrasher to determine
whether an error truly exists. Compared to ESC/Java alone,
CnC’s combination of ESC/Java with JCrasher eliminates
spurious warnings and improves the ease of comprehension
of error reports through concrete Java counterexamples.

CnC takes as inputs the names of the Java files under
test. It invokes ESC/Java, which derives error conditions.
CnC takes each error condition as a constraint system over
a method m’s parameters, the object state on which m is ex-

1The meaning of the terms “sound” and “complete” depends
on the intended use of the system. In mathematical logic, a
“sound” system is one that can only prove true statements,
while a “complete” system can prove all true statements.
Thus, if we view a static checker as a system for proving
the existence of errors (as in our work) then it is “sound” iff
reporting an error means it is a true error and “complete”
iff all incorrect programs produce an error report (or, equiv-
alently, no report is produced iff the program is correct).
The terminology is exactly the inverse for tools that view
the static checker as a system for proving programs correct
[23, 15, 20].



ecuted, and other state of the environment. CnC extends
ESC by parsing and solving this constraint system. A so-
lution is a set of variable assignments that satisfy the con-
straint system. [9] discusses in detail how we process con-
straints over integers, arrays, and reference types in general.

Once the variable assignments that cause the error are
computed, CnC uses JCrasher to compile some of these as-
signments to JUnit [3] test cases. The test cases are then
executed under JUnit. If the execution does not cause an
exception, then the variable assignment was a false positive:
no error actually exists. Similarly, some runtime exceptions
do not indicate errors and JCrasher filters them out. For in-
stance, throwing an IllegalArgumentException exception
is the recommended Java practice for reporting illegal in-
puts. If the execution does result in one of the tracked ex-
ceptions, an error report is generated by CnC.

2.4 CnC Example
To see the difference between an error condition generated

by ESC/Java and the concrete test cases output by CnC,
consider the following method swapArrays, taken from a
student homework solution.

public static void swapArrays

(double[] fstArray, double[] sndArray)

{ //..

for(int m=0; m<fstArray.length; m++) {

//..

fstArray[m]=sndArray[m]; //..

}

}

The method’s informal specification states that the
method swaps the elements from fstArray to sndArray and
vice versa. If the arrays differ in length the method should
return without modifying any parameter. ESC issues the
following warning, which indicates that swapArrays might
crash with an array index out-of-bounds exception.

Array index possibly too large (IndexTooBig)

fstArray[m]=sndArray[m];

^

Optionally, ESC emits the error condition in which this
crash might occur. This condition is a conjunction of con-
straints. For swapArrays, which consists of five instructions,
ESC emits some 100 constraints. The most relevant ones are
0 < fstArray.length and sndArray.length == 0 (format-
ted for readability).

CnC parses the error condition generated by ESC and
feeds the constraints to its constraint solvers. In our ex-
ample, CnC creates two integer variables, fstArray.length
and sndArray.length, and passes their constraints to the
POOC integer constraint solver [31]. Then CnC requests a
few solutions for this constraint system from its constraint
solvers and compiles each solution into a JUnit [3] test case.
For this example, a test cases will generate an empty and a
random non-empty array. The test case will cause an excep-
tion when executed and JCrasher will process the exception
according to its heuristics and conclude it is a legitimate
failure and not a false positive.

3. DSD-CRASHER: INTEGRATING
DAIKON AND CNC

DSD-Crasher works by first running a regression test suite
over an application and deriving invariants using a modified
version of Daikon. These invariants are then used to guide
the reasoning process of CnC, by influencing the possible er-
rors reported by ESC/Java. The constraint solving and test
case generation applied to ESC/Java-reported error condi-
tions remains unchanged. Finally, a slightly adapted CnC
back-end runs the generated test cases, observes their exe-
cution, and reports violations.

We next describe the motivation, design and implementa-
tion of DSD-Crasher.

3.1 Motivation and Benefits
There are good reasons why DSD-Crasher yields bene-

fits compared to just using CnC for bug detection. CnC,
when used without program annotations, lacks interproce-
dural knowledge. This causes the following problems:

1. CnC may produce spurious error reports that do not
correspond to actual program usage. For instance, a
method forPositiveInt under test may be throwing
an exception if passed a negative number as an ar-
gument: the automatic testing part of CnC will en-
sure that the exception is indeed possible and the ESC
warning is not just a result of the inaccuracies of ESC
analysis and reasoning. Yet, a negative number may
never be passed as input to the method in the course
of execution of the program, under any user input and
circumstances. That is, an implicit precondition that
the programmer has been careful to respect makes the
CnC test case invalid. Precondition annotations help
CnC eliminate such spurious warnings.

2. CnC does not know the conditions under which a
method call within the tested method is likely to ter-
minate normally. For example, a method under test
might call forPositiveInt before performing some
problematic operation. Without additional informa-
tion CnC might only generate test cases with nega-
tive input values to forPositiveInt. Thus, no test
case reaches the problematic operation in the tested
method that occurs after the call to forPositiveInt.
Precondition annotations help CnC target its test
cases better to reach the location of interest. This
increases the chance of confirming ESC warnings.

Integrating Daikon can address both of these problems.
The greatest impact is with respect to the first problem:
DSD-Crasher can be more focused than CnC and issue many
fewer false warnings (false positives) because of the Daikon-
inferred preconditions. Reducing the number of false posi-
tives is a very valuable goal for bug finding tools, as various
researchers have repeatedly emphasized when evaluating the
practicality of their tools. In their assessment of the applica-
bility of ESC/Java, Flanagan et al. write [15]:

[T]he tool has not reached the desired level of
cost effectiveness. In particular, users com-
plain about an annotation burden that is per-
ceived to be heavy, and about excessive warnings
about non-bugs, particularly on unannotated or
partially-annotated programs.



The same conclusion is supported by the findings of
other researchers, as we discuss in Section 6. Notably, Ru-
tar et al. [29] examine ESC/Java2, among other analy-
sis tools, and conclude that it can produce many spurious
warnings when used without context information (method
annotations). One specific problem, which we revisit in
later sections, is that of ESC/Java’s numerous warnings
for NullPointerExceptions. For five testees with a total
of some 170 thousand non commented source statements,
ESC warns of a possible null dereference over nine thou-
sand times. Rutar et al., thus, conclude that “there are too
many warnings to be easily useful by themselves.” Daikon-
inferred annotations can help ESC/Java and, by extension,
CnC focus on warnings that are more likely to represent
actual bugs.

3.2 Design and Implementation of DSD-
Crasher

Daikon-inferred invariants can play two different roles.
They can be used as assumptions on a method’s formal
arguments inside its body, and on its return value at the
method’s call site. At the same time, they can also be used
as requirements on the method’s actual arguments at its
call site. Consider a call site of a method int foo(int i)

with an inferred precondition of i != 0 and an inferred post-
condition of \result < 0 (following JML notation, \result
denotes the method’s return value). One should remember
that the Daikon-inferred invariants are only reflecting the
behavior that Daikon observed during the test suite execu-
tion. Thus, there is no guarantee that the proposed con-
ditions are indeed invariants. This means that there is a
chance that CnC will suppress useful warnings (because they
correspond to behavior that Daikon deems unusual). In our
example, we will miss errors inside the body of foo for a
value of i equal to zero, as well as errors inside a caller
of foo for a return value greater or equal to zero. Never-
theless, we do not expect this to be a major issue in prac-
tice. When Daikon outputs an invariant, it is typically much
more general than the specific values it observed during test
suite execution. Thus, a wealth of behaviors is available for
ESC/Java to explore exhaustively in trying to derive fault-
causing conditions. In our later evaluation, we discuss how
this observation has not affected DSD-Crasher’s bug finding
ability (relative to CnC) for any of our case studies.

In contrast, it is more reasonable to ignore Daikon-inferred
invariants when used as requirements. In our earlier exam-
ple, if we require that each caller of foo pass it a non-zero
argument, we will produce several false positives in case the
invariant i != 0 is not accurate. The main goal of DSD-
Crasher is to reduce false positives though. Thus, in DSD-
Crasher we chose to ignore Daikon-inferred invariants as re-
quirements and only use them as assumptions. That is, we
deliberately avoid searching for cases in which the method
under test violates some Daikon-inferred precondition of an-
other method it calls. Some of these violations might be of
interest to the user. But we suspect that many of them
are false positives and very confusing ones since the invari-
ants are inferred without user interaction. Xie and Notkin
[33] partially follow a similar approach with Daikon-inferred
invariants that are used to produce test cases.

DSD-Crasher integrates Daikon and CnC through the
JML language. Daikon can output JML conditions, which
CnC can use for its ESC/Java-based analysis. We exclude

some classes of invariants Daikon would search for by default
as we deemed them unlikely to be true invariants. Almost
all of the invariants we exclude have to do with the contents
of container structures viewed as sets (e.g., “the contents of
array x are a subset of those of y”), conditions that apply to
all elements of a container structure (e.g., “x is sorted”, or
“x contains no duplicates”), and ordering constraints among
complex structures (e.g., “array x is the reverse of y”). Such
complex invariants are very unlikely to be correctly inferred
from the hand-written regression test suites of large appli-
cations, as in the setting we examine. We inherited (and
slightly augmented) our list of excluded invariants from the
study of the Jov tool of Xie and Notkin [33]. The Eclat tool
by Pacheco and Ernst [27] excludes a similar list of invari-
ants.

To make the Daikon output suitable for use in
ESC/Java, we also had to provide JML annota-
tions for Daikon’s Quant class. Daikon expresses
many invariants relative to methods of this class (e.g.,
requires length == daikon.Quant.size(utf8String)).
ESC/Java needs the specifications of these methods to un-
derstand the meaning of such invariants. We thus provided
JML specifications for some frequently used methods (i.e.,
daikon.Quant.size).

To perform the required integration, we also needed to
make a more general change to Daikon. Daikon does not
automatically ensure that inferred invariants support be-
havioral subtyping [22]. Behavioral subtyping is a standard
object-oriented concept that should hold in well-designed
programs (e.g., see “subcontracting” in Design by Contract
[24]). It dictates that a subclass object should be usable
wherever a superclass object is. This means that the imple-
mentation of a subclass method (overriding method) should
accept at least as many inputs as the implementation of a
superclass method (overridden method), and for those in-
puts it should return values that the superclass could also
return. In other words, an overriding method should have
a superset of the preconditions of the method it overrides.
Additionally, for values satisfying the (possibly narrower)
preconditions of the overridden method, its postconditions
should also be satisfied by the overriding method. Daikon-
inferred invariants can easily violate this rule: executions of
the overriding method do not affect at all the invariants of
the overridden method and vice versa. Therefore, we ex-
tended Daikon so that all behaviors observed for a subclass
correctly influence the invariants of the superclass and vice
versa. This change was crucial in getting invariants of suffi-
cient consistency for ESC/Java to process automatically—
otherwise we experienced contradictions in our experiments
that prevented further automatic reasoning. The change is
not directly related to the integration of Daikon and CnC,
however. It is an independent enhancement of Daikon, valid
for any use of the inferred invariants. We are in the process
of implementing this enhancement directly on Daikon. We
describe in a separate paper [10] the exact algorithm for
computing the invariants so they are consistent with the ob-
served behaviors and as general as possible, while satisfying
behavioral subtyping.

DSD-Crasher also modifies the CnC back-end: the heuris-
tics used during execution of the generated test cases to
decide whether a thrown exception is a likely indication
of a bug and should be reported to the user or not. For
methods with no inferred annotations (which were not ex-



ercised enough by the regression test suite) the standard
CnC heuristics apply, whereas annotated methods are han-
dled more strictly. Most notably, a NullPointerException

is not considered a bug if thrown by an un-annotated
method, unlike by an annotated method. This is stan-
dard CnC behavior [9] and doing otherwise would re-
sult in many false positive reports: as mentioned earlier,
ESC/Java produces an enormous number of warnings for
potential NullPointerExceptions when used without anno-
tations [29]. Nevertheless, for a Daikon-annotated method,
we have more information on its legal preconditions. Thus,
it makes sense to report even “common” exceptions, such as
NullPointerException, if these occur within the valid pre-
condition space. Therefore, the CnC runtime needs to know
whether a method was annotated with a Daikon-inferred
precondition. To accomplish this we extended Daikon’s An-
notate feature to produce a list of such methods. When an
exception occurs at runtime we check if the method on top
of the call stack is in this list. One problem is that the call
stack information at runtime omits the formal parameter
types of the method that threw the exception. Thus, over-
loaded methods (methods with the same name but different
argument types) can be a source for confusion. To disam-
biguate overloaded methods we use BCEL [1] to process the
bytecode of classes under test. Using BCEL we retrieve the
start and end line number of each method and use the line
number at which the exception occurred at runtime to de-
termine the exact method that threw it.

4. EVALUATING HYBRID TOOLS
An interesting question is how to evaluate hybrid

dynamic-static tools. We next discuss several simple met-
rics and how they are often inappropriate for such evalu-
ation. This section serves two purposes. First, we argue
that the best way to evaluate DSD-Crasher is by measuring
the end-to-end efficiency of the tool in automatically discov-
ering bugs (which are confirmed by human inspection), as
we do in subsequent sections. Second, we differentiate DSD-
Crasher from the Daikon-ESC/Java combination of Nimmer
and Ernst [25].

The main issues in evaluating hybrid tools have to do
with the way the dynamic and static aspects get combined.
Dynamic analysis excels in narrowing the domain under ex-
amination. In contrast, static analysis is best at exploring
every corner of the domain without testing, effectively gen-
eralizing to all useful cases within the domain boundaries.
Thus it is hard to evaluate the integration in pieces: when
dynamic analysis is used to steer the static analysis (such
as when Daikon produces annotations for CnC), then the
accuracy or efficiency of the static analysis may be biased
because it operates on too narrow a domain. Similarly, when
the static analysis is used to create dynamic inputs (as in
CnC) the inputs may be too geared towards some cases be-
cause the static analysis has eliminated others (e.g., large
parts of the code may not be exercised at all).

We discuss two examples of metrics that we have found
to be inappropriate for evaluating DSD-Crasher.

Coverage. Coverage metrics (e.g., statement or branch
coverage in the code) are often used to evaluate the efficiency
of analysis and testing tools. Nevertheless, coverage metrics
may not be appropriate when using test suites automati-
cally generated after static analysis of the code. Although

some static analysis tools, such as Blast [4] and SLAM [2],
have been adapted to generate tests to achieve coverage, sta-
tic analysis tools generally exhaustively explore statements
and branches but only report those that may cause errors.
ESC/Java falls in this class of tools. The only reported
conditions are those that may cause an error, although all
possibilities are statically examined. Several statements and
paths may not be exercised at all under the conditions in an
ESC/Java report, as long as they do not cause an exception.

Consider test cases generated by CnC compared to test
cases generated by its predecessor tool, JCrasher. JCrasher
will create many more test cases with random input val-
ues. As a result, a JCrasher-generated test suite will usually
achieve higher coverage than a CnC-generated one. Never-
theless, this is a misleading metric. If CnC did not gener-
ate a test case that JCrasher would have, it is because the
ESC/Java analysis did not find a possible program crash
with these input values. Thus, it is the role of static analy-
sis to intelligently detect which circumstances can reveal an
error, and only produce a test case for those circumstances.
The result is that parts of the code will not be exercised by
the test suite, but these parts are unlikely to contain any of
the errors that the static analysis is designed to detect.

Precision and Recall. Nimmer and Ernst have performed
some of the research closest to ours in combining Daikon
and ESC/Java. Their FSE’02 paper [26] evaluates how
well Daikon (and Houdini) can automatically infer pro-
gram invariants to annotate a testee before checking it with
ESC/Java. Their ISSTA’02 paper [25] also evaluates a
Daikon-ESC/Java integration, concentrating more on auto-
matically computed metrics.

The main metrics used by Nimmer and Ernst are pre-
cision and recall. These are computed as follows. First,
Daikon is used to produce a set of proposed invariants for
a program. Then, the set of invariants is hand-edited until
a) the invariants are sufficient for proving that the program
will not throw unexpected exceptions and b) the invariants
themselves are provable (“verifiable”) by ESC/Java. Then
“precision” is defined as the proportion of verifiable invari-
ants among all invariants produced by Daikon. “Recall” is
the proportion of verifiable invariants produced by Daikon
among all invariants in the final verifiable set. Nimmer and
Ernst measured scores higher than 90% on both precision
and recall when Daikon was applied to their set of testees.

We believe that these metrics are appropriate for human-
controlled environments, but inappropriate for fully auto-
matic evaluation of third-party applications. Both metrics
mean little without the implicit assumption that the final
“verifiable” set of annotations is near the ideal set of invari-
ants for the program. To see this, consider what really hap-
pens when ESC/Java “verifies” annotations. As discussed
earlier, the Daikon-inferred invariants are used by ESC/Java
as both requirements (statements that need proof) and as-
sumptions (statements assumed to hold). Thus, the assump-
tions limit the space of possibilities and may result in a cer-
tain false property being proven. ESC/Java will not look
outside the preconditions. Essentially, a set of annotations
“verified” by ESC/Java means that it is internally consis-
tent: the postconditions only need to hold for inputs that
satisfy the preconditions.

This means that it is trivial to get perfect “precision” and
“recall” by just doing a very bad job in invariant inference!



Intuitively, if we narrow the domain to only the observations
we know hold, they will always be verifiable under the con-
ditions that enable them. For instance, assume we have a
method meth(int x) and a test suite that calls it with val-
ues 1, 2, 3, and 10. Imagine that Daikon were to do a bad
job at invariant inference. Then a possible output would
be the precondition x=1 or x=2 or x=3 or x=10 (satisfied
by all inputs) and some similar postcondition based on all
observed results of the executions. These conditions are im-
mediately verifiable by ESC/Java, as it will restrict its rea-
soning to executions that Daikon has already observed. The
result is 100% precision and 100% recall.

In short, the metrics of precision and recall are only mean-
ingful under the assumption that there is a known ideal set
of annotations that we are trying to reach, and the ideal
annotations are the only ones that we accept as verifiable.
Thus, precision and recall will not work as automatable met-
rics that can be quantified for reasonably-sized programs.

5. EVALUATION
We evaluated DSD-Crasher and two of its closest relatives

on the code of JBoss JMS and Groovy. All experiments
were conducted on a 1.2 GHz Pentium III-M with 512 MB
of RAM. We excluded those source files from the experi-
ments which any of the tested tools could not handle due to
engineering shortcomings.

5.1 JBoss JMS and Groovy
JBoss JMS is the JMS module of the JBoss open source

J2EE application server (http://www.jboss.org/). It is an
implementation of Sun’s Java Message Service API [18]. We
used version 4.0 RC1, which consists of some five thousand
non-comment source statements (NCSS).

Groovy is an open source scripting language that com-
piles to Java bytecode. We used the Groovy 1.0 beta 1
version, whose application classes contain some eleven thou-
sand NCSS. We excluded low-level AST Groovy classes from
the experiments. The resulting set of testees consisted of 34
classes with a total of some 2 thousand NCSS. We used
603 of the unit test cases that came with the tested Groovy
version, from which Daikon produced a 1.5 MB file of com-
pressed invariants. (The source code of the testee and its
unit tests are available from http://groovy.codehaus.org/)

We believe that Groovy is a very representative test ap-
plication for our kind of analysis: it is a medium-size, third
party application. Importantly, its test suite was developed
completely independently of our evaluation by the applica-
tion developers, for regression testing and not for the pur-
pose of yielding good Daikon invariants. JBoss JMS is a
good example of a third party application, especially appro-
priate for comparisons with CnC as it was a part of CnC’s
past evaluation [9]. Nevertheless, the existing test suite sup-
plied by the original authors was insufficient and we had to
supplement it ourselves.

5.2 More Precise than Static-Dynamic CnC
The first benefit of DSD-Crasher is that it produces fewer

false positives than the static-dynamic CnC tool.

5.2.1 JBoss JMS
CnC reported five cases, which include the errors reported

earlier [9]. Two reports are false positives. We use one of
them as an example on how DSD-Crasher suppresses false

Table 1: Groovy results: DSD-Crasher vs. the
static-dynamic CnC (SD).

Tool Runtime Exception NullPointer
[min:s] reports reports

CnC-classic 10:43 4 0
CnC-relaxed 10:43 19 15
DSD-Crasher 30:32 11 9

positives. Method org.jboss.jms.util.JMSMap.setBytes

uses the potentially negative parameter length as the length
in creating a new array. Calling setBytes with a negative
length parameter causes a NegativeArraySizeException.

public void setBytes(String name, byte[] value,

int offset, int length) throws JMSException

{

byte[] bytes = new byte[length];

//..

}

We used unit tests that (correctly) call setBytes three
times with consistent parameter values. DSD-Crasher’s
initial dynamic step infers a precondition that includes
requires length == daikon.Quant.size(value). This
implies that the length parameter cannot be negative. So
DSD-Crasher’s static step does not warn about a potential
NegativeArraySizeException and DSD-Crasher does not
report this false positive.

5.2.2 Groovy
As discussed and motivated earlier, CnC by default sup-

presses most NullPointerExceptions because of the high
number of false positives in actual code. Most Java meth-
ods fail if a null reference is passed instead of a real object,
yet this rarely indicates a bug, but rather an implicit precon-
dition. With Daikon, the precondition is inferred, resulting
in the elimination of the false positives.

Table 1 shows these results, as well as the runtime of
the tools (confirming that DSD-Crasher has a realistic run-
time). All tools are based on the current CnC implemen-
tation, which in addition to the published description [9]
only reports exceptions thrown by a method directly called
by the generated test case. This restricts CnC’s reports to
the cases investigated by ESC/Java and removes accidental
crashes inside other methods called before reaching the lo-
cation of the ESC warning. CnC-classic is the current CnC
implementation. It suppresses all NullPointerExceptions,
IllegalArgumentExceptions, etc. thrown by the method
under test. DSD-Crasher is our integrated tool and reports
any exception for a method that has a Daikon-inferred pre-
condition. CnC-relaxed is CnC-classic but uses the same
exception reporting as DSD-Crasher.

CnC-relaxed reports the 11 DSD-Crasher exceptions plus
8 others. (These are 15 NullPointerExceptions plus the
four other exceptions reported by CnC-classic.) In 7
of the 8 additional exceptions, DSD-Crasher’s ESC step
could statically rule out the warning with the help of
the Daikon-derived invariants. In the remaining case,
ESC emitted the same warning, but the more compli-
cated constraints threw off our prototype constraint solver.
(-1 - fromIndex) == size has an expression on the left
side, which is not yet supported by our solver. The elimina-
tion of the 7 false positive reports confirms the benefits of the



Table 2: JBoss JMS results: ClassCastException re-
ports by DSD-Crasher and the dynamic-dynamic
Eclat. This table omits all other exception reports
as well as all of Eclat’s non-exception reports.

Tool CCE Runtime
reports [min:s]

Eclat-default 0 1:20
Eclat-hybrid, 4 rounds 0 2:37
Eclat-hybrid, 5 rounds 0 3:34
Eclat-hybrid, 10 rounds 0 16:39
Eclat-exhaustive, 500 s timeout 0 13:39
Eclat-exhaustive, 1000 s timeout 0 28:29
Eclat-exhaustive, 1500 s timeout 0 44:29
Eclat-exhaustive, 1750 s timeout 0 1:25:44
DSD-Crasher 3 1:59

Daikon integration. Without it, CnC has no choice but to
either ignore potential NullPointerException-causing bugs
or to report them with a high false positive rate.

5.3 More Efficient than Dynamic-Dynamic
Eclat

5.3.1 ClassCastExceptions in JBoss JMS
For the JBoss JMS experiment, the main difference we

observed between DSD-Crasher and the dynamic-dynamic
Eclat was in the reporting of potential dynamic type errors
(ClassCastExceptions). The bugs found in JBoss JMS in
the past [9] were ClassCastExceptions. (Most of the other
reports concern NullPointerExceptions. Eclat produces 47
of them, with the vast majority being false positives. DSD-
Crasher produces 29 reports, largely overlapping the Eclat
ones. We estimate that most false positives would have been
eliminated if the test suite had been thorough enough to
produce reasonable Daikon invariants, as we confirmed by
manually supplying appropriate unit test cases for some of
the methods.)

Table 2 compares the ClassCastExceptions found by
DSD-Crasher and Eclat. As in the other tables, every re-
port corresponds to a unique combination of exception type
and throwing source line. We tried several Eclat configu-
rations, also used in our Groovy case study later. Eclat-
default is Eclat’s default configuration, which uses random
input generation. Eclat-exhaustive uses exhaustive input
generation up to a given time limit. This is one way to
force Eclat to test every method. Otherwise a method that
can only be called with a few different input values, such
as static m(boolean) is easily overlooked by Eclat. Eclat-
hybrid uses exhaustive generation if the number of all pos-
sible combinations is below a certain threshold; otherwise,
it resorts to the default technique (random).

We tried several settings trying to cause Eclat to repro-
duce any of the ClassCastException failures observed with
DSD-Crasher. With running times ranging from eighty sec-
onds to over an hour, Eclat was not able to do so. (In
general, Eclat does try to detect dynamic type errors: for
instance, it finds a potential ClassCastException in our
Groovy case study. In fairness, however, Eclat is not a tool
tuned to find crashes but to generate a range of tests.)

DSD-Crasher produces three dis-
tinct ClassCastException reports, which include the two

Table 3: Groovy results: DSD-Crasher vs. the
dynamic-dynamic Eclat. This table omits all of
Eclat’s non-exception reports.
Tool Exception Runtime

reports [min:s]
Eclat-default 0 7:01
Eclat-hybrid, 4 rounds 0 8:24
Eclat-exhaustive, 2 rounds 2 10:02
Eclat-exhaustive, 500 s timeout 2 16:42
Eclat-exhaustive, 1200 s timeout 2 33:17
DSD-Crasher 4 30:32

cases presented in the past [9]. In the third case, class
JMSTypeConversions throws a ClassCastException when
the following method getBytes is called with a parameter
of type Byte[] (note that the cast is to a “byte[]”, with a
lower-case “b”).

public static byte[] getBytes(Object value)

throws MessageFormatException

{

if (value == null) {return null;}

else if (value instanceof Byte[]) {

return (byte[]) value;

} //..

}

5.3.2 Groovy
Table 3 compares DSD-Crasher with Eclat on Groovy.

DSD-Crasher finds both of the Eclat reports. Both tools
report several other cases, which we filtered manually to
make the comparison feasible. Namely, we remove Eclat’s
reports of invariant violations, reports in which the method
that threw the exception is outside the testees specified by
the user to be tested, etc.

One of the above reports provides a representative ex-
ample of why DSD-Crasher explores the test parameter
space more deeply (due to the ESC/Java analysis). The
exception reported can only be reproduced for a certain
non-null array. ESC derives the right precondition and
CnC generates a satisfying test case, whereas Eclat misses
it. The constraints are: arrayLength(sources) == 1,
sources:141.46[i] == null, i == 0. CnC generates the
input value new CharStream[]{null} that satisfies the con-
ditions, while Eclat just performs random testing and tries
the value null.

5.4 Summary
The main question of our evaluation is whether DSD-

Crasher is an improvement over using CnC alone. The clear
answer is positive, as long as there is a regression test suite
sufficient for exercising big parts of the application func-
tionality. We found that the simple invariants produced by
Daikon were fairly accurate, which significantly aided the
ESC/Java reasoning. The reduction in false positives en-
ables DSD-Crasher (as opposed to CnC) to produce rea-
sonable reports about NullPointerExceptions. Further-
more, we never observed cases in our experiments where
false Daikon invariants over-constrained a method input do-
main. This would have caused DSD-Crasher to miss a bug
found by CnC. Instead, the invariants inferred by Daikon are
a sufficient generalization of observed input values, so that



the search domain for ESC/Java is large enough to locate
potential erroneous inputs.

Of course, inferred invariants are no substitute for human-
supplied invariants. One should keep in mind that we fo-
cused on simple invariants produced by Daikon and elim-
inated more “ambitious” kinds of inferred invariants (e.g.,
ordering constraints on arrays), as discussed in Section 3.2.
Even such simple invariants are sufficient for limiting the
false positives that CnC produces without any other con-
text information.

Finally, the experience with our two third-party, open
source applications is instructive. The regression test suite
of Groovy was sufficient for our purposes and improved the
quality of DSD-Crasher error reports relative to CnC. Nev-
ertheless, the tests supplied with JBoss JMS were not suffi-
cient, concentrating more on end-to-end testing tasks. We
believe that regression tests developed under a unit-testing
philosophy should be thorough enough for our purposes.
This is confirmed by our experience of adding simple and
natural unit tests to several JBoss JMS methods and ob-
serving an improvement of the DSD-Crasher reports relative
to CnC (similarly to the Groovy results).

6. RELATED WORK
There is clearly an enormous amount of work in the gen-

eral areas of test case generation and program analysis. We
discuss representative recent work below.

There are important surveys that concur with our esti-
mate that an important problem is not just reporting po-
tential errors, but minimizing false positives so that inspec-
tion by humans is feasible. Rutar et al. [29] evaluate five
tools for finding bugs in Java programs, including ESC/Java
2, FindBugs [19], and JLint. The number of reports differs
widely between the tools. For example, ESC reported over
500 times more possible null dereferences than FindBugs,
20 times more than JLint, and six times more array bounds
violations than JLint. Overall, Rutar et al. conclude: “The
main difficulty in using the tools is simply the quantity of
output.”

The CnC and DSD-Crasher approach is explicitly dissim-
ilar to a common class of tools that have received significant
attention in the recent research literature. We call these
tools collectively “bug pattern matchers”. They are tools
that statically analyze programs to detect specific bugs by
pattern matching the program structure to well-known error
patterns [16, 19, 34]. The approach requires domain-specific
knowledge of what constitutes a bug. Bug pattern matchers
do not generate concrete test cases and often result in spu-
rious warnings, due to the unsoundness of the modeling of
language semantics. Yet such tools can be quite effective in
uncovering a large number of suspicious code patterns and
actual bugs in important domains.

The commercial tool Jtest [28] has an automatic white-
box testing mode that generates test cases. Jtest generates
chains of values, constructors, and methods in an effort to
cause runtime exceptions, just like our approach. The max-
imal supported depth of chaining seems to be three, though.
Since there is little technical documentation, it is not clear
to us how Jtest deals with issues of representing and man-
aging the parameter-space, classifying exceptions as errors
or invalid tests, etc. Jtest does, however, seem to have a
test planning approach, employing static analysis to iden-
tify what kinds of test inputs are likely to cause problems.

Several dynamic tools [5, 33] generate candidate test cases
and execute them to filter out false positives. Xie and Notkin
[33] present an iterative process for augmenting an existing
test suite with complementary test cases. They use Daikon
to infer a specification of the testee when executed on a
given test suite. Each iteration consists of a static and a
dynamic analysis, using Jtest and Daikon. In the static
phase, Jtest generates more test cases, based on the existing
specification. In the dynamic phase, Daikon analyzes the
execution of these additional test cases to select those which
violate the existing specification—this represents previously
uncovered behavior. For the following round the extended
specification is used. Thus, the Xie and Notkin approach
is also a DSD hybrid, but Jtest’s static analysis is rather
limited (and certainly provided as a black box, allowing no
meaningful interaction with the rest of the tool). Therefore
this approach is more useful for a less directed augmentation
of an existing test suite aiming at high testee coverage—as
opposed to our more directed search for fault-revealing test
cases.

Korat [5] generates all (up to a small bound) non-
isomorphic method parameter values that satisfy a method’s
explicit precondition. Korat executes a candidate and mon-
itors which part of the testee state it accesses to decide
whether it satisfies the precondition and to guide the gener-
ation of the next candidate. The primary domain of appli-
cation for Korat is that of complex linked data structures.
Given explicit preconditions, Korat will generate deep ran-
dom tests very efficiently. Thus, Korat will be better than
DSD-Crasher for the cases when our constraint solving does
not manage to produce values for the abstract constraints
output by ESC/Java and we resort to random testing. In
fact, the Korat approach is orthogonal to DSD-Crasher and
could be used as our random test generator for reference
constraints that we cannot solve. Nevertheless, when DSD-
Crasher produces actual solutions to constraints, these are
much more directed than Korat. ESC/Java analyzes the
method to determine which path we want to execute in or-
der to throw a runtime exception. Then we infer the ap-
propriate constraints in order to force execution along this
specific path (taking into account the meaning of standard
Java language constructs) instead of just trying to cover all
paths.

Daikon is not the only tool for invariant inference from
test case execution, although it is arguably the best known.
For instance, Hangal and Lam present the DIDUCE invari-
ant inferrer [17], which is optimized for efficiency and can
possibly allow bigger testees and longer-running test suites
than Daikon.

Much research work on automated software testing has
concentrated on checking the program against some formal
specification [12, 30, 36]. Of course, the main caveat to this
automation is that the formal specification needs to be avail-
able in the first place. Writing a formal specification that is
sufficiently descriptive to capture interesting properties for
a large piece of software is hard. Furthermore, if the specifi-
cation is reasonably expressive (e.g., in full first-order logic
where the quantified variables can range over dynamic val-
ues) then conformance to the specification is not automat-
ically checkable. (That is, conformance can be checked for
the values currently available but checking it for all dynamic
values is equivalent to program verification.) Therefore, gen-
eration of test data is again necessary. A good example is



the recent JML+JUnit work of Cheon and Leavens on us-
ing the Java Modeling Language (JML) to construct JUnit
test cases [6]. Skeletal JUnit test case code that calls the
program’s methods is generated. The test inputs are user-
supplied, however. The integration of JML in this approach
is as a rich assertion language—the JML assertion checker
is used to determine whether some invariant was violated.

Verification tools [20, 32, 4, 21] are powerful ways to dis-
cover deep program errors. Nevertheless, such tools are of-
ten limited in usability or the language features they sup-
port. Jackson and Vaziri [20, 32] enable automatic checking
of complex user-defined specifications. Counterexamples are
presented to the user in the formal specification language,
which is less intuitive than DSD-Crasher generating a con-
crete test case. Their method addresses bug finding for
linked data structures, as opposed to numeric properties,
object casting, array indexing, etc., as in our approach.

7. CONCLUSIONS AND FUTURE WORK
We have presented DSD-Crasher: a tool based on a hy-

brid analysis approach to program analysis, particularly for
automatic bug finding. The approach combines three steps:
dynamic inference, static analysis, and dynamic verification.
The dynamic inference step uses Daikon [14] to characterize
a program’s intended input domains in the form of precondi-
tions, the static analysis step uses ESC/Java [15] to explore
many paths within the intended input domain, and the dy-
namic verification step uses JCrasher [8] to automatically
generate tests to verify the results of the static analysis.
The three-step approach provides several benefits over ex-
isting approaches. The preconditions derived in the dynamic
inference step reduce the false positives produced by the sta-
tic analysis and dynamic verification steps alone. The de-
rived preconditions can also help the static analysis to reach
a problematic statement in a method by bypassing unin-
tended input domains of the method’s callees. In addition,
the static analysis step provides more systematic exploration
of input domains than the dynamic inference and dynamic
verification alone.

The current DSD-Crasher implementation focuses on find-
ing crash-inducing bugs, which are exposed by inputs falling
into intended input domains. As we discussed in Section 3,
intended input domains inferred by Daikon could be nar-
rower than the real ones; therefore, a crash-inducing bug
could be exposed by an input falling outside inferred input
domains but inside the (real) intended input domain. In
the future, we plan to develop heuristics to relax inferred
input domains to trade soundness for completeness. In ad-
dition, some bugs do not cause the program to crash but
violate real post-conditions. The current DSD-Crasher im-
plementation does not consider inputs that satisfy inferred
preconditions but violate inferred post-conditions, because a
nontrivial percentage of these inputs expose no bugs, requir-
ing much inspection effort. We plan to develop heuristics
(based on constraints generated by ESC/Java for violating a
certain postcondition) to select for inspection a small num-
ber of inferred-postcondition-violating test inputs, trading
automation for completeness.

Our DSD-Crasher implementation and testees are avail-
able at: http://www.cc.gatech.edu/cnc/
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