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Abstract. This paper describes LC++, a library supporting logic pro-
gramming in C++. LC++ preserves the expressive syntax of logic lan-
guages like Prolog but also adds features from C++ like static type-
checking and arbitrary effects. Prior approaches to embedding a logic
programming language into an existing object-oriented language lacked
a sufficiently general interface for communicating the results of a logic
query back to client OO code. In contrast, LC++ provides a concise,
expressive interface between logic and OO code.

LC++ is built atop FC++, a library for functional programming in
C++. Functional programming techniques, including lazy evaluation and
higher-order functions, are the key to implementing an effective interface
between logic code and OO code. The “impedence mismatch” between
the control flow of logic programs and OO programs is bridged effectively
by functional programming. Additionally, the FC++ library simplifies
demonstrably the implementation of LC++.

LC++ is a complete language embedded in C++: LC++ has natural
syntax and full static type-checking and semantic analysis, all using an
unmodified C++ compiler. We discuss how this compile-time processing
is made possible by C++ template meta-programming.

1 Introduction

Multi-paradigm programming languages have been a topic of research for decades.
The basic appeal is clear: offering the programmer a choice of paradigms enables
her to choose the one best suited to the problem domain. Recently there have
been a number of good examples of languages and systems which combine func-
tional and logic programming (e.g., [6, 8,9, 16,22]), as well as mature implemen-
tations which add functional features to object-oriented languages (e.g., [10, 13,
18,21]), but there have been few examples that extend object-oriented languages
with logic programming. This is perhaps because these two paradigms differ the
most, creating an impedence mismatch at the interface between them.

We believe that an effective way to bridge the gap between object-oriented
programming and logic programming is to use functional programming as a step-
ping stone. To that end, we present LC++. LC++ is a library for doing logic
programming in C++. LC++ is built atop FC++[13,14], our library for doing



functional programming in C++. FC++ plays a key role in providing an ele-
gant interface between LC++ and normal C++ code, and FC++ also makes
the implementation of LC++ much simpler. Using functional programming tech-
niques, we are able to provide a natural embedding of logic programming in an
object-oriented programming language.

2 Example

Figure 1 shows an actual part of an LC++ program describing the Simpsons
family relationships. The lassert() function is used to add facts and impli-
cations to the database, and the query() function is used to run queries. The
syntax for functors, values, and logic variables is very similar to that of Prolog;
Table 1 summarizes the differences between LC++ syntax and Prolog syntax.

| Description [Prolog] LC++ |

unification = ==

conjunction s &&
disjunction I Il
implication - -=
not provable |not() [not_provable()
evaluation is is()
dummy logic var

Table 1. Syntax mapping between Prolog and LC++

LC++ uses the C++ type system and templates to enforce static typing of
logic programming code. To declare a functor, we use the form FUNn (n denoting
the arity of the functor) and specify the functor’s name as well as the types of
its arguments. For example, parent in the preceding example is declared like
this:

FUN2(parent,string,string) ;

Similarly, logic variables must be declared in order to statically typecheck
them. In our example, to declare logic variable X of type int, we say:

DECLARE( X, int, 10 );

The surprising integer constant parameter will be explained in Section 4.2. As
in Prolog, we use the convention of having a logic variable’s name begin with a
capital letter.

Like Prolog, LC++ uses “is” to bind logic variables to results of a compu-
tation. In the Simpsons example, the ancestor relation computes the number
of generations between direct relatives like so:



FUN2(parent,string,string) ;
FUN2(father,string,string);

FUN2 (mother,string,string) ;
FUN2(child,string,string) ;
FUN1(male,string) ;
FUN1(female,string) ;
FUN2(sibling,string,string) ;
FUN2(brother,string,string) ;
FUN2(sister,string,string) ;
FUN3(ancestor,string,string,int) ;

DECLARE (Mom, string,0); DECLARE(Sib, string,6);
DECLARE(Dad, string,1); DECLARE(Sib2,string,7) ;
DECLARE (Kid, string,2); DECLARE(Anc, string,8);
DECLARE (Par, string,3); DECLARE(Tmp, string,9);
DECLARE (Bro, string,4); DECLARE (X ,int, 10);
DECLARE(Sis, string,5); DECLARE (Y ,int, 11);

string bart="bart", lisa="lisa", maggie="maggie",
marge="marge", homer="homer", abraham="abraham";

lassert( male(bart) );

lassert( male(homer) );

lassert( male(abraham) );

lassert( female(lisa) );

lassert( female(maggie) );

lassert( female(marge) );

lassert( parent(marge,bart) );
lassert( parent (marge,lisa) );
lassert ( parent (marge,maggie) );
lassert( parent (homer,bart) );
lassert( parent (homer,lisa) );
lassert ( parent (homer,maggie) );
lassert( parent (abraham,homer) );

lassert ( mother (Mom,Kid) -= parent(Mom,Kid) && female(Mom) );
lassert( father(Dad,Kid) -= parent(Dad,Kid) && male(Dad) );
lassert( child(Kid,Par) -= parent(Par,Kid) );
lassert( sibling(Sib,Sib2) -= father(Dad,Sib) && father(Dad,Sib2)
&& mother (Mom,Sib) && mother (Mom,Sib2)
&& not_provable( Sib==Sib2 ) );
lassert( brother(Bro,Sib) -= sibling(Bro,Sib) && male(Bro) );
lassert( sister(Sis,Sib) -= sibling(Sis,Sib) && female(Sis) );
lassert( ancestor(Par,Kid,1) -= parent(Par,Kid) );
lassert( ancestor(Anc,Kid,X) -= parent(Anc,Tmp) &&
ancestor (Tmp,Kid,Y) && X.is(plus,Y,1) );

query( father(Dad,Kid) );

query( sibling(maggie,Sib2) );
query( ancestor(Anc,bart,X) );

Fig. 1. Simpsons family relationships in LC++



lassert( ancestor(Par,Kid,1) -= parent(Par,Kid) );
lassert( ancestor(Anc,Kid,X) -= parent(Anc,Tmp) &&
ancestor (Tmp,Kid,Y) && X.is(plus,Y,1) );

The code X.is(plus,Y,1) adds 1 to the current value of Y and binds the result-
ing value to X. plus is a functoid from the FC++ library[13,14], the functional
programming library that LC++ is built atop. FC++ functoids generalize the
notion of a function in C++; they can be bound to operators, functions, meth-
ods, or lambdas created on-the-fly. The general mechanism to do computation
in LC++ is

SomeLogicVar.is( some_functoid, argl, ..., argN )

Thus, via is(), LC++ has a general mechanism to “call out” to normal C++
code to perform computations or to have effects; just create a functoid that
describes the desired computation, and pass it as the first argument to is().

In the example above, lassert() was used to populate the database with
facts and implications, and query () was used to perform queries. But what does
query () do with its results? In fact there are three different query functions. We
shall wait until Section 4.1 to describe the main query () function. The simplest
of the other two is iquery(): it prints out its results. So if the final query from
the Simpsons example were

iquery( ancestor(Anc,bart,X) );

then the results

Result #1

- Anc = marge

- X =1
Result #2

- Anc = homer

- X =1
Result #3

- Anc = abraham

- X =2

would be printed to the screen.

The 1query() function returns an FC++ List of results. List is a lazy list
data type—the elements are not computed until actually requested. Each query
result is represented by an environment object (actually, a smart pointer (IRef)
to an environment object; more details to come in Section 4), which contains all
the information about the logic variable bindings. The type of the environment
object is a function of which (types of) logic variables appear in a particular
query. Naming Environment types can be difficult; the result type of the call

lquery( ancestor(Anc,bart,X) );
is a List of

IRef<Environment<TL: : CONS<X_TYPE,TL: :CONS<Anc_TYPE,TL: :NIL> > > >



objects. That is, it is a lazy list of references to a binding environment holding
values for logic variables X and Anc. (By convention, the C++ type of logic
variable Foo is called Foo_TYPE; this type is declared by LC++ DECLARE macro.)

Such long and ugly type names are a common occurrence in C++ template
libraries, especially those using expression templates. Fortunately we can shield
the client from these names by providing a “type computer” which provides a
managable alias for the type: the type QRT<Foo_TYPE,Bar_TYPE>: : IE describes
the type of results of a query involving the logic variables Foo and Bar. (QRT
stands for “Query Return Type” and IE stands for IRef<Environment>.) As a
result, we can just say

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;
List<IE> 1 = lquery( ancestor(Anc,bart,X) );

to get our list of results. We can then use the FC++ functions null(), head (),
and tail() to traverse the list of references to environment objects. The envi-
ronment object responds to the method at (SomeLogic Var), returning an object
representing the binding for that logic variable. Assuming the variable is bound,
the “*” operator returns the value it is bound to. This way the client can print
the results using her own choice of formatting. For example

while( 'null(l) ) {
IE env = head(l);
std::cout << "X is " << *env->at(X) << " and Anc is "
<< *env—>at(Anc) << std::endl;
1 = tail(1);
}

will print to the screen:

X is 1 and Anc is marge
X is 1 and Anc is homer
X is 2 and Anc is abraham

FC++ Lists are lazy, and the implementation of the LC++ query functions
exploits this laziness in an important way. For instance, a query computation
may not terminate. The query may yield a few results and then get “stuck” in
an infinite loop, or the query may return an infinite number of results, such as
in this simple example involving the natural numbers:

FUN1( nat, int );

DECLARE( X, int, 10 );

DECLARE( Y, int, 11 );

lassert( nat(0) );

lassert( nat(X) -= nat(Y) && X.is(plus,Y,1) );

Running the query nat(X) produces an infinite list of results. This doesn’t
present a problem, though; if we are only interested in the first 3 results, we
just ask for those. That is, we can say

typedef QRT<X_TYPE>::IE IE;
List<IE> 1 = lquery( nat(X) );



for( int i=0; i<3; ++i ) {
IE env = head(l);
std::cout << "X is " << *env->at(X) << std::endl;
1 = tail(1);

}

and that code! prints

The implementation of this feature (laziness) is described at length in Section 4.1.

3 Why LC++ Is Different

There are some other projects which add support for logic programming to exist-
ing object-oriented languages. LC++ is unique compared to such work because
it integrates cleanly the control flow of the imperative and the logic programming
language constructs. The alternative approaches include SOUL (which extends
Smalltalk), J/MP (which extends Java), and MPC++ (C++). We first describe
some common aspects of those three, and then discuss details of each in turn.
(Section 6 describes other related work.)

All three approaches (SOUL, J/MP, MPC++) suffer the same key drawback
with respect to query results: they do not leave the client in control. In SOUL, the
results of a query are returned as a Smalltalk OrderedCollection object; this
means that examples that involve infinite objects, like nat from Section 2, cannot
be realized. The problem is similar in J/MP and MPC++: the client passes in a
block of code to be executed for each result produced by the query, and the query
executes the client code on each and every result. In contrast, LC++ gives the
client control of the query by returning the results as a lazy list; the client can
demand a few results, continue on with some other computation, and demand
more results later as needed. A second difference between these approaches and
LC++ is that none of the other three approaches can duplicate the specialized
semantic analyses that LC++ can do (to be described in Section 4.2).

SOUL, the Smalltalk Open Unification Language adds logic programming
features to Smalltalk. The original SOUL system was just an interpreter; clients
would specify assertions and queries as strings, using code like

rep := SOULRepository new.
rep assert: ’father(homer,bart). father(homer,lisa).’
results := SOULEvaluator eval: ’if father(?dad,?kid)’ in: rep.

However new work[3] integrates SOUL into Smalltalk so that functors work
like ordinary message-sends and Smalltalk objects can participate in unification,

! Functional programmers would undoubtedly prefer to write the code with take ()
and map(); FC++ provides these and many more of the functions in the Haskell
Standard Prelude.



creating a truer embedding. Like LC++, SOUL preserves the declarative syntax
that languages like Prolog provide. SOUL provides no static guarantees, however,
since Smalltalk is dynamically typed and the SOUL implementation works with
the reflection facilities of Smalltalk.

The J/MP language[2] is a Java extension supporting multi-paradigm pro-
gramming, including logic programming. Logic programming in J/MP is enabled
by using the Relation class and pass-by-name parameters. The && and | | opera-
tors are overloaded (as in LC++), and the method unify () performs unification.
J/MP has a weak logic programming model: unification can only be performed
on a variable with a value—two unbound logic variables cannot be unified. Also,
J/MP defines relations using notation that is more operational than declarative;
for example in J/MP one might write

public static Relation father( +String Dad, +String Kid ) {
return parent(Dad,Kid) && male(Dad);
}

to define the father () relation described in our original LC++ example.

The MPC++ library[7] adds support for logic programming in C++. Like
LC++, MPC++ is build atop FC++[13,14]. MPC++ has been used in a grad-
uate programming languages course to teach students about different program-
ming paradigms. Perhaps as a result of this use-context, MPC++ exposes more
implementation details to clients, resulting in verbose code. When declaring an
MPC++ functor, all known facts about the functor need to be expressed in a
closed definition. (This is also true of J/MP.) For example, male() would be
defined like this in MPC++:

class Male : public Logic_Rule {
Logic_Variable<string> person;
public:
Male( const Logic_Variable<string>& p ) : person(p) {}
Logic_Relation Rule_Definition() {
return (person |= "bart") || (person |="homer")
Il (person |= "abraham");
}
h

Thus, MPC++ has a static point of definition of all facts pertaining to a functor,
while LC++ allows more facts to be added with lassert () dynamically, based
on the control flow of the program. A static approach is more amenable to
optimizations, but MPC++ does not attempt to optimize queries in any way
(nor does J/MP).

Finally, we note that the Logic_Rule and Logic_Relation classes of MPC++
serve a similar purpose as the Relation class in J/MP, and operators are over-
loaded (MPC++ uses |= for unification). Indeed, the implementation strategies
of J/MP and MPC++ are quite similar.



4 Beneath the Surface

In this section we describe two of the most interesting aspects of the LC++
implementation. First, we discuss how LC++ implements its control flow, us-
ing FC++ lazy lists as a natural way to return query results one-at-a-time on
demand. Second, we discuss the use of C++ “expression templates” to perform
compile-time computation, enabling LC++ clients to use Prolog-like syntax but
have the C++ compiler parse, type-check, and semantically analyze this code.

Unfortunately, the semantic gap between these two parts is great: the discus-
sion of the LC++ control flow should be straightforward from a logic program-
ming standpoint, but not from the standpoint of a C++ template programmer.
The inverse is true of the discussion of the LC++ compile-time computations.
In the following, we try to offer appropriate background when necessary in order
to make both sections accessible to readers from either background.

4.1 Query execution and C++ interfacing

LC++ represents query results as an Environment object, which maps each
logic variable to its binding information. Since this is C++, we use effects to
obtain an efficient implementation. That is, we use destructive update to modify
the environment: unification causes bindings to be added; backtracking causes
bindings to be removed.

One common way to implement Prolog queries is to mimic continuation pass-
ing style (CPS). A continuation is a function which embodies “what to do next”
(after the current action is completed). Using CPS makes it easy to implement
Prolog’s unusual control flow; any particular term can either continue forward
through the query (by calling the next continuation when this portion of the
query succeeds) or backtrack (by returning to its caller when this portion of the
query fails). The activation stack holds the “undo” information used for back-
tracking, and the continuation parameter holds the “future” (the rest of the
query to be evaluated). Other logic programming approaches, like MPC++[7]
and J/MP[2], use explicit CPS to express the logical control flow in an imperative
language.

The problem with this approach is that the action describing “what to do
with the query results” must itself be passed into the query as the final continu-
ation. In specific cases, this is not a problem: for example, if all you want to do is
print out all the results, then it would be easy to create a continuation function
which just prints the contents of the Environment, and to pass this continuation
into query(). In the general case, however, a client of query() may want to
use the results in some arbitrary way using arbitrary C++ code, and there is
no general mechanism for creating a continuation out of “the rest of your C++
program”.

Put another way, the problem is the impedence mismatch between normal
C++ control flow (which uses an activiation stack) and LC++ control flow
(which is effectively CPS). In simple cases where we are prepared to process
all of the results at once, we can treat the query() function as a “stop the



world” process, which uses CPS to run the query and process all the results
(query () would not return until all of the results are processed). However in the
general case, a client may not be prepared to process all the results at once; the
client needs query () to return the results (lazily) in a data structure which can
be processed later. FC++ lazy lists solve the problem; representing the results
as a lazy list effectively enables arbitrary C++ code to call query() and then
continue on its way, co-routining with the CPS query functionality whenever the
next result is demanded by the client. FC++ plays a role with dual significance
here: FC++ lazy lists provide a smooth way to create the interface to LC++
queries, and the FC++ library makes the implementation much easier.

We now describe the actual implementation. At the lowest level, the main
query () function returns a std::pair (standard C++ 2-tuple) whose first el-
ement is a reference to an Environment object and whose second element is
a List<Empty>. Empty is a “nothing” data type—a struct with no members.
List<Empty> signifies that the lazy list does not contain real values—it is only
useful because traversing it produces side-effects on the Environment.?

The purpose of the List is to give clients control over query evaluation. As
each element of the List is demanded, the LC++ query runs to produce the next
result by side-effecting the Environment object. When the List finally becomes
NIL this means there are no more query results. Thus a client calls query() like
this:

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;
std: :pair<IE,List<Empty> > p = query( ancestor(Anc,bart,X) );
IE env = p.first;
List<Empty> 1 = p.second
while( !'null(l) ) {

std::cout << "X is " << *env->at(X) << " and Anc is "

<< *env->at(Anc) << std::endl;

1 = tail(1l);

}

The 1query() and iquery() functions (presented back in Section 2) are built
atop this interface.

We now illustrate how query() is implemented with some code. A query is
represented as a Term object. Terms can be conjunction terms, disjunction terms,
unification terms, etc. All of them support a run method with the following
interface:

struct Term {
virtual List<Empty> run( IRef<Term> future ) = 0;
};

CPS is evident; in order to run a portion of a query, we must pass the re-
mainder of the query (the continuation) as the future parameter. (Recall that
IRef<Term> is like a Term pointer; FC++ provides the IRef class as a reference-
counted pointer.) The run() method in Term returns a List<Empty>.

The body of the query () function ends with this code:

2 We use List<Empty> because we cannot create a List<void> for technical reasons.



// "t" is a reference to the current Term

// "env" is a reference to the current Environment

List<Empty> 1 = curry2( ptr_to_fun(&Term::run), t, end_of_query );
// line above is FC++ lazy version of: 1 = t->run( end_of_query );
return std::make_pair( env, 1 );

end_of_query is just an instance of a Term whose run() body says
return cons(Empty() ,NIL); // cons() is the FC++ List constructor

In other words, when we reach the end of the query, we should indicate one
result by returning a one-element List.

Further examples help illuminate what is going on. Consider DisjunctImpls
(the “or” terms created with ||). Here is the implementation, which just uses
the FC++ cat () function to concatenate two lists:

struct DisjunctImpl : public Term {
IRef<Term> lhs, rhs;
List<Empty> run( IRef<Term> future ) {
return cat( lhs->run(future),
curry2(ptr_to_fun(&Term: :run) ,rhs,future)) ;
// FC++ lazy version of "cat( lhs->run(future), rhs->run(future) )"
}
};

and here is the code for conjuncts (&&):

struct ConjunctImpl : public Term {
IRef<Term> lhs, rhs;
List<Empty> run( IRef<Term> future ) {
IRef<Term> newfuture = new ConjunctImpl( rhs, future );
return lhs->run( newfuture );
}
};

That is, given term1&&term2 and a future, we run terml with term2&&future
as its future.

Finally, consider unification. LC++ values can be unified using the unify()
function, which returns a result of type UnRes. This is a two-element structure:

struct UnRes { // UnRes means "Unification Result"
bool ok;
FunO<void> undo; // FunO<void> is the FC++ type of a zero-argument
// functoid that returns no result; an "effect thunk"

};

If a unification fails, the ok field is set to false and the undo field is unused. If a
unification succeeds, the environment is side-effected with the new binding, the
ok field is set to true, and the undo field is set to a thunk which, when executed,
will remove the newly-created binding from the environment. This is important
to the run() method in UnificationImpl, which looks like this:



UnRes ur = lhs->unify(rhs);
if( lur.ok )
return NIL;
else
return cat( future->run( dummy_term ),
before( ur.undo, const_(List<Empty>()) ) );
// The previous line creates an empty list which first calls "undo" thunk.
// (FC++: The const_() function '"lazifies" a List value, whereas the
// before() combinator prepends a thunk to a function.)

The logic of UnificationImpl: :run() reads as follows. First, try to unify the
left-hand-side with the right-hand-side. If this fails, return the empty list (there
are no results). Otherwise, the result is the catentation of (1) the results from
running the future (the rest of the query)® and (2) an empty list with the undo
thunk prepended. This results in the effects happening at the right time. Since
unification succeeded, we have added a binding to the environment. We run the
rest of the query with that binding intact. After all of those results have been
processed (that is, when the client demands the next result after those results
created downstream from this portion of the query), we undo the binding created
by this unification (to effect backtracking).

4.2 Parsing and semantic analysis

In this subsection, we discuss the C++-specific implementation techniques that
LC++ uses to enable clients to express logic programs in C++ using the simple
declarative syntax of the library interface. Expression templates[23] are used
to parse LC++ rules and queries as C++ expressions, and template meta-
programming[4] techniques are used to do basic analysis of LC++ expressions
so that LC++ code works within C++’s static type system.

Parsing and Representation The syntax of LC++ is implemented by over-
loading the C++ language operators that appear in Table 1. These overloaded
operators return values of types that reflect the syntax tree of the expression.
For instance, C++ operators like —= and && are overloaded to create values of
type ImplicationRep and ConjunctRep, respectively. All the different “Rep”
types serve to represent different entities of the syntax tree. Logic variables cor-
respond to C++ values of type LogicVariable<T>, where T is the type of the
logic variable (e.g., integer, string, etc.). For example, code like

X==3 && Y ==14

creates a value whose type is a tree with a ConjunctRep at the root, with two
UnificationReps below it, each of which has a LogicVariable<int> child and
an int child.

3 The dummy_term passed to future’s run() method is a just a meaningless placeholder;
query () ensures that all Terms end with an end_of_query object, which never uses
its future parameter.



Type-Checking and Semantic Checking The C++ type system is Turing-
complete, and C++ templates can be used for meta-programming in the type
system. (The C++ template system is an untyped, pure functional programming
language, where the atomic values are C++ types.) Using this feature of C++
we can perform arbitrary (but very cumbersome) computations at compile-time.

There are three main high-level results of the compile-time computation per-
formed by LC++, listed here with an example of each:

— Type checking: ensuring that in the expression X==1, X is a logic variable of
type int (and not, say, one of type string).

— General semantic checking: ensuring that a client cannot ask for env->at (X)
from the result of a query not involving X.

— Specialized semantic checking: ensure that the named logic variables appear-
ing in an lassert() statement always appear in more than one location.

We achieve these results by using metaprogramming on “type lists” in the Rep
classes; this is explained next.
Recall that client code to run a query looks like

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;
List<IE> 1 = lquery( ancestor(Anc,bart,X) );

The QRT type computer computes the type of an environment that has bindings
for each of the logic variables* named by its template parameters.

The complication is that lquery() must compute a value whose type is
compatible with the type computed by QRT. To do this, the implementation of
lquery () must (at compile-time) traverse the parse tree of the logic expression
passed to it and compute the set of all logic variables that appear in the term.
The type representing this set should be the same as that computed by QRT.
Discovering all of the logic variables used in a logic expression expression is done
using the Rep classes. LC++ keeps for each Rep type (representing an LC++
program term) a list of all the logic variables that appear in the term. This
compile-time list is maintained as a field of each Rep class called “LVs”. Rather
than discussing here the details of manipulating compile-time lists of types in
C++, we refer the interested reader to [4]. It suffices to accept as given the
list primitives: TL: :NIL, TL: :CONS, and TL::AppendList. (The namespace TL
stands for “type list”.)

As an example, consider the definition of the ConjunctRep class (instances
of which are created by the overloaded && operator):

template <class LHS, class RHS> struct ConjunctRep : public HasLV {
typedef typename TL::AppendList<typename LV<LHS>::LVs,
typename LV<RHS>::LVs>::Result LVs;

4 More precisely, for each of the logic variable types. The library interface is specifically
designed to try to ensure that logic variables are declared in such a way that there is
a one-to-one correspondence between logic variables and logic variable types. Thus
the results of compile-time computations (types) can be meaningfully mapped back
into the program (variables).



LHS 1lhs;
RHS rhs;
ConjunctRep( const LHS& 1, const RHS& r ) : lhs(1l), rhs(r) {}

};

Each ConjunctRep is just an expression tree node with a left-hand side and a
right-hand side which computes its list of logic variables as the result of append-
ing the logic variable lists of its two children.

The type expression LV<Something>: :LVs is a compile-time function used to
compute the list of logic variables appearing in Something. If Something is a Rep
(which is determined by seeing if it is a subtype of HasLV) then the expression just
means Something: :LVs, whereas for non-Reps (e.g., normal C++ types like int,
which can appear in Rep trees, e.g., as the right hand side of the UnificationRep
created by the LC++ expression X==1) the expression just means TL: :NIL which
represents the empty list of logic variable types.

The type lists of logic variables which comprise an Environment for a par-
ticular query require a canonical representation. To see why, consider again this
example client code:

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;
List<IE> 1 = lquery( ancestor(Anc,bart,X) );

It would be a shame if the client were required to list the logic variable types
passed to QRT in the same order that they appear in the query—we would like

typedef QRT<X_TYPE,Anc_TYPE>::IE IE; // Note reversal of arguments
List<IE> 1 = lquery( ancestor(Anc,bart,X) );

to also compile. In order to enable this, QRT and lquery() need to agree on a
canonical representation for type lists. It would do us no good if QRT created an
environment with C++ type

Environment<TL: : CONS<X_TYPE,TL: :CONS<Anc_TYPE,TL::NIL> > > >
whereas 1lquery () had
Environment<TL: : CONS<Anc_TYPE,TL: :CONS<X_TYPE,TL::NIL> > > >

as its resulting environment type. These two types are conceptually compatible,?
but the C++ type system sees them as two distinct types which are not inter-
convertible. With this issue in mind, we can now appreciate one reason® for the
“unique integer” associated with each logic variable. Recall that logic variables
are declared using code like

DECLARE( X, int, 10 );

% That is, though we are using type lists as a representation type in our meta-program,
we actually only care about type sets in this case.

5 The other reason for the “unique integers” is to create the one-to-one type-to-variable
mapping mentioned in a previous footnote.



The unique integer constant that appears in the type (10 in the example above)
provides a way to order the logic variable types. This enables us to create a
canonical representation of a set of logic variables as a list: the canonical list
always has the types appear in increasing order of their unique integer constants.
The canonicalization process also filters out duplicates, so that queries like

lquery( ancestor(Anc,bart,X) && X==1 );
do not go mistakenly creating environments with type

Environment<TL: : CONS<Anc_TYPE,TL: : CONS<X_TYPE, // X mistakenly
TL::CONS<X_TYPE,TL::NIL> > > > // duplicated

The end result of the above computation is the general semantic checking per-
formed by LC++. The type computers inside QRT, the query() functions, and
the Rep classes all work to make the C++ type system ensure that LC++ code is
statically checked. The type computers ensure that the environment types match,
so that a client cannot ask for, e.g., env->at (X) from the result of a query not
involving X. The type information maintained by LC++ lets the normal C++
type rules check more basic requirements, such as ensuring that in the expression
X==1, X is a LogicVariable<int> (and not, say, a LogicVariable<string>).

In addition to basic typechecking that QRT facilitates, LC++ supports more
sophisticated analyses which are specific to the domain of logic programming.
One example of such a specialized semantic analysis is detecting one-time-use
variables in calls to lassert (). Suppose that when the client wrote the code for
the family relationship example, instead of writing

lassert( child(Kid,Par) -= parent(Par,Kid) ); // correct

she accidentally wrote
lassert( child(Kid,Par) -= parent(Mom,Kid) ); // oops, used Mom

where Mom had inadvertantly been used in place of Par on the right-hand side.
The resulting code is legal and typechecks, but it does not describe the intended
child () relation.

This type of error is automatically statically detectable because it violates
the rule that logic variables appearing in an lassert () statement should always
appear in more than one location. A logic variable that is used only once can be
unified with anything; if the client does actually intend to use a “don’t care” logic
variable, they should do so explicitly using the special variable “_”. We use meta-
programming to write an algorithm which analyzes lassert () calls and forces
the compiler to emit a warning when one-time-use variables are detected. (Us-
ing meta-programs to statically analyze code and emit domain-specific compiler
diagnostics is a technique that has been used by other recent C++ libraries[12,
15,19].)



5 Limitations and Future Work

The current implementation of LC++ has a few important limitations and omis-
sions, which we intend to address in the near future. Additionally there are a
few new directions we plan to investigate.

Omissions. The current LC++ implementation omits a few notable Prolog
entities, like the cut operator and a retract() function. These will be imple-
mented in the next version of the library.

Parametric polymorphism. One major restriction with LC++ is that functors
are monomorphic. For example, we can define append() to work on lists of
integers, but cannot use the same append () for lists of other types (e.g. string,
double, etc.). We will also lift this restriction in the next version of the library,
using some of the same techniques we used to implement the FC++ library.

Performance. LC++ allows clients to update the database of facts and im-
plications with calls to lassert() at any time—even during the execution of a
query. This freedom effectively limits LC++ to executing queries like an inter-
preter, with all the associated performance limitations of that approach.

Static analyses and transforms. At the end of Section 4.2, we gave an example
of one type of specialized semantic analysis that LC++ can perform at compile-
time. Though we plan to add other types of semantic analyses to the library,
we would also like to investigate if we can use static type information to enable
some compile-time optimizations, such as re-structuring query trees.

Parameter modes. Some logic programming languages, such as Mercury[16]
and HAL[5], enable the programmer to annotate functors with mode and de-
terminism declarations. These declarations enable more static checking and can
help provide better run-time performance. It would be interesting to extend
LC++s static type system so that parameter modes could be expressed.

6 Related work

Section 3 described other approaches to adding logic programming to existing
object-oriented languages. Here we describe other work involving multiparadigm
programming which includes a logic-programming component.

There are quite a few recent examples combining functional and logic pro-
gramming. Godel[9], Escher[8], Curry[6], and Toy[22] are a few examples of lan-
guages in this area. Each of these languages features static typing, polymorphism,
and a pure (effect-free) style of programming. Mercury[16] fits into this group,
but it also supports parameter mode and determinism declarations.

Unlike LC++, which combines logic and object-oriented programming by
adding logic programming features to an existing OO language, some approaches
start with a logic programming language and extend it with object-oriented
features. One example in this area is Jinni[l11]. Jinni is an interpreter for an
extended version of Prolog (which includes features like classes and inheritance)
that is written in Java. Jinni uses Java’s reflection capabilities to provide a



mechanism for the logic code to “call out” to Java, but the interface is heavy
and there is a clear deliniation between logic code and object-oriented code.

A few languages are designed to support all three (logic, functional, and OO)
paradigms. The language Oz[17] combines all three paradigms in a dynamically
typed, concurrent programming language. Leda[1] was specifically designed as a
language for teaching the three paradigms; Leda is statically typed.

7 Conclusions

The LC++ library embeds a Prolog-like logic programming language inside
C++. By utilizing the extensibility features of C++ (like operator overloading),
we manage to preserve the declarative syntax and feel of logic programming.
By using functional programming techniques (including laziness and combina-
tors) we provide a natural interface to object-oriented C++ code. By utilizing
C++’s powerful type system (through template metaprogramming), we are able
to perform static semantic analyses at compile-time, including those specific to
the domain of logic programming. Overall, LC++ creates a foundation to use
C++ as an interesting new implementation platform for logic programming.
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