Morphing: Safely Shaping a Class
in the Image of Others

Shan Shan Huang!:?, David Zook!, and Yannis Smaragdakis?

! Georgia Institute of Technology, College of Computing
{ssh,dzook }@cc.gatech.edu
2 University of Oregon, Department of Computer and Information Sciences
yannis@cs.uoregon.edu

Abstract. We present MJ: a language for specifying general classes
whose members are produced by iterating over members of other classes.
We call this technique “class morphing” or just “morphing”. Morph-
ing extends the notion of genericity so that not only types of methods
and fields, but also the structure of a class can vary according to type
variables. This offers the ability to express common programming pat-
terns in a highly generic way that is otherwise not supported by conven-
tional techniques. For instance, morphing lets us write generic proxies
(i.e., classes that can be parameterized with another class and export
the same public methods as that class); default implementations (e.g.,
a generic do-nothing type, configurable for any interface); semantic ex-
tensions (e.g., specialized behavior for methods that declare a certain
annotation); and more. MJ’s hallmark feature is that, despite its em-
phasis on generality, it allows modular type checking: an MJ class can
be checked independently of its uses. Thus, the possibility of supplying
a type parameter that will lead to invalid code is detected early—an
invaluable feature for highly general components that will be statically
instantiated by other programmers.

1 Introduction

The holy grail of software construction is separation of concerns: aspects of
program behavior should be treated independently, so that complexity can be
decomposed into manageable pieces. Decomposition techniques have been the
goal of programming languages for several decades, both with standard object-
oriented techniques, as well as with “aspect” languages such as AspectJ [19] or
JBoss AOP [6]. Nevertheless, all mechanisms offer a fundamental trade-off be-
tween generality and safety: if a mechanism is general, then it is hard to check
that it is valid for all possible inputs. In this paper, we present a powerful mod-
ularity technique called class morphing or just morphing. We discuss morphing
through MJ—a reference language that demonstrates what we consider the de-
sired expressiveness and safety features of an advanced morphing language. MJ
morphing can express highly general object-oriented components (i.e., generic
classes) whose exact members are not known until the component is parameter-
ized with concrete types. For a simple example, consider the following MJ class,
implementing a standard “logging” extension:

class MethodLogger<class X> extends X {
<Y*>[meth]for (public int meth (Y) : X.methods)
int meth (Y a) {
int i = super.meth(a);
System.out.println("Returned: " + i);
return i;
}
}

MJ allows class MethodLogger to be declared as a subclass of its type param-
eter, X. The body of MethodLogger is defined by static iteration (using the for
statement) over all methods of X that match the pattern public int meth(Y).Y
and meth are pattern variables, matching any type and method name, respec-
tively. Additionally, the * symbol following the declaration of Y indicates that
Y matches any number of types (including zero). That is, the above pattern
matches all public methods that return int. The pattern variables are used in
the declaration of MethodLogger’s methods: for each method of the type param-
eter X, MethodLogger declares a method with the same name and type signature.
(This does not have to be the case, as shown later.) Thus, the exact methods of
class MethodLogger are not determined until it is type-instantiated. For instance,
MethodLogger<java.io.File> has methods compareTo and hashCode: these are the
only int-returning methods of java.io.File and its superclasses.

“Reflective” program pattern matching and transformation, as in the above
example, are not new. Several pattern matching languages have been proposed in
prior literature (e.g., [2—4,25]) and most of them specify transformations based
on some intermediate program representation (e.g., abstract syntax trees) al-
though the patterns resemble regular program syntax. Compared to such work,
MJ is quite unique for two reasons:

— MJ makes reflective transformation functionality a natural extension of
Java generics. For instance, our above example class MethodLogger appears
to the programmer as a regular class, rather than as a separate kind of
entity, such as a “transformation”. Using a generic class is a matter of
simple type-instantiation, which produces a regular Java class, such as
MethodLogger<java.io.File>.

— MJ generic classes support modular type checking—a generic class is type-
checked independently of its type-instantiations, and errors are detected if
they can occur with any possible type parameter. This is an invaluable prop-
erty for generic code: it prevents errors that only appear for some type pa-
rameters, which the author of the generic class may not have predicted. This
problem has been the target of some prior work, such as type-safe reflection
[10], compile-time reflection [11], and safe program generation [13]. Yet none
of these mechanisms offer MJ’s modular type checking guarantees. For in-
stance, the Genoupe [10] approach has been shown unsafe, as the reasoning
depends on properties that can change at runtime; CTR [11] only captures
undefined variable and type incompatibility errors, does not offer a formal
system or proof of soundness, and has limited expressiveness compared to MJ
(especially with respect to method arguments); SafeGen [13] has no sound-

ness proof and relies on the capabilities of an automatic theorem prover—an
unpredictable and unfriendly process from the programmer’s perspective.

For an example of modular type checking, consider a “buggy” generic class:

class CallWithMax<class X> extends X {
<Y>[meth]for(public int meth (Y) : X.methods)
int meth(Y al, Y a2) {
if (al.compareTo(a2) > 0) return super.meth(al);
else return super.meth(a2);
}
}

The intent is that class CallWithMax<C>, for some C, imitates the interface
of ¢ for all single-argument methods that return int, yet adds an extra formal
parameter to each method. The corresponding method of C is then called with
the greater of the two arguments passed to CallWithMax<C>. It is easy to define,
use, and deploy such a generic transformation without realizing that it is not
always valid: not all types Y will support the compareTo method. MJ detects
such errors when compiling the above code, independently of instantiation. In
this case, the fix is to strengthen the pattern with the constraint <Y extends
Comparable<Y>>:

<Y extends Comparable<Y>>[meth]for(public int meth (Y) : X.methods)

Additionally, the above code has an even more insidious error. The generated
methods in CallWithMax<C> are not guaranteed to correctly override the methods
in its superclass, C. For instance, if C contains two methods, int foo(int) and
String foo(int,int), then the latter will be improperly overridden by the gener-
ated method int foo(int,int) in CallWithMax<C> (which has the same argument
types but an incompatible return type). MJ statically catches this error. This is
an instance of the complexity of MJ’s modular type checking when dealing with
unknown entities.

2 Language Overview and Motivation

MJ adds to Java the ability to include reflective iteration blocks inside a class or
interface declaration. The purpose of a reflective iteration block is to statically
iterate over a certain subset of a type’s methods or fields, and produce a declara-
tion or statement for each element in the iterator. By static iteration, we mean
that no runtime reflection exists in compiled MJ programs. All declarations or
statements within a reflective block are “generated” at compile-time.

2.1 Language Basics

A reflective iteration block (or reflective block) has similar syntax to the existing
for iterator construct in Java. There are two main components to a reflective
block: the iterator definition, and the code block for each iteration. The following
is a class declaration with a very simple reflective block:

class C<T> {
for (static int foo () : T.methods) {l
public String foo () { return String.valueOf(T.foo()); }
(s

}
We overload the keyword for for static iteration. The iterator definition im-

mediately follows for, delimited by parentheses. This defines the set of elements
for iteration, which we call the reflective range (or just range) of the iterator.
The iterator definition has the basic format pattern : reflection set. The reflec-
tion set is defined by applying the .methods or .fields keywords to a type,
designating all methods or fields of that type. The pattern is either a method or
field signature pattern, used to filter out elements from the reflection set. Only
elements that match the pattern belong in the reflective range. In the example
above, the reflective range contains only static methods of type T, with name
foo, no argument, and return type int.

The second component of a reflective block is delimited by {I...1}, and
contains either method/field declarations or a block of statements. The reflective
block is itself syntactically a declaration or block of statements, but we prevent
reflective blocks from nesting. In case of a single declaration (as in most examples
in this paper), the delimiters can be dropped. The declarations or statements
are “generated”, once for each element in the reflective range of the block. In
the example above, a method public String foo() { ... } is declared for each
element in the reflective range. Thus, if T has a method foo matching the pattern
static int foo(), a method public String foo() exists for class C<T>, as well.

The reflective block in the previous example is rather boring. Its reflective
range contains at most one method, and we know statically the type and name
of that method. For more flexible patterns, we can introduce type and name
variables for pattern matching. Pattern matching type and name variables are
defined right before the for keyword. They are only visible within that reflective
block, and can be used as regular types and names. For example:
class C<T> {

T t;
C(T t) { this.t = t; }

<A>[m] for (int m (A) : T.methods)
int m (A a) { return t.m(a); }

}
The above pattern matches methods of any name that take one argument

of any type and return int. The matching of multiple names and types is done
by introducing a type variable, A, and a name variable, m. Name variables match
any identifier and are introduced by enclosing them in [...]. The syntax for
introducing pattern matching type variables extends that for declaring type pa-
rameters for generic Java classes: new type variables are enclosed in <...>. We
can give type variable A one or more bounds: <A extends Foo & Bar>, and the
bounds can contain A itself: <A extends Comparable<A>>. Multiple type variables
can be introduced, as well: <A extends Foo,B extends Bar>. In addition to the
Java generics syntax, we can annotate a type parameter with keywords class or

interface. For instance <interface A> declares a type parameter A that can only
match an interface type. (This extension also applies to non-pattern-matching
type parameters, in which case A can only be instantiated with an interface.)
A semantic difference between pattern matching type parameters and type pa-
rameters in Java generics is that a pattern matching type parameter is not
required to be a non-primitive type. In fact, without any declared bounds or
class/interface keyword, A can match any type that is not void—this includes
primitive types such as int, boolean, etc. To declare a type variable that only
matches non-primitive types, one can write <A extends Object>.

The type and name variables declared for the reflective block can be used
as regular types and names inside the block. In the example above, a method
is declared for each method in the reflective range, and each declaration has
the same name and argument types as the method that is the current element
in the iteration. The body of the method calls method m on a variable of type
T—whatever the value of m is for that iteration, this is the method being invoked.

Often, a user does not care (or know) how many arguments a method takes.
It is only important to be able to faithfully replicate argument types inside
the reflective block. We provide a special syntax for matching any number of
types: a * suffix on the pattern matching type variable definition. For instance,
if a pattern matching type variable is declared as <Ax>, then String m (A) is
a method pattern that matches any method returning String, no matter how
many arguments it takes (including zero arguments), and no matter what the
argument types are. Even though A* is technically a vector of types, it can only
be used as a single entity inside of the reflective block. MJ provides no facility
for iterating over the vector of types matching A. This relieves us from having
to deal with issues of order or length.

MJ also offers the ability to construct mew names from a name variable,
by prefixing the variable with a constant. MJ provides the construct # for this
purpose. To prefix a name variable £ with the static name get, the user writes
get#f. Note that get cannot be another name variable. Creating names out of
name variables can cause possible naming conflicts. In later sections, we discuss
in detail how the MJ type system ensures that the resulting identifiers are unique.
MJ also offers the ability to create a string out of a name variable (i.e., to use
the name of the method or field that the variable currently matches as a string)

via the syntax var.name. The example below demonstrates these features:
class C<T> {

T t;

C(T t) { this.t = t; }

<R,A*>[m] for (public R m (A) : T.methods)

R delegate#m (A a) {
System.out.println("Calling method "+ m.name + " on "+ t.toString());
return t.m(a);

}

}
The above example shows a simple proxy class that declares methods that

mimic the (non-void-returning) public methods of its type parameter. Declared

method names are the original method names prefixed by the constant name
delegate. Declared methods call the corresponding original methods after logging
the call.

In addition to the above features, MJ also allows matching arbitrary modi-
fiers (e.g., final, synchronized or transient), exception clauses, and Java annota-
tions. MJ has a set of conventions to handle modifier, exception, and annotation
matching so that patterns are not burdened with unnecessary detail—e.g., for
most modifiers, a pattern that does not explicitly mention them matches re-
gardless of their presence. We do not elaborate further on these aspects of the
language, as they represent merely engineering conveniences and are orthogo-
nal to the main MJ insights: the morphing language features, combined with a
modular type-checking approach.

2.2 Applications

MJ opens the door for expressing a large number of useful idioms in a general,
reusable way. This is the power of morphing features: we can shape a generic
class or interface according to properties of the members of the type it is param-
eterized with. The morphing approach is similar to reflection, yet all reasoning
is performed statically, there is syntax support for easily creating new fields and
methods, and type safety is statically guaranteed.

Default Class. Consider a general “default implementation” class that adapts
its contents to any interface used as a type parameter. The class implements
all methods in the interface, with each method implementation returning a de-
fault value. This functionality is particularly useful for testing purposes—e.g.,
in the context of an application framework (where parts of the hierarchy will
be implemented only by the end user), in uses of the Strategy pattern [12] with
“neutral” strategies, etc. (Note that keyword throws in the pattern does not
prevent methods with no exceptions from being matched, since E is declared to
match a possibly-zero length vector of types.)
class DefaultImpl<interface T> implements T {

// For each method returning a non-primitive type, make it return null

<R extends Object,A*,Ex>[m] for(R m (A) throws E : T.methods)

public Rm (A a) throws E { return null; }

// For each method returning a primitive type, return a default value
<Ax,Ex>[m]for(int m (A) throws E : T.methods)
public int m (A a) throws E { return 0; }

... // repeat the above for each primitive return type.
// For each method returning void, simply do nothing.

<A%,Ex>[m] for (void m (A) throws E : T.methods)
public void m (A a) throws E { }

One can easily think of ways to enrich the above example with more complex
default behavior, e.g., returning random values or calling constructor methods,

instead of using statically determined default values. The essence of the tech-
nique, however, is in the iteration over existing methods and special handling
of each case of return type. This is only possible because of MJ’s morphing
capabilities. In practice, random testing systems often implement very similar
functionality (e.g., [8]) using unsafe run-time reflection. Errors in the reflective
or code generating logic are thus not caught until they are triggered by the right
combination of inputs, unlike in the MJ case.

Sort-by. A common scenario in data structure libraries is that of supporting
sorting according to multiple fields of a type. Although one can use a generic
sorting routine that accepts a comparison function, the comparison function
needs to be custom-written for each field of a type that we are interested in.
Instead, a simpler solution is to morph comparison functions based on the fields
of a type. Consider the following implementation of an ArrayList, modeled after
the ArrayList class in the Java Collections Framework:

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
...// ArrayList fields and methods.

// For each Comparable field of E, declare a sortBy method
<F extends Comparable<F>>[f]for(public F f : E.fields)
public void sortBy#f () {
Collections.sort(this,
new Comparator<E> () {
public int compare(E el, E e2) {
return el.f.compareTo(e2.f);
}
s

ArrayList<E> supports a method sortBy#f for every field £ of type E. The
power of the above code does not have to do with comparing elements of a
certain type (this can be done with existing Java generics facilities), but with
calling the comparison code on the exact fields that need it. For instance, a
crucial part that is not expressible with conventional techniques is the code
el.f.compareTo(e2.f), for any field f.

The examples above illustrate the power of MJ’s morphing features. Yet more
examples from the static reflection or generic aspects literature [10, 11, 13, 19] can
be viewed as instances of morphing and can be expressed in MJ. For instance,
the CTR work [11] allows the user to express a “transform” that iterates over
methods of a class that have a @UnitTestEntry annotation and generate code to
call all such methods while logging the unit test results. The same example can
be expressed in MJ, with several advantages over CTR: MJ is better integrated
in the language, using generic classes instead of a “transform” concept; MJ is
a more expressive language, e.g., allowing matching methods with an arbitrary
number and types of arguments; MJ offers much stronger guarantees of modular
type safety, as its type system detects the possibility of conflicting definitions

(CTR only concentrates on preventing references to undefined entities) and we
offer a proof of type soundness.

3 Type System: A Casual Discussion

Higher variability always introduces complexity in type systems. For instance,
polymorphic types require more sophisticated type systems than monomorphic
types, because polymorphic types can reference type “variables”, whose exact
values are unknown at the definition site of the polymorphic code. In MJ, in
addition to type variables, there are also name variables—declarations and ref-
erences can use names reflectively retrieved from type variables. Thus, the exact
values of these names are not known when writing a generic class. Yet, the au-
thor of the generic class needs to have some confidence that his/her code will
work correctly with any parameterization in its intended domain. The job of
MJ’s type system is to ensure that generic code does not introduce static errors,
for any type parameter that satisfies the author’s stated assumptions. Pattern
matching type and name variables present two challenges: 1) how do we deter-
mine that declarations made with name variables are unique, i.e., there are no
naming conflicts, and 2) how do we determine that references always refer to
declared members and are well-typed, when we know neither the exact names
of the members referenced, or the exact names of the members declared. In this
section, we present through examples the main problems and insights related to
MJ’s modular type checking.

3.1 Uniqueness of Declarations
Simple case: Consider a simple MJ class:

class CopyMethods<X> {
<R,A*>[m] for(R m (A) : X.methods)
Rm@Aa { ...}

}

CopyMethods<X>’s methods are declared within one reflective block, which
iterates over all the methods of type parameter X. For each method returning a
non-void type, a method with the same signature is declared for CopyMethods<X>.

How do we guarantee that, given any X, CopyMethods<X> has unique method
declarations (i.e., each method is uniquely identified by its (name, argument
types) tuple)? Observe that X can only be instantiated with another well-formed
type (the base case being Object), and all well-formed types have unique method
declarations. Thus, if a type merely copies the method signatures of another well-
formed type, as CopyMethods<X> does, it is guaranteed to have unique method
signatures, as well. The same principle also applies to reflective field declarations.

It is important to make sure that reflective declarations copy all the uniquely
identifying parts of a method or field. For example, the uniquely identifying parts
of a method are its name together with its argument types. Thus, a reflective
method declaration that only copies either name or argument types would not
be well-typed. For example:

class CopyMethodsWrong<X> {
<R,A*>[m] for(R m (A) : X.methods)
Rm O {2

}

The reflective declaration in CopyMethodsWrong<X> only copies the return type
and the name of the methods of a well-formed type. This would cause an error
if instantiated with a type with an overloaded method:

class Overloaded {
int bar (int a);
int bar (String s);
}

CopyMethodsWrong<Overloaded> would have two methods, both named bar
taking no arguments.

Beyond Copy and Paste: Morphing of classes and interfaces is not restricted to
copying the members of other types. Matched type and name variables can be
used freely in reflective declarations and statements. For example:

class ChangeArgType<X> {
<R,A extends Object>[m] for (R m (A) : X.methods)
Rm (List<A> a) { /* do for all elements */ ... }
}

In ChangeArgType<X>, for each method of X that takes one non-primitive type
argument A and returns a non-void type R, a method with the same name and
return type is declared. However, instead of taking the same argument type,
this method takes a List instantiated with the original argument type. Even
though ChangeArgType<X> does not copy X’s method signatures exactly, we can
still guarantee that all methods of ChangeArgType<X> have unique signatures, no
matter what X is. The key is that a reflective declaration can manipulate the
uniquely identifying parts of a method, (i.e., name and argument types), by
using them in type (or name) compositions, as long as these parts remain in the
uniquely identifying parts of the new declaration. The following is an example
of an illegal manipulation of types:
class IllegalChange<X> {

<R,A>[m] for (Rm (A) : X.methods)
Am(Ra){...7}

In the above example, the uniquely identifying part of X’s method is no longer
the uniquely identifying part of IllegalChange<X>’s method: the argument type
of X’s method is no longer part of the argument type of IllegalChange<X>’s
method. IllegalChange<Overloaded> (using the Overloaded class defined above)
will cause an error in the generated code.

Multiple Reflective Blocks: We have discussed how to determine uniqueness
within one reflective block. When there are multiple reflective blocks in the same
type declaration, we need to guarantee that the declarations in one block do not
conflict with the declarations in another block. One way to accomplish this is to
guarantee that the blocks have iterators that produce disjoint declaration ranges.

Recall that the reflective range of an iterator is the set of entities it iter-
ates over. Accordingly, we define the declaration range of an iterator to be the
set of declarations it produces. Two ranges are disjoint if they contain no com-
mon members. Consider the following MJ class with two reflective blocks whose
declaration ranges are disjoint:
class TwoBlocks<X> {

<R>[m] for (R m (String) : X.methods)
Rm (String a) { ... }

<R>[m] for (R m (Number) : X.methods)
R m (Number a) { ... }

The first block’s reflective range contains all methods of X that take one argu-
ment of type String. The second block’s reflective range contains all methods of
X that take one argument of type Number. Thus, no methods in the first range can
possibly be in the second range, and vice versa. Just as in previous examples, the
uniqueness of entities in the reflective ranges implies the uniqueness of entities in
the declaration ranges (since these use the same (name, argument types) tuple).
Once we have guaranteed that declarations are unique both within and across
reflective blocks, we can guarantee that all declarations within TwoBlocks<X> are
unique, no matter what X is.

When using type variables as components of other types, disjointness is often
hard to establish. Consider the following example:
class ManipulationError<X> {

<R>[m] for (R m (List<X>) : X.methods)
Rm (List<X> a) { ... }

<R>[m] for (R m (X) : X.methods)
Rm (List<X> a) { ... }
}

In the two reflective blocks of ManipulationError<X>, different manipulations
are applied to the uniquely identifying parts—in the first block, no manipulation
is applied, while in the second block, the argument type is changed to List<X>
from X. Even though the two reflective blocks have disjoint iteration ranges, they
do not have disjoint declaration ranges. One instantiation that would cause a
static error is the following:
class Overloaded2 {

int m1 (List<Overloaded2> a) { ... }
int m1 (Overloaded2 a) { ... }
}

ManipulationError<Overloaded2> would contain two methods named m1, both
taking argument List<Overloaded2>.

In general, we can guarantee the uniqueness of declarations across reflective
blocks by proving either type signature or name uniqueness. A general way to
establish the uniqueness of declarations is by using unique static prefixes on
names. (For static prefixes to be uniquely identifying, they must not be prefixes
of each other.) For instance, our earlier example can be rewritten correctly as:

class Manipulation<X> {
<R>[m] for (R m (List<X>) : X.methods)
R list#m (List<X> a) { ... }

<R>[m] for (R m (X) : X.methods)
R nolist#m (List<X> a) { ... }
}

Reflective and Regular Methods Together: Declaration conflicts can also occur
when a class has both regular and reflectively declared members. For example, in
the following class declaration, we cannot guarantee that the methods declared
in the reflective block do not conflict with method int foo().

class Foo<X> {
int foo O { ... }

<R,A*>[m]for (Rm (A) : X.methods)
Rm(Aa { ... 3%}
}

Just as in the case of multiple iterators, the main issue is establishing the
disjointness of declaration ranges, with the regular methods acting as a constant
declaration range. Again, the easiest way to guarantee disjointness is through
static prefixes such that all declarations produced by the reflective iterator have
names distinct from foo.

Proper Method Overriding and Mixins: Proper overriding means that a subtype
should not declare a method with the same name and arguments as a method in a
supertype, but a non-covariant return type. Ensuring proper method overriding
is again a special case of declaration range disjointness.

One case that deserves some discussion is that of a type variable used as
a supertype. (In case the type is a class, it is implicitly assumed to be non-
final.) This is sometimes called a mizin pattern [5,22]. Since the supertype could
potentially be any type, we have no way of knowing its declarations. For instance,
the following class is unsafe and will trigger a type error, as there is no guarantee
that the superclass does not already contain an incompatible method foo.
class C<class T> extends T {

int foo) { ... }

Static prefixes are similarly insufficient to guarantee that subtype methods
do not conflict with supertype methods. As a result, any legal type extending its
type parameter can contain no members other than reflective iterators over its
supertype that declare overriding versions for (some subset of) the supertype’s
methods.

3.2 Validity of References

Another challenge of modular type checking for a morphing language is to ensure
the validity of references. We use the term “validity” to refer to the property
that a referenced entity has a definition, and its use is well-typed. The following
example demonstrates the complexities in checking reference validity in MJ:

class Reference<X> {
Declaration<X> dx;
... // code to set dx field
<U*>[n] for(String n (U) : X.methods)
void n (U a) { dx.n(a); }
}

class Declaration<Y> {
<V,Wx>[m] for(Vm (W) : Y.methods)
voidm (Wa) { ...}
}
We would like to check the validity of method invocation dx.n(a). There are
multiple unknowns in this invocation that make checking its validity difficult:

— dx has type Declaration<X>, which has reflectively declared methods. We
don’t know statically these methods’ names, argument types, or return types.

— the name of the method being invoked, n, is a name variable, reflectively
matched to the method names in X, which is a type variable. Again, we do
not know what these names may be.

— the type of the argument, a, is another type variable, U.

The intuition behind the checking logic is that if for every method n in X that
takes any argument types U, and returns String (i.e., for every method in the
range of the reflective block in Reference<x>) there is a method in Declaration<X>
with the same name, taking the same types of arguments, then this reference
is valid. The key to solving this problem is determining range subsumption. A
range R; subsumes another range Ro if all the entities in Ry are also in R;. We
have already seen reflective ranges of an iterator and a declaration. We can easily
expand the concept of range to other syntactic entities, such as arbitrary names
and types. The range of a pattern matching type variable consists of all the
types it matches in a given reflective iterator. Non-pattern-matching types have
ranges with one element (themselves). The range of a name variable consists of
all the names it matches in a given reflective iterator.

To determine the validity of dx.n(a), we need to determine that the range
of n in Reference<X> is subsumed by the declaration range of methods in
Declaration<X>, and the range of U, the actual argument type, is subsumed
by the range of the formal argument type for methods in Declaration<X>. The
range of n in Reference<X> consists of the names of methods in X that return a
String type. The method names in Declaration<X> are the names of all meth-
ods in X, regardless of return type. Thus, the latter range subsumes the former.
This guarantees that Declaration<X> does have a method matching each n. Sim-
ilarly, the range of U consists of the argument types of methods in X that return
String. The range of the argument types of methods in Declaration<X> consists
of the argument types of all methods in X. The latter range subsumes the former.
Therefore, we conclude that the call dx.n(a) is well-typed.

Subsumption of ranges in the MJ type system is checked by unification of
names and type variables in the reflective predicates, followed by checking of
type bounds (i.e., the known supertypes of type variables) for compatibility.
The next section formalizes this type checking approach more precisely.

4 Formalization

We formalize a core subset of MJ’s features. This formalization (FMJ) is based
on the FGJ [16] formalism, with differences (other than the simple addition of
our extra environment, A) highlighted in'gray . Figures in which all rules are new

to our formalism (Figures 4,5) are not highlighted at all, for better readability.
4.1 Syntax

The syntax of FMJ is presented in Figure 1. We adopt many of the notational
conventions of FGJ: C,D denote constant class names; X,Y denote type variables;
N,P,Q,R denote non-variable types; S,T,U,V,W denote types; £ denotes field names;
m denotes non-variable method names; x,y denote argument names. In addition,
we use u or v to denote name variables, while n denotes either variable or non-
variable names.

We use the shorthand T for a sequence of types Tg,T1,...,T,, and X for a
sequence of unique variables xq,x1, .. .,%,. We use : for sequence concatenation.
For example, S:T is a sequence that begins with S, followed by T. We use € to
mean “is a member of a sequence” (in addition to set membership). Thus, TET
means that T is in the sequence T. We use _ or ... for values of no particular
significance to a rule. We use < and 1 as shorthands for the keywords extends
and return, respectively. Note that all classes must declare a superclass, which
can be Object.

The goal of our formalization is to show that a type system in which both
declarations and references can be made by reflecting over an unknown type can
be sound. To keep the formalism comprehensible and concentrate on the core
question, we left out some of MJ’s language features. Most notable of these fea-
tures is the ability to add static prefixes to name variables. Leaving this feature
out prevents us from formalizing the declaration of both static and reflective
methods in the same class or through inheritance, and from formalizing reflec-
tive iteration over different type variables.! We also do not formalize non-variable
types as reflective parameters. This is a far less interesting case than reflecting
over type variables, since all types and names are statically known. The zero or
more length type vectors T* are also not formalized, without loss of generality.
These type vectors are a matching convenience. They are treated as single types
where they are used. Thus, safety issues regarding declaration and reference
using vector types are covered by regular, non-vector types. Additionally, our
formalism only includes reflectively declared methods, not fields—type checking
reflectively declared fields is a strict adaptation of the techniques for checking
methods. Lastly, polymorphic methods are not formalized.

Just like in FGJ, a program in FMJ is an (e, CT) pair, where e is an FMJ
expression, and CT is the class table. We place the same conditions on C'T as

! We could formalize the declaration of static and reflective methods in the same
class (or through inheritance), but it would only be well-formed if the reflective
methods are defined using constant method names (instead of name variables), and
the constant names are different from all statically declared method names. This is
technically uninteresting, and we leave it out of our formalism for simplicity. The
same is true for formalizing reflective iteration over different type variables.

FGJ does. Every class declaration class C... has an entry in C'T; Object is
not in CT. In addition, the subtyping relation derived from CT must be acyclic,
and the sequence of ancestors of every instantiation type is finite. (The last two
properties can be checked with the algorithm of [1] in the presence of mixins.)

T ::=X | N
N ::=C<T>
CL ::= class C<X<lN>« T {T f; M}
| class C<X<l>< T {T f; M}

M ::=Tm (TX {fe;}

9N ::=<Y<P>[u] for(M:X.methods) Un (U X) {le;}
M ::

e

Va (V)
x| e.f| e.n(e) | new C<T>(e) | (De

Fig. 1. Syntax

4.2 Typing Judgments

The main typing rules of FMJ are presented in Figure 2, with auxiliary defi-
nitions presented in Figure 3, 4, 5, and 6. The core of this type system is in
determining range subsumption and disjointness. Thus, we begin our discussion
with an overview of the general typing rules, and follow with a detailed expla-
nation of subsumes and disjoint, both defined in Figure 4.

There are three environments in our typing judgments:

— A: Type environment. A maps type variables to their upper bounds.

Type variables can be introduced by class declarations (e.g., class C<X<lN>
. introduces type variables X), or by reflective iterator definitions (e.g.,

<Y<P>[@] for(...) introduces type variables Y).

— I': Variable environment. I" maps variables (e.g., x) to their types.

— A: Reflective iteration environment. A is introduced with each reflective
block. A maps a type T to a tuple of (Y, @, M). T is the reflective parameter
whose methods form the reflective set. M is the pattern used to filter the
reflective set. Y and U are the pattern matching type and name variables in-
troduced for use in M and the body of the reflective block. Since our syntax
does not allow nested reflective loops, A contains at most one mapping.

A fourth environment, M, is sometimes used in the auxiliary definitions.
M maps pattern matching type variables (e.g., those introduced by a reflective
block) to other types, which may be pattern matching type variables, or non-
pattern-matching types.

We use the — symbol for mappings in the environments. For example,
A=... X—C<T> means that A(X)=C<T>. We require every type variable to
be bounded by a non-variable type. The function bound(T) returns the up-
per bound of type T in A. bound(N)=N, if N is not a type variable. And
bound A (X)=bound A (S), where A(X)=S.

In order to keep our type rules manageable, we make two simplifying as-
sumptions. First, to avoid burdening our rules with renamings, we assume that

pattern matching type variables have globally unique names (i.e., are distinct
from pattern matching type variables in a different reflective environment, as
well as from non-pattern-matching type variables). Secondly, we assume that all
pattern matching type and name variables introduced by a reflective block are
bound (i.e., used) in the corresponding pattern. Checking this property is easy
and purely syntactic.

Uniqueness of Names: One of the main challenges of this type system is
guaranteeing the uniqueness of declaration names. The uniqueness guarantee is
simpler in our formalism than discussed in Section 3, since, in FMJ, a class can
declare either static or reflective methods, but not both. Thus, we do not have to
consider the case when static and reflective names conflict. We do, however, have
to make sure that reflectively declared names do not conflict with each other.
Rules T-METH-R and T-CLASS-R place conditions on well-typed methods and
classes to prevent such naming conflicts.

T-METH-R ensures that methods declared within one reflective block should
not conflict with 1) each other, and 2) methods in the superclass (i.e., there
is proper overriding). The first condition is partly guaranteed by our syntax: a
reflectively declared method must have the same name as the name in the method
pattern for its enclosing reflective block.? Since a well-formed class can only be
instantiated with other well-formed classes (WF-CLASS), and all well-formed
classes have uniquely declared method names, we can be sure that method names
reflectively retrieved from any type parameter through the pattern are unique.

The second condition is enforced using override (Figure 3). override(n, T,
U—Up) determines whether method n, defined in some subclass of T with type
signature U—Ug, properly overrides method n in T. If method n exists in T, it must
have the exact same argument and return types as n in the subclass.? Addition-
ally, the reflective range of n in the subclass must be either completely subsumed
by one of T’s reflective ranges, or disjoint from all the reflective ranges of T (and,
transitively, T’s superclasses). This condition is enforced using A FvalidRange (A,
T) (Figure 4).

T-CLASS-R ensures that the reflective blocks within a well-typed class do
not have declarations that conflict with each other. There are two key condi-
tions: 1) all reflective blocks have the same reflective parameter (Xj), and 2) the
ranges of reflective blocks are disjoint pairwise. Since all blocks reflect over the
same reflective parameter, which itself has unique method names, and no blocks
overlap in their reflective ranges, the names used across all blocks are unique,
as well. T-CLASS-R relies on the definition of disjoint to handle much of its
complexity.

2 This is a slightly different requirement than what is necessary in the implementa-
tion. In the formalization, there is no method name overloading, hence the uniquely
identifying part of a method consists of its name only.

3 Again, this is a simplification inherited from the FGJ formalism. In practice, one
can overload method names with different argument types. We also made an extra
simplification over FGJ: FGJ allows a covariant return type for overriding methods,
whereas we disallow it to simplify the pattern matching rules in Figure 5.

Expression typing:

AT Abx € I'(x) (T-VAR)
A;T; Abeg€Ty fields(bound A(To)) =T £
AT Abeg. . £,€T; (T-FIELD)
A; s Abeg€Ty A; Abmtype(n, To) =T—T A;I;AFees AFRS<T
A; T Abeo.n(@)€ET (T-INVK)
AFCT> ok fields(C<T>) =U £ A;I';AteeS AFRS<T
A; Ty Abnew C<T>(e) €C<T> (T-NEW)

A; s AbepeTy AFRT ok
A Fbound A(To)<:bounda(T) or A kFbounda(T)<:bounda(To)
AT AH(T)eo€T (T-CAST)
A; s AbepgeTy AFRT ok
Afbound A(To)<:bound A(T) and Af-bound a(T)<:bound A (To)
AT AH(T)eo€T (T-SCAST)

Method typing:
A=X<:N ['=%—T,this—C<X> A=0
AFT,To ok A;I';Aleq €S9 A FSp<:To
CT(C)=class C<X<N>d T {...} A;Atroverride(m, T, T—To))
To m (T X) { Teo; } OK IN C<X<N> (T-METH-S)

A=X<NY<:P I'=x—V,this—C<X> A=X;—(Y, @, Uy n (U))
X; €X A FP,Up, U, Vo,V ok A; T'; A Fe€Sy A FSp<:Up
CT(C)=class C<X<N><T { ... } A; Atoverride(n, T, V—Vp)

<Y<P>[ulfor(Up n (U):X;.methods) Vo n (V X) {le;} OK IN C<X<N> (T-METH-R)

Class typing:
A=X<:N AFNTT ok M OK IN C<X<N>
class C<X<aN>4 T { T f; M} OK (T-CLASS-S)
A=X<:N AFNTT ok 9 0K IN C<XaN> X, €X
for all 90t;, 0, €M,
IM,;=<Y<P>[ulfor (Uy n; (U): Xi.methods)
9N ;=<Z<Q>[V]for (Vo n; (V): Xj.methods)
Aizxk’—)<Y, u, Up n; (ﬁ)) AjZXk*—)<z, v, Vo nj (V)>
implies A, Y<:P,Z<:QFdisjoint ((Ai,n: Xi), (A;,n;,Xk))
class C<X<N><T { T f; 9} OK (T-CLASS-R)

Well-formed types:
X € dom(A)

A FObject ok (WF-OBJECT) S (WF-VAR)
CT(C)=class C<X<N>< T { ...} AFT ok AFT<:T/XN
A FC<T> ok (WF-CLASS)

Fig. 2. Typing Rules

Method type lookup:

AX)={, @, Up n (0))
A; A Emitype(n, X)=U—Ug (MT-VAR-R)

XZ dom(A) or AX)=({, w, Vo n' (D))
A; A Emtype(n, bound A (X))=U—Uj
A; A Emtype(n, X) =U—Uy (MT-VAR-S)

CT(C)=class C<X<N><a T {... M}
Atconstn(n) implies Uy n (U %) {le;}eM
Affconstn(n) implies A(C<T>)=(Y, T, Up n (T))
A; A -mitype(n, C<T>) =[T/X](U—Up) (MT-CLASS-S)

CT(C)=class C<X<aN><T {... 0}
<Y<P>[@1for(Up n’ (U):X;.methods) Sp n' (S ®) {le;} € M
A'=A[T/X](Y<P) A'=[T/X]Xi—(¥, W, Up n' @))
A'sMt-subsumes((A' n',T;), (An,T;))
A; A Emitype(n, C<T>)=[T/X|(maptype,,(S)—maptype,;(So)) (MT-CLASS-R)

CT(C)=class C<X<N><a T {... M}
(Atconstn(n) n & M) or (Afconstn(n) C<T>¢dom(A))
A; A Fmtype(n, C<T>) = mtype(n, [T/X|T>) (MT-SUPER-S)

CT(C)=class C<X<aN><T {... 9}
for all OMeM,
IM=<Y<P>[W]1for(Uy n’ (U):X;.methods) ...
N=A[TREI<P) A=K (T, T, Uo ' (T)))
implies A’Fdisjoint((A’' ', T;), (A,n,T;))
A; A Emtype(n, C<T>) =mitype(n, [T/X]T) (MT-SUPER-R)

Valid method overriding:
A FvalidRange(A, T) A; A Fmtype(n, T)=V—V, implies V=U Vo=Up
A; A Foverride(n, T, U—Ug)

Field lookup:
fields(Object) = o
CT(C)=class C<X<N>4T {S £f; ... } fields(bounda ([T/X]T))=D g
fields(C<T>) =D g,[T/XIS £

Fig. 3. Method type lookup, overriding and field lookup.

Method range subsumption:

AFT<:Ty Y=pmVars(A:)
A ArEmitype(ni, T1)=U—Uy A;Ask-mitype(ns, T2)=V—V,
A MY tunify(Uo:U, Vo:V) (A2,n2)Ciq(A1,n1)
A;Mbsubsumes((A1,n1,T1), (A2,n2,T2))

Method range disjointness:

Ay Feonstn(ny) Az Fconstn(n2) ni #ns
A "diSjOint(<A1,n1,T1>, <A2,H2,T2>) (DS—NAME)

A;AiEmtype(ni, Ti1)=U—Uy A;Ask-mitype(ns, T2)=V—V
Albzconstn(nl) or Agb‘constn(ng) AFT1<:To or AFT2<:T1
Y=pmVars(A1) Z=pmVars(As)
for no M, A;M;Y,Ztunify(Uo:U, Vo:V)
A Fdisjoint((Al,nl,T1>7 <A27n27T2>) (DS-TYPE)

Subtype range validity:
A FwoalidRange(D, T) (VR-NOREFL) A FvalidRange(X—(...), X) (VR-VAR)

CT(C)=class C<X<l><S { ... 9}
A bFvalidRange(A, [T/X]S) A=T—{(_n,.)

for all 9MeM

M=<Z<Q>[@'] for (So n’ (S) : X;.methods)

A'=AZ<[T/XJq A'=[T/X](Xi—~(Z, T, So n' ()))
o Ay M+ subsumes({A',n’,T;), (A,n,T)) for some M or
implies {A b disjoint({A’,n',T;), (A,n,T))

A FvalidRange (A, C<T>) (VR-CLASS)

Identifier subrange rules:

Az b constn(nz) implies (A; b constn(ni) and ni=ns)
(A1, n1)Ciq(A2, no)

Constant name:
A=X—(_1,.) implies n¢u

A Fconstn(n) (N-CONST)
Pattern matching type variables of A:
pmVars(0)=e pmVars(T— (Y, ...)=Y)
Type mapping application:
Tdom (M) M (X)=T
maptype »;(T)=T (TM-VARI) maptype ;(X)=maptype ,,(T) (TM-VAR2)

maptype »;(T)=S
maptype 5, (C<T>)=C<S> (TM-CLASS)

Fig. 4. Reflection related auxiliary functions.

Type Unification:

M ¥+-sunify(T, S) for all Y;€Y, M(Y;)=T implies A;Y-T<:Y;
A; M;Y-tunify (T, S)

Pattern matching rules:

AYHT=:T (PM-EQ)
AYFT<:S
AYHC<T><:C<S> (PM-CLASS)
YEY TEY A YRT<:[T/Y]bounda (Y)
AYFT=:Y (PM-VAR1)
YEY TgY ART<:T AYHT <:bounda(Y)
AYET<:Y (PM-VAR2)

A; Y F [Y1/Yo]bounda (Y2) <: Y1 or
A; Y- [YQ/Y1] bound, (Y1) <:Y,
A;?"Yl <:Yo (PM—VAR?))

Y. €Y Yo €Y {

Fig. 5. Type unification and pattern matching rules.

Valid Invocations: A second challenge in this type system is the validity of
references to reflectively declared methods. T-INVK (Figure 2) specifies condi-
tions for a well-typed method invocation. It uses A; A Fmtype(n, T) (Figure 3)
to retrieve the type of method n in T, under the assumptions of A and A. We
next highlight the mtype rules.

MT-VAR-R covers the case when we are looking for the type of method n in
a type variable X, where X is the reflective parameter for the current reflective
environment A. If the method pattern for the current reflective iterator uses n
as its method name, mtype(n, X) is simply the type specified by the method
pattern. MT-VAR-S covers the case when method n is not a method covered by
the method pattern of the current reflective environment. In this case, we look
for the type of n in the non-variable bound of X.

Rules MT-CLASS-S and MT-SUPER-S apply when we look for n in C<T>,
where C<X> has only statically declared methods. MT-CLASS-S states that if n is
not a name variable used in the current reflective environment A (as determined
by A Fconstn(n), Figure 4), and it is the name of a statically declared method in
C<X>, then mtype is defined to be the statically declared type of n, with proper
type substitutions of T for X. However, if n is a name variable in A, and C<T>
is the type that A iterates over, then the type of method covered by this name
variable is exactly the type defined in the method pattern of A. MT-SUPER-S
states that the type of n in C<T> is the same as its type in C<T>’s superclass, T,
when n is a constant name, but not the name of a statically defined method in
C<X>, or when n is a name variable, but C<T> is not the type A iterates over.

Rules MT-CLASS-R and MT-SUPER-R apply when we look for n in C<T>,
where C<X> has reflectively declared methods. As we explained in Section 3, the
key in determining whether a reflectively declared method exists is in determin-

Subtyping rules:
AFT<:T (S-REFL) AFRX < A(X) (S-VAR)
AFS<:T AFT<U CT(C):class C<X<N>< T { . }
AF 8<:U (S-TRANS) A FC<T> <: [T/X|T (S-CLASS)

Fig. 6. Subtyping rules.

ing that the range of n in the reference reflective environment is subsumed by
the range of some name in the declaration reflective environment. If subsump-
tion holds, the type of n is simply the type of the method whose name subsumes
n, with the proper type substitutions of [T/X], as well as the substitutions in
mapping environment M. (The substitution for type T using M is defined as
maptype ,;(T), in Figure 4. Tt is a straightforward application of type mappings.)
MT-SUPER-R says that when the range of n in A is disjoint from every declared
method range in C<T>, n has the same type as it does in C<T>’s superclass.

Subsumption: A;Mbsubsumes({A;,n1,T1), (A2,n2,T2)), defined in Figure 4,
determines whether, under the assumptions of A and M, the range of methods
represented by n; in type T; subsumes the range of methods represented by ns
in type T, under their respective reflective iteration environments.

There are three conditions for subsumption. First, T; must be a subtype of
Ts. It only makes sense to compare ranges of methods if they are methods coming
from the same class. Additionally, in defining reflective iterators, we interpret
methods of a class (e.g., X.methods) to be the methods declared in the class and
all of its superclasses, transitively. Thus, a subclass has more methods than its
superclass, potentially yielding a larger range.

Secondly, the name n; must be less strict than the name n,. Since all name
variables can match any name, the only restriction on ns is when n; is a constant.
In this case, no must be equal to n; (see C,4 in Figure 4).

Lastly, M must be a one-way unification mapping that maps the type sig-
nature of the larger range (U—Up) onto that of the smaller range (V—Vg). This
is a one-way unification because we want to ensure that one range is larger
than the other and not just that their intersection is non-empty. subsumes uses
A; M Y-tunify (Ug:U, Vo:V) to determine whether M is a proper unification map-
ping. We discuss tunify in detail shortly. But the main point to note is that
its rules are quite general, and determine whether M is a two-way unification
between its arguments, using the given pattern matching type variables. We use
tunify to check one-way unification by using only Y (the pattern matching type
variables in the larger range) as the variables with respect to unification, ignoring
the pattern matching type variables of Ao, which are considered constants.

Disjointness: disjoint (Figure 4) takes the same arguments as subsumes. The
goal of disjoint is to determine the non-overlap of the names of the two method
ranges. DS-NAME describes the easy case, when both ranges use constant names
in their method patterns, but the names are not equal to each other. DS-TYPE
describes disjointness conditions when at least one of the names is not a constant.

First, it stipulates that there can be no unification mapping between the types of
the two method ranges. Here again, we use tunify. However, note that we pass the
pattern matching type variables from both reflective ranges (Y and Z) to tunify—
we are looking for a two-way unification, in contrast to the one-way unification
that subsumes looks for. Lack of unification between the two type signatures
means that there is no method whose type signature is in both ranges. However,
this is not enough to determine the disjunction of the names covered by these
ranges—if the methods range over classes from completely different inheritance
hierarchies, they could have disjoint method types, but still the same names.
Thus, DS-TYPE requires that either T; be a subtype of To, or vice versa. If
methods from the same inheritance hierarchy have different types, then they
definitely have distinct names.

Unification: A;M;Y-tunify(T, S), defined in Figure 5, determines whether T
and S can be unified by unification mapping M, using Y as the pattern matching
type variables. A is the type environment under which Y, T, and S are prop-
erly defined. tunify first checks that M is a proper syntactic unifying mapping.
Syntactic unification is a common two-way unification such that, after the map-
ping is applied to T and S, the resulting type sequences T'and S’are syntactically
equivalent. The precise definition of sunify is elided for space reasons. Interested
readers can obtain the specifics from the technical report [14]. What syntactic
unification does not check, however, is whether a mapping from pattern match-
ing type variable Y to type T conforms to the bound of Y in A. Thus, tunify uses
the pattern matching relation, <:, to check that T can indeed be matched by Y.

The pattern matching relation, A;YFT<:S (Figure 5), holds if there exists a
type that can be matched by both T and S. Y are the pattern matching type
variables, and A is the type environment under which all types are well-formed.
The interesting case is in determining whether a non-pattern-matching type T
can be matched by a pattern matching type Y. The intuition is that T can be
matched by Y if it is within the bound of Y. This means that, with proper type
substitutions, either T can be matched by the bound of Y (PM-VARI), or T’s
superclass can be matched by the bound of Y (PM-VAR2). We use PM-VARS3 to
determine whether there is a type that can be matched by two pattern matching
type variables, Y; and Y5. The intuition is that if there exists a type that can
be matched by both bound A (Y1) and Yo (or bound A (Y2) and Yq), then there is
a type that can be matched by both Y; and Ys.

4.3 Soundness

We prove soundness using the familiar subject reduction and progress theorems.

Theorem 1 [Subject Reduction]: If A;T'; Ae€T ande — €, then A; I'; Ae’eS
and A FS<:T for some S.

Theorem 2 [Progress]: Let e be a well-typed expression. 1. If e has new
C<T>(e) .f as a subexpression, then fields(C<T>) = U £, and £ = ;. 2. If e
has new C<T>(e).m(d) as a subexpression, then mbody(m, C<T>) = (%, eq) and
x| = [d|.

In addition, we must prove a lemma regarding the uniqueness of names—can
there be multiple methods declared with the same name? A closer inspection of
the MT-CLASS-R rule shows that there appears to be some non-determinism:
the second condition of the rule specifies that one of the reflective blocks in 9t
makes the conditions that follow true. We prove in the following lemma that
there can only be one such 9 in class C:

Lemma 1 [Name Uniqueness]: If C<T> ok, CT(C)=class C<X<N><T { ... M},
then there can be at most one M, €M such that A; A Fmtype(n, C<T>)=U—U.

Full text of the proofs, reduction rules, and related functions are defined in
the technical report version of this paper[14].

5 Discussion

Design Discussion. MJ can be viewed as part of a general effort to bring meta-
programming constructs to mainstream programming languages, with smooth
integration of features and modular type checking guarantees. In this sense, it is
interesting to discuss MJ’s design and implementation decisions in comparison
with our other concurrent project: ¢J [15]. ¢J is an extension of Java with a static-
if construct, allowing the configuration of generic classes based on properties of
their type parameters. For instance, c¢J can express a List<X> class that imple-
ments Serializable only when its type parameter X implements Serializable.
cJ adds to Java a reflective “if”, whereas MJ adds a reflective “for”, as well
as the ability to create declarations with non-constant names. Thus, it should
not be a surprise that MJ is a more ambitious language with significantly more
complexity. This is reflected clearly in our design decisions. cJ is designed with
backward compatibility in mind, enabling an erasure-based translation. c¢J lan-
guage constructs can be “erased” producing regular Java code in a one-to-one
correspondence between cJ generic classes and Java generic classes. Addition-
ally, cJ interacts smoothly with advanced features in the Java type system, such
as variance [24,17] and polymorphic methods. In contrast, MJ takes a more
radical approach, favoring feature-richness and integration of ideas over back-
ward compatibility and implementation integration. This difference is most ev-
ident in MJ’s implementation, which employs an expansion-based translation.
MJ generic classes produce one regular non-generic Java class per instantiation.
This implementation approach is harder to support in conjunction with some of
Java’s features (e.g., dynamic loading) but yields more power—e.g., to express
mixins as generic subclasses. Furthermore, we have not concerned ourselves with
supporting features such as variance and polymorphic methods. Considering the
interaction of these features with MJ is part of future work. Overall, we do not
view MJ as a language extension that can be easily integrated in standard Java.
(After all, integrating with standard Java seems a near-hopeless proposition even
for more modest research proposals, as the Java language has matured and the
rate of change has decreased dramatically.) Instead, we view MJ as a more rad-
ical idea, intended to demonstrate the principles of morphing and to influence

future language designers. Our goal with MJ is to show the first morphing lan-
guage with a sound modular type checking system, and a smooth integration of
concepts in an object-oriented framework.

Contrast with Meta-Programming and AOP Tools. Generally, few language
mechanisms allow expressing what MJ does: writing one piece of code and hav-
ing it be applied to multiple methods with different signatures. In the past,
this has been the hallmark property of Meta-Object Protocols [9, 18] and later
Aspect-Oriented Programming [20]. Neither mechanism offers modular safety
guarantees, however. The same capabilities can be achieved with traditional re-
flection and program generation but with lower-level means of syntax-matching
and, again, no safety guarantees.

An interesting special case of program generation is staging languages such as
MetaML [23] and MetaOCaml [7]. These languages offer modular type safety: the
generated code is guaranteed correct for any input, if the generator type-checks.
Nevertheless, MetaML and MetaOCaml do not allow generating identifiers (e.g.,
names of variables) or types that are not constant. Generally, staging languages
target program specialization rather than full program generation: the program
must remain valid even when staging annotations are removed. It is interesting
that even recent meta-programming tools, such as Template Haskell [21] are
explicitly not modularly type safe—its authors acknowledge that they sacrifice
the MetaML guarantees for expressiveness.

6 Future Work and Conclusions

There are several interesting directions of further work on MJ. A major one is
the introduction of anti-patterns in addition to patterns. Several modular type
checking scenarios require not just matching all entities that satisfy a pattern,
but also ensuring that no entity exists that matches a certain other pattern.
Anti-patterns increase the expressiveness of a morphing language significantly.
For instance, they expand the possibilities for generating methods and fields
with guarantees that they will not conflict with existing members of a type. Our
introduction of anti-patterns will be based on the same type checking insights
as patterns, namely on checking of range disjointness and subsumption.
Overall, we consider MJ and the idea of morphing to be a significant step for-
ward in the expressiveness of modern programming languages. Morphing can be
viewed as an aspect-oriented technique, allowing the extension and adaptation of
existing code components, and enabling a single enhancement to affect multiple
code sites (e.g., all methods of a class, regardless of name). Yet morphing is also
deeply different from aspect-oriented programming, and can perhaps be seen as
a bridge between AOP and generic programming. Morphing does not introduce
functionality to unsuspecting code. Instead, it ensures that any extension is un-
der the full control of the programmer. The result of morphing is a new class or
interface, which the programmer is free to integrate in the application at will.
Morphing strives for smooth integration in the programming language, all the
way down to modular type checking. Thus, reasoning about morphed classes is

possible, unlike reasoning about and type checking of generic aspects, which can
typically only be done after their application to a specific code base. We thus
view morphing as an exciting new direction in programming language research
and MJ as an excellent ambassador of the approach.

Acknowledgments

This work was supported by the National Science Foundation under Grant No.
CCR-0238289. We thank the Eugene Running Company, Leon Trotsky, and Eu-
gene area pubs for inspiration. Opinions presented in this paper do not neces-
sarily reflect those of the NSF. Or of Leon Trotsky.

References

1.

10.

11.

E. Allen, J. Bannet, and R. Cartwright. A first-class approach to genericity. In
Proc. of the 18th annual ACM SIGPLAN conference on Object-oriented Program-
ming, Systems, Languages, and Applications, pages 96—114, Anaheim, CA, USA,
2003. ACM Press.

J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proc. of the
16th ACM SIGPLAN conference on Object Oriented Programming, Systems, Lan-
guages, and Applications, pages 31-42, Tampa Bay, FL, USA, 2001. ACM Press.
J. Baker and W. C. Hsieh. Maya: multiple-dispatch syntax extension in Java. In
Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 270-281, Berlin, Germany, 2002. ACM Press.

D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-
specific languages. In Proc. of the Fifth Intl. Conf. on Software Reuse, pages
143-153, Victoria, BC, Canada, 1998. IEEE.

G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA/ECOOP ’90:
Proc. of the European conference on object-oriented programming on Object Ori-
ented Programming Systems, Languages, and Applications, pages 303-311, Ottawa,
Canada, 1990. ACM Press.

B. Burke et al. JBoss AOP Web site, hitp://www.jboss.org/products/aop. Accessed
Apr. 2007.

C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage lan-
guages using ASTs, gensym, and reflection. In Proc. of the 2nd Intl. Conf. on
Generative Programming and Component Engineering, LNCS 2830, pages 57-76.
Springer-Verlag, 2003.

C. Csallner and Y. Smaragdakis. JCrasher: An automatic robustness tester for
Java. Software—Practice and Ezperience, 34(11):1025-1050, Sept. 2004.

. S. Danforth and I. R. Forman. Reflections on metaclass programming in SOM.

In Proc. of the 9th ACM SIGPLAN conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 440-452, New York, NY, USA, 1994.
ACM Press.

D. Draheim, C. Lutteroth, and G. Weber. A type system for reflective program gen-
erators. In Proc. of the 4th Intl. Conf. on Generative Programming and Component
Engineering, LNCS 3676, pages 327-341, Tallin, Estonia, 2005. Springer-Verlag.
M. Féhndrich, M. Carbin, and J. R. Larus. Reflective program generation with
patterns. In Proc. of the 5th Intl. conference on Generative Programming and
Component Engineering, pages 275284, Portland, OR, USA, 2006. ACM Press.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

23.

E. Gamma, R. Helm, and R. Johnson. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, 1995.

S. S. Huang, D. Zook, and Y. Smaragdakis. Statically safe program generation with
SafeGen. In Proc. of the 4th Intl. Conf. on Generative Programming and Com-
ponent Engineering, LNCS 3676, pages 309-326, Tallin, Estonia, 2005. Springer-

Verlag.
S. S. Huang, D. Zook, and Y. Smaragdakis. Morphing: Safely
shaping a class in the image of others. Technical report, 2006.

http://www.cc.gatech.edu/~ssh/mjfull.pdf.

S. S. Huang, D. Zook, and Y. Smaragdakis. ¢J: Enhancing Java with safe type con-
ditions. In Proc. of the 6th Intl. Conf. on Aspect-Oriented Software Development,
Vancouver, Canada, 2007. ACM Press.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In L. Meissner, editor, Proc. of the 14th ACM SIGPLAN con-
ference on Object-oriented Programming, Systems, Languages, and Applications,
volume 34(10), pages 132-146, 1999.

A. Igarashi and M. Viroli. Variant parametric types: A flexible subtyping scheme
for generics. ACM Trans. Program. Lang. Syst., 28(5):795-847, 2006.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of Aspect]. In Proc. of the 15th European Conf. on Object-Oriented
Programming, pages 327-353, London, UK, 2001. Springer-Verlag.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
Proc. of the 11th European Conf. on Object-Oriented Programming, volume 1241,
pages 220-242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

T. Sheard and S. P. Jones. Template meta-programming for Haskell. In Proc. of
the ACM SIGPLAN workshop on Haskell, pages 1-16, Pittsburgh, Pennsylvania,
2002. ACM Press.

Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In
Proc. of the 12th FEuropean Conf. on Object-Oriented Programming, pages 550-570.
Springer-Verlag LNCS 1445, 1998.

W. Taha and T. Sheard. Multi-stage programming with explicit annotations.
In Proc. of the 1997 ACM SIGPLAN symposium on Partial FEvaluation and
semantics-based Program Manipulation, pages 203-217, Amsterdam, The Nether-
lands, 1997. ACM Press.

M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahe, G. Bracha, and N. Gafter.
Adding wildcards to the java programming language. In Proc. of the 2004 ACM
Symposium on Applied Computing, pages 1289-1296, Nicosia, Cyprus, 2004. ACM
Press.

E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in Stratego/XT 0.9. In C. Lengauer, D. Batory, C. Consel, and M. Oder-
sky, editors, Domain-Specific Program Generation, pages 216—238. Springer-Verlag,
2004. LNCS 3016.

