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Abstract

Recently, language extensions have been proposed for dd\a¢a
to supportpattern-based reflective declaratiomhese extensions
introduce a disciplined form of meta-programming and aspec
oriented programming to mainstream languages: They allemm
bers of a class (i.e., fields and methods) to be declared tigaba
iterating over and pattern-matching on members of othessels
Such techniques, however, have been unable to safely exgires
ple, but common, idioms such as declaring getter and set#ér-m
ods for fields.

In this paper, we present a mechanism that addresses theflack
expressiveness in past work without sacrificing safety. @ah-
nique is based on the idea of nested patterns that elabdrate t
outer-most pattern with blocking or enabling conditionse ¥w-
plemented this mechanism in a language, MorphJ. We denatastr
the expressiveness of MorphJ with real-world applicatibmpar-
ticular, the MorphJ reimplementation of DSTM2, a softwaens-
actional memory library, reduces 1,107 lines of Java refle@nd
bytecode engineering library calls to just 374 lines of Marpode.

At the same time, the MorphJ solution is both high level arffdrsa
as MorphJ can separately type check generic classes arderatc ,
rors early. We present and formalize the MorphJ type sysaeri,
offer a type-checking algorithm.

Categories and Subject DescriptorsD.1.5 [Programming Tech-
nique§: Object-oriented Programming; D.3.1Pfjogramming
Languagep Formal Definitions and Theory; D.3.3Pfogram-
ming Languaggs Language Constructs and Features
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General Terms Languages

Keywords object-oriented programming, structural abstraction,
class morphing, aspect-oriented programming, meta-pnogring,
language extensions

1. Introduction

Consider the following task: how would you write a piece ofleo

that, givenany classx, returns another class that contains the exact

same methods as but logs each method’s return value? That is,

the code is a modular representation of the functionaligding”,

and abstracts over the exact methods it may be applied to.
Capturing this level of abstraction has traditionally bexy

possible with techniques such as meta-object protocols R&)O
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[17], aspect-oriented programming (AORJ], or various forms of
meta-programming (e.g., reflection and ad-hoc programrgéne
using quote primitives, string templates, or bytecode reewjing).
While just about any programmer can write a method that ltsgs i
return value, the techniques listed above are largely uoagh-
able. Additionally, these techniques bypass the guararttered
by the type system so that there is no pre-application gteeahat
the resulting code would be well-formed.

Recently, extensions have been proposkt 7] for Java and
C#, to bridge this gap between the lack of expressivenessin-m
stream languages, and the lack of type safety in the morecexot
techniques mentioned above. Both extensions introducé@nnaf
static (as oppose to runtime) iteration over fields or meshafda
class, interface, or type variable. A simple pattern laggua used
to match on the elements being iterated over. A declaratonbe
made for each element in the iteration, using pattern-neatetri-
ables. We call this type of declaratipattern-based reflective dec-
laration and the general techniquass morphing For example,
using MJ, the Java extension we introducedlid][ we can write
the following generic class:

class LogMe<class X> extends X {
<R,A*>[m] for ( public R m(A)
public R m (A a) {
R result = super.m(a);
System.out.println(result);
return result;

}

: X.methods )

}

This MJ generic class extends its own type parametéines
2-7 form areflective declaration blockiine 2 defines the range
of elements being iterated over; lines 3-7 are the methodgbei
declared oncéor eachelement in the iteration rang€he iteration
happens staticallyLine 2 says we want to iterate over all methods
of x that match the pattermptiblic R m (4)", wherer, 4, andm
are pattern variables (declared before the keywotd. r anda are
pattern type variables, wherematches any type exceptid, and
A, because of the notation inA’s declaration, matches a sequence
of types of any length, including zera.is a name variable, and
matches any identifier. Thus, this block iterates overpatic
methods ofx that take any number of arguments, and have non-
void returns. For each such method, it declares a method with
the same signature. For examplegMe<java.io.File> gives US
a version offile with all its methods’ return values logged. This
task can be similarly accomplished with Compile-Time Reitec
(CTR) [7], an extension proposed for C#.

MJ and CTR increase the expressiveness of their respective
base languages by providing a limited form of meta-programgm
through a familiar syntax accessible to the average progen
They additionally offer a level of static type safety thatheever
been achieved by mechanisms like MOPs, AOP, or various fofms
meta-programming. For instance, MJ preserves the sepgpde



checkability of Java generics: a generic class can be typekel
separately from the types it may be instantiated with, ancel:w
typed generic class will never introduce a type error inritganti-
ated form. Thus, the clagsgMe<x> is guaranteed to never contain
type errors, no matter whatis instantiated to.

However, simple pattern-based reflective declaration ire
pressive enough for many common tasks that are otherwise per
fectly suited for this type of mechanism.

Example 1: Consider the pesky problem of defining “getter”
methods for fields in a class. Currently, programmers detl this
by repeating the same boiler-plate code for each field. T¢esns
to be a task perfectly suited for pattern-based reflectictadation.
However, we cannot implement this in a type-safe way usin@ivJ
CTR. Consider the following attempt in MJ:

class AddGetter<class X> extends X {
<F>[f] for ( F £ : X.fields )
F get#f () { return super.f; }

}

AddGetter<x> defines a methodet#£ () for each fieldt in
type variablex. get#f denotes an identifier that begins with the
string “get”, followed by the identifier matched bg.! However,
AddGetter<X> iS not modularly type safe—we cannot guarantee
that no matter what is instantiated withaddGetter<x> is always
well-typed! Suppose we have class

class C {
Meal lunch; . // other methods.
boolean getlunch() { return isNoon() 7 true :

}

}

false;

AddGetter<C> contains methodMeal getlunch()”, which in-
correctly overrides methodbéolean getlunch()” in its super-
class,c. For this reason, the definition @fidGetter<x> does not
pass MJ's type-checking.

This is an error of under-specified requirements. The dafinit
of AddGetter<x> should clearly specify that it can only declare
methodget#f for those fieldg where a conflictingly defineget#£
does not already exist in However, the pattern-matching language
in MJ (or CTR) does not allow us to specify such a condition.
What we need is to placersegative existential conditioon each
field matched by the pattern: for all fieldsof x such that method
get#f () does not already exist i declare the methogkt#£ ().

Example 2: Consider how one would define a clagsr<x,y>,

which is a container for objectsandy of typesx andy, respec-
tively. For every nonroid method thatx andy have in common
(i.e., same method name and argument types)<x,y> should

plemented nested patterns in our language, MorphJ, anséaten
of MJ [14].2 Nested patterns make the following contributions:

* Nested patterns significantly enhance the expressiverfess o
pattern-based reflective declarations. Without nestett e,
languages like MJ and CTR are mostly limited to expressing
wrapper-like patternsg], such as the logging clagsgMe<x>.

* Nested patterns also form the basis for adding more featores
the MorphJ language, such as a staficand a statierrorif
statements. The static allows code to exist or not depend-
ing on the existence or absence of other members. The static
errorif acts as a type-cast: it allows the type system to assume
the existence or absence of a member, and, if the assumgtion i
violated, an instantiation-time error occurs.

We demonstrate the power of nested patterns with real-world
applications. We reimplemented parts of DSTM®][ a Java
software transactional library that heavily uses reflecaod
bytecode engineering (with BCEL2]) to transform sequential
classes into transactional ones. The MorphJ re-implertienta
replaces 1,107 lines of Java reflection and BCEL libraryscall
with 374 lines of MorphJ code. We also implemented a generic
class that provides default implementations for unimpletee
interface methods, for a combination of any class and any in-
terface. The current solutions to this problem are eithgiém
mented as extensions to the underlying language itselfser u
unsafe code generation with templates. We show in Se@tion
how the MorphJ implementations are easy to write, easy to un-
derstand, as well as type safe.

Nested patterns create additional challenges for typekatgec
We show the techniques involved to preserve the separate typ
checkability of generic classes in MorphJ. We formalize our
type system and prove it sound. We offer a decidable alguarith
for type-checking.

In the remainder of this paper, we start by introducing thetasy
and example usages of nested patterns in MorphJ (Segjion
We then show real-world applications implemented using ¥idr
(Section3). In Sectiord, we discuss the type-checking issues raised
by nested patterns and introduce our type rules in an informa
manner. We then formalize a core subset of MorphJ and présent
type rules in Sectio®. We continue with a discussion on related
work in Sectior6 and conclude with our grand-scheme view of the
evolution of programming languages and the role of Morptd an
other related mechanisms (Sectign

2. Reflective Declarations with Nested Patterns

MorphJ extends the reflective declaration blocks of N ] jwith
nested patterns. A nested pattern has the same syntaaticafor
a primary pattern, but is preceded by the keywordané” (for

declare a method with the same name and argument types, but a positivenested pattern) ormd” (for a negativenested pattern).

return type that is anotheair, constructed from the return types
of that method irx andy.

Again, this task seems perfectly suited for pattern-baséida-
tive declaration. Yet there is no way to define such a clasgyugi
(or CTR). What we need is positive existential conditiorfor all
methods inx, such that another method with the same name and
argument types exists in declare a method that invokes both and
returns epair of their values.

Contributions: In this work, we introducenested patterns
Nested patterns act as existential conditions that eithable or
block the applicability of the outer-most (primary) pattevWe im-

1This MJ class only defines getter methods for penvate fields: the se-
mantics of pattern £” without modifier specification is that it matches all
nonprivate fields. This is a limitation with the subclassing-as-exiens
based approach that MJ adopts.

Like primary patterns, nested patterns can only reflect coer
crete types, or type variables of the generic class. A ngsigdrn
places a condition (nested condition) on each element redtbi
the primary pattern. An element must be matched by the pyimar
patternand satisfy all nested conditions to be a part of a reflective
block’s iteration range. We illustrate the use of nestetepas with
the following examples.

2.1 Negative Nested Pattern

A negative nested pattern exerts a condition that is onigfged if
there isnothingin the range of elements matched by the pattern.

2MorphJ is effectively MJ 2.0. The change of name was decideal/oid
ambiguity in our efforts to release the software for wide-u8B1J” is an
overloaded term for indexing and search purposes. Nevesthehe change
is also convenient in the context of this paper as it enaldds tefer to old
capabilities by name.
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Negative nested patterns allow us to implement a modulsidg t
safeaddGetter<x>:

class AddGetter<X> extends X {
<F>[flfor( F £ : X.fields ; no get#f() !
F get#£f() { return super.f; } 2
} 3
4
The nested pattern condition on line 2 is only satisfied bgé&ho
fields £ of x for which there is no methodet#f () in x. (The
missing return type in the nested pattern is a MorphJ shadtha
for matching bothvoid and nonvoid return types.) Observe that
this AddGetter<x> class will not introduce ill-typed code fany
X. Potentially conflicting method declarations are preveiig the
negative nested pattern. A field for which a methodget#f ()
already exists i does not satisfy the nested condition, and thus is
not in the iteration range of the reflective block.

: X.methods )

2.2 Positive Nested Pattern

A positive nested pattern exerts a condition that is onlysBad

if there issomeelement in the range matched by the pattern. A
positive nested pattern allows us to define ther<x,y> class
discussed in the Introduction as follows:

public class Pair<X,Y> {
Xx; Yy;
public Pair(X x, Y y) { this.x = x; this.y = y; }

<RX extends Object, RY extends Object, Ax>[m]
for(  public RX m(A) : X.methods ;

some public RY m(A) : Y.methods )
public Pair<RX,RY> m(A args) {

return new Pair<RX,RY>(x.m(args), y.m(args));

}

Methods ofrair<x,v> are defined using the reflective block on
lines 5-10. The primary pattern on line 6 matches all nett and
non-primitive methods ok. For each such method, the positive
nested condition on line 7 is only satisfied if a method wité th
same name and argument types also exists rhus, the primary
and nested patterns in this class find precisely all methoakt

instance, the programmer can express a mixin class thalyispn
plicable to non-conflicting classes:

class SizeMixin<X> extends X {
<F> errorif ( some F size : X.fields )
int size = 0;

}

In this case, the programmer wants to assert that, if thenpara
ter typec already contains a field namefgke, this is not an error in
the definition ofsizeMixin but in the instantiatiorsizeMixin<C>.
Thus, theerrorif construct serves as a typical type-cast: it is both
an assumption that the type system can use (i.e., when cigecki
SizeMixin<X> it can be assumed thahas nosize field) and at the
same time a type obligation for a later type-checking sthigéike,
however, traditional type-casts that turn a static typeckhnto a
run-time type check, agrrorif turns a modular type check into a
non-modular (type-instantiation time), but still statigpe check.

2.4 Semantics of Nested Patterns

Similarly to primary patterns, a nested pattern introdumegera-
tion. However, nested patterns are only used to return #aise
decision. For instance, in claBsir<x,Y>, the nested pattern iter-
ates over all the methods inmatching the pattern, but the itera-
tion only serves to verify whether a matching method exists,
to produce different code for each matching method. Funtbeg,
multiple nested patterns are all nested at the same levaijrig a
conjunction of their conditions.

Nested patterns may use pattern variables that are not lmyund
any primary pattern. However, there are restrictions agvovari-
ables bound only by nested patterns can be used in codeuctdd
by the reflective block (i.e., the reflective declaratiorgttern vari-
ables bound by only negative nested patterns cannot be mislee i
reflective declaration at all. For instance, the pattem public R
restore()” above bound type variabke Howeverr only appears
in a negative nested pattern, and thus cannot be used in the de
laration ofrestore(). Intuitively, a variable in a negative nested
pattern is never bound to any concrete type/identifier—nécima

andy share in name and argument types. For each such methodcan exist for the negative nested condition to be satisfiéehry,
Pair<X,Y> declares a method with the same name and argumentan unbound variable cannot be used in declarations.

types, and a body that invokes the corresponding methodiody.
The return type is anotherir, constructed from the return values
of the invocations. Following the same pattern, the class
enhanced to also handle methods returning primitive typesia.

2.3 More Features:if, errorif

Nested patterns enable other powerful language featuresré&-
flective declarations we have seen so far have been iterbéised:

a piece of code is declared for each element in the iteratinge.
MorphJ also supports condition-based reflective dectaratand
statements. An example (from an application discussedtailde
Section3) illustrates the usage of pure conditions in reflective dec-
larations:

<R> if ( no public R restore() : X.methods )

public void restore() { ... }

The above reflective declaration block consists of a stétiea-
erted condition, specified by the pattern following thekeyword.
If the pattern condition is satisfied, the code following timndi-
tion is declared. Thus, methadid restore() is only declared if
a methodrestore (), with any nonvoid return type, does not al-
ready exist irx.

Another useful feature is introduced by teerorif keyword.
errorif acts as a type-assertion, allowing the programmer to ex-
press facts that he/she knows are true about a type paratreter

Pattern variables that are bound by positive nested pattern
however, can be used in the reflective declaration, if we edere
mine that exactly one element can be matched by the nestedrpat
This is the case only if all uniquely identifying parts of thested
pattern use either constants, or pattern variables bouribdebgri-
mary pattern. The uniquely identifying parts of a methodeqrat
are its name and argument types, and the uniquely idergifyant
of a field pattern is its name. For examplepiir<x,Y>, the posi-
tive nested patternsome RY m(A) : Y.methods” usesmandainits
uniquely identifying parts. Both pattern variables arermbby the
primary pattern. Thus, we can use in the reflective declaration,
even though it only appears in the nested pattern.

It may not be immediately obvious hawt anderrorif relate to
nested patterns. However, the type system machinery tiaaiesn
if anderrorif is precisely that of nested patterns. The patterns
used asif and errorif conditions are regular nested patterns
(with some andno) with the same semantics and conditions (e.g.,
limitations on when bound variables can appear in a reflectiv
declaration). Indeed, even our actual implementation efstatic
if statement translates it intermediately into a stagicloop with
a special “unit” value for the primary pattern condition.

We do not allow the nesting of primary patterns—i.e., it i$ no
legal to have nested statfor loops. Howeverif and errorif
declarations and statements can be freely nested withiscthges
of one another, or within the scope of a state loop.
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3. Real-World Applications

We next show two real world applications, re-implemented-co
cisely and safely with nested patterns.

3.1 DSTM2

DSTM2 [10] is a Java library implementing object-based software

transactional memory. It provides a number of “transactidac-
tories” that take as input a sequential class, and genermgns:
actional class. Each factory supports a different traisaai pol-
icy. The strength of DSTMZ2 is in its flexibility. Users can mard
match policies for objects, or define new “factories” impkarting
their own transactional policies.

In order to automatically generate transactional clag383M2
factory classes use a combination of Java reflection, bgteeen-
gineering with BCEL ], and anonymous class definitions. How-
ever, the information needed for these generations is yustatic
and structural. The authors of DSTM2 had to employ low-lewat

1

time techniques because the Java language does not ofiegrenoi

support for compile-time transformation of classes. Mdrgdtow-
ever, is a good fit for this task.

4
5

In our re-implementation of DSTM2’s factories and support-j
ing classes, 1,107 (non-commented, non-blank) lines o& Jay,

code are replaced with 374 lines of MorphJ code. For exampl
we replaced DSTM2'Sactory.shadow.RecoverableFactory<X>
and factory.shadow.Adaptor<X> Wwith the MorphJd class
Recoverable<X> in Figure 1.

@atomic public class Recoverable<class X> extends X {
// for each atomic field of X, declare a shadow field.
<F>[flfor(@atomic F f: X.fields; no shadow#f: X.fields)
F shadow#f;

// for each field
<F>[f]for(@atomic
public F get#f ()
Transaction me
Transaction other
while (true) {
synchronized (this) {
other = openRead(me) ;
if (other null) { return f; }

of X, declare a getter.
F f: X.fields; no get#f(): X.methods)
{

Thread.getTransaction();
= null;

manager.resolveConflict(me, other);
¥
}

// for each field of X, declare a setter
<F>[f]lfor(@atomic F f : X.fields;
no set#f(F) : X.methods)
public void set#f ( F val ) {
... // code to open transaction.
f = val;
... // code resolving conflict.

}

// create backup method

<R>if ( no R backup() : X.methods )

public void backup() {
<F>[f] for (@atomic F f
shadow#f = f;

: X.fields)

// create recover method

<R>if ( no R recover() : X.methods )

public void recover() {
// restore field values from shadow fields.
<F>[f] for ( @atomic F f : X.fields )
f shadow#f;

}

Figure 1. A recoverable transactional class in MorphJ.

For each field ofx, Recoverable<X> creates a shadow field,

e,
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transactional manager first, perform the read or write, deoh t
resolve conflicts before returning. Furthermore, it creasekup ()
andrestore() methods to backup and restore fields to and from
their shadow fieldg.

The advantage of the MorphJ implementation is two-foldstir
Recoverable<X> iS guaranteed to never declare conflicting declara-
tions. For exampleshadow#£ is only declared if this field does not
already exist irk, andbackup () is only declared if such a method
does not already exist in. Implementations using reflection and
bytecode engineering enjoy no such guarantees, and mtesadhs
rely on thorough testing to discover potential bugs.

Secondly, clasecoverable<x> is easier to write and under-
stand. For example, the code for generating.@up () method in
DSTM2'’s RecoverableFactory<xX> is illustrated in Figure 2. We
invite the reader to compare thackup() method declaration in
Figure 1 (lines 29-33) to the code in Figure 2.

public class RecoverableFactory<X>
extends BaseFactory<X> {

public void createBackup() {
InstructionlList il = new
InstructionList(); MethodGen method =
new MethodGen(ACC_PUBLIC, Type.VOID, Type.NO_ARGS,
new String[] { }, "backup",
className, il, _cp);

for (Property p : properties) {
InstructionHandle ih_0 =
il.append(_factory.createLoad(Type.0BJECT, 0));
il.append(_factory.createLoad(Type.0BJECT, 0));
il.append(_factory
.createFieldAccess(className, p.name,
p.type,
Constants.GETFIELD)) ;
il.append(_factory.
.createFieldAccess(className,
p.name + "$",
p.type,
Constants.PUTFIELD));
}

InstructionHandle ih_24 =
il.append(_factory.createReturn(Type.VOID));
method.setMaxStack();
method.setMaxLocals();
_cg.addMethod (method.getMethod () ;
il.dispose();
}
}

Figure 2. DSTM2 code for creating a methedckup ().

Interestingly, the predecessor of DSTM2 is a C# softwargstra
actional memory library called SXMI]. It was re-implemented
by Fahndrich, Carbin and Larus as the “quintessential gkahof
Compile-Time Reflection (CTR)7]. However, CTR'’s safety guar-
antees only concern the validity of references, and notadaiibn
conflicts. We give a more detailed exposition of CTR in Set€o

3.2 Default Implementations for Interface Methods

Java ensures that a class cannot be declared to “implemein* a
terface unless it provides implementations for all of theriface’s
methods. This often results in very tedious code. For instait
is common in code dealing with the Swing graphics libraryno i
plement an event-listener interface, yet provide emptyémenta-

3The MorphJ implementation replicates the functionalityDSTM2 fac-
tory classes, but with low-level differences. For instaree®STM2 factory
generates transactional classes from interface defisitibparses the inter-
face’s method names that begin wiget” and “set” to determine the field
names to generate. We believe this to be a design artifactodtie con-
straints of the Java language. We instead statically éeveer theeatomic

as well as getter and setter methods that acquire a lock from afields of classes, and generate backup fields as needed.
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tions for most of the interface methods because the apjalicdbes
not care about the corresponding events. In response toedbis,
there have been mechanisms propoddd 20] that allow the pro-
grammer to specify that he/she wants just a default impléatien
for all members of an interface that are not already impldeten
by a class. These past solutions introduced new keywordia@r
annotations) for this specific feature. They either haveusrantee
for the well-typedness of generated coti#][ or require extensions
to the Java type syster(]. These changes to the underlying lan-
guage are required to support just thize featureln contrast, we !
can express these language extensions as a MorphJ gefesc cf
that is guaranteed to always produce well-typed code. Baaw °
slightly simplified version of the MorphJ solution to thisopiem.
(For conciseness, we elide the declarations dealing wdith- or
primitive-type-returning methods, which roughly doubite tode.)

© ~N o o B

class DefaultImplementation<X,interface I> implements I {
X x;
DefaultImplementation(X x) { this.x = x; }

// for all methods in I, if the same method does
// not appear in X, provide default implementation.
<R extends Object,A*>[m]for( R m (A) : I.methods ;

no R m (A) : X.methods )
Rm (A a) { return null; }

// for all methods in X that *do* correctly override
// methods in I, we need to copy them.
<R,A*>[m]for( R m (A) : I.methods ;
some R m (A) : X.methods )
Rm (A a) { return x.m(a); }

// for all methods in X, such that there is no method
// in I with the same name and arguments, copy method.
<R,A*>[m]for( R m (A) : X.methods;

no m (A) : I.methods)
Rm (A a) { return x.m(a); }

ClassDefaultImplementation<X,I> copies all methods of type
X that either correctly implement methods in interfaceor are
guaranteed to not conflict with methods in For methods int
that have no counterpart i a default implementation is provided.
Methods inx that conflict with methods im (same argument types,
different return) are ignored. The above code demonstridies
power of nested patterns, both in terms of expressivenessina
terms of type safety. The application naturally calls fdifedent
handling of methods in a type, based on the existence of rdgiho
another type. Furthermore, these declarations are ge®cimd be
unique, and their uniqueness is crucially based on nestéelps

© ® N o O AW N o=

4. Type-Checking Nested Patterns

The complexity in type-checking pattern-based reflectieelara-
tions arises from the existence of pattern type and nameabhias.
When a declaration is made using such variables, how caneakch
that for all concrete types and identifiers these variabbesdcex-
pand to, the declaration will always be unique? Similarbytcan
we check that a reference made using a name variable alwfays re
to an entity that is declared?

The key is to treat a declaration asaageof declared elements.
(A declaration made without pattern variables has a oneaie
range.) Determining the uniqueness of two declarations tiee
duces to determining whether their rangesdisfint. Similarly, a
reference is also a range. Determining whether a refersneaid
then reduces to determinisgibsumptiondo all entities in the ref-
erence range have corresponding entities in the declanatitge?

In this section, we introduce the techniques for checkirfg re
erence validity and declaration uniqueness with nestetbnost

We focus on declarations and references made by reflectieg ov
type variables: reflecting over non-variable types is singyhtac-

tic sugar for manually inlining the declarations. We furttfiecus

on the rules for type-checking methods—rules for fields are/a

ial adaptation of those for methods.

4.1 Reference Validity
Let us take another look at classgMe<x> from the Introduction:

class LogMe<class X> extends X {
<R,A*>[m] for ( public R m(A)
public Rm (A a) {
R result = super.m(a);
System.out.println(result);
return result;

: X.methods )

}
}

How do we know that the method invocatiosuper.m(a)” (line
4) is valid? Notice that the range wfi.e., all the identifiers it could
expand to) is exactly the names of methods matched by theprim
pattern on line 2: all noroid methods ok. This range is certainly
subsumed by the range of all methods declaredxfofhus, we
know methodn exists, no matter what is. Furthermore, how do
we know we are invoking with the right arguments? The type of
a is A: exactly the argument typeof X is expecting.

Things get a bit more complex when a name variable bound
in one reflective block references a method declared in areifit
reflective block. Consider the following class, which logs arrgu-
ments of methods accepting strings, before callisgye to log the
return value.

class LogStringArg<class Y> {
LogMe<Y> loggedY;

<T>[n] for ( public T n(String) : Y.methods )
public T n (String s) {
System.out.println("arg: " + s);

return loggedY.n(s);

How do we know thatoggedY.n(s) (line 7) is a valid reference,
when the methods afoggedY are defined in a different class and a
different reflective block? The key is to determine that trege of
n is subsumed by the range of methods.égMe<y>. This is to say
that the range af’s enclosing reflective block should be subsumed
by the range ofogMe<y>'s declaration reflective block. Observe
that the declaration block afogMe<y> is defined over methods of
Y (after substituting: for x), as is the reflective block enclosinag
Secondly, the pattern for the declaration block.@Me<y> is more
general than the pattern for the reflective block enclosinthe
former matches all nomeid methods, and the latter matches all
nonwoid methods taking exactly orgxring argument. Thus, any
method that is matched by the reference reflective blockepa
is matched by the declaration reflective block’s pattergareless
of whaty is. Thus, there is always a methaéh LogMe<Y>.

Whether a pattern is more general than another can be sys-
tematically determined by finding @ne-way unificatiorfrom the
more general pattern to the more restricted one. In a onewnway
fication, only pattern variables declared for the more ganeat-
tern are used as unification variables. All other patteriabées
are considered constants. In this example, we can upifylic R
m(A)” t0 “public T n(String)” using the mappingR—T, m—n,
A—{String}}

We also use this unification mapping in determining whether
is invoked with the right argument types. We apply the magpn
the method declaration irbgMe<y>, and get the declared signature
“public T n(String)”. Sinces has the typstring, the invocation
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is clearly correct. Furthermore, we can check that the reduhe
invocation is of typer, which is precisely the expected return type
of the method enclosingLéggedY.n(s)”.

For the case of nested patterns, consider the followingclas

class VoidPair<X,Y> {

mappings obtained from unifying the primary patterns—wéy on
want to determine this subsumption relationship for thoséhods
that lie in the range of both primary patterns. In our examafe
ter applying the unification mapping to the positive nestatigon
on line 5 (and also substituting for Y), we have public void
: S.methods”. This clearly subsumespliblic void

X x; Yy; ...// constructor to initialize x and y. n(String)
n(String) : S.methods” On line 12.
<A*>[m]for ( public void m(A) : X.methods ; These two conditions guarantee us that refereacéPair.n(s)
some public void m(A) : Y.methods ) is always a valid one. It is easy to check that this is indeedttse.
public void m (A a) { =x.m(a); y.m(a); '} The above approach generalizes to an arbitrary number of

by nested conditions: each nested condition in the declaratinge
VoidPair<X,Y> declares a method for everyid method thak must be implied by at least one nested condition in the ratere
andy share in name and argument types, and invokes that methodrange. A range with no nested patterns is equivalent to srafit
onx andy. Using the reference rules described previously, we know a positive nested pattern that subsumes everything, or ativeg
thatx.m(a) is a valid reference. Furthermore, because the pattern nested pattern that is subsumed by everything. The casewiee

variables used in the positive nested pattern on line 5 &bmahd

by the primary pattern, we know that if the nested conditisn i
satisfied, there is exactly one element in the range of theedes
pattern, so the calf.m(a) is unambiguous. Since the types also
match,y.m(a) is a valid reference, as well.

are only nested patterns (i.ef,anderrorif Statements) can be re-
duced to a range with a special primary pattern value thatsubs
only itself and is subsumed only by itself.

4.2 Uniqueness of Declarations

Let us now consider the general case of a reference made in onepe yse range disjointness to check whether two declaraticns

reflective block, to declarations made in another refledbioek,
when both blocks have nested patterns. Rgtand R,- denote the
ranges for the reflective blocks of the declaration and tfexeace,
respectively. There are two sufficient conditions to deteenthat
R, is subsumed byR,. First, the primary range oRR, must be
subsumed by the primary range &f;. Second, for all methods
that are in the primary range @, (and thus also in the primary
range ofR,), if the method satisfies the nested conditiongpf it
should also satisfy the nested conditionsif. That is to say, the
nested conditions oR, should be stronger, and imply the nested.
conditions ofR,. 3
Determining that one nested condition implies another @n b+
reduced to single range subsumption. (8%, 7;.) denote the range
of a nested patter?V,, matching over the methods of tyfié. Let
(Naq,Ty) be similarly interpreted. Le#- prefix a positive nested
condition, and— prefix a negative nested condition. We have two
ways of determining that one condition implies another:

* +(N,, 1) implies+(Ng,T4) if (Nq,Tq) subsumesN,.,T;).
* —(N,, 1) implies —(Ng,Ty) if (N, T;) subsumesNg,Ty).

Intuitively, +(N,.,T:.) is satisfied if there is at least one element
in (N, T;). Then there is certainly at least one element in a larger
range, as well. Thus; (Ng4,Ty) should be satisfied. Similar reason-
ing applies for the implication between two negative candk.

To be more concrete, consider the following class:

class CallVoidsWithString<T,S> {
VoidPair<T,S> voidPair;
... // constructor to initialize voidPair
[nJfor ( public void n(String) : T.methods ;
some public void n(String) : S.methods )
public void n (String s) { voidPair.n(s); }
}

For everyvoid method taking ongtring argument thatr and
S have in commongallvoidsWithString<T,S> declares a method 1
with the same signature, and invokes a method with the same na 2
OnvoidPair, Of typevoidPair<T,s>. This reference is valid if the 3
range of the reflective block on lines 11-12 is subsumed by the
range of the declaration reflective block (lines 4-5 in théritgon Z
of VoidPair). S

The range of primary pattern on line 11 is subsumed by the
range of declaration’s primary pattern (line 4), by the oveer
unification mappingm—n, A— {String}}.

unique. In the case of method declarations, uniquenesssiaan
methods within the same class (including inherited methods-
not have the same name and argument tfpes.

4.2.1 Internally Well-defined Range

A simple property to establish is that declarations intcmtuby the
same reflective block do not conflict. Consider the followitass:

class CopyMethods<X> {
<R,A*>[m] for( R m (A)
Rm(Aa {...}

: X.methods ; nestedConds )

}

CopyMethods<X>'s methods are declared within one reflective
block. The iteration range of this block comprises all rend
methods ofx that also satisfy arbitrary nested conditionssted-
Conds For each of these methods, a method with identical signa-
ture is declared fotopyMethods<x>.

How do we guarantee that, given anythe method declarations
within this block are always unique? Observe thatan only be
instantiated with a well-formed type (the base case beijgct),
and all well-formed types have unique method declarati®hss,
if the declaration block merely copies the name and arguiypes
of methods from a well-formed type, the methods declarechtsy t
block are guaranteed to be unique, as well.

4.2.2 Uniqueness Across Ranges

When one or both methods are defined using reflective iteigtio
their uniqueness means that tfenge of their (name, argument
types tuple cannot overlap. This can be determined lya-way
unification of the two declarations. In a two-way unification, pat-
tern variables fronbothreflective blocks are unification variables.
Let us start with a simple example. Consider the followiragst

class DisjointDecs<X> {
<R>[m] for(R m (int)
Rm (int i)

: X.methods; nestedCondsl )

<S>[n] for(S n (int)
S n (int i, String s)

: X.methods; nestedConds2 )

4In Java, methods in a subclass are allowed to override tbeitterparts in
the superclass with co-variant return types. This involveslaxation of the

To check whether the nested pattern on line 5 subsumes therules we describe in this section: return types in the sskcae allowed to

nested pattern on line 12, note that we first apply the unidinat

be subtypes of their counterparts in the superclass.
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It is easy to see that the declarations on lines 3 and 6 cannot4.2.3 Generalizations and Boundary Conditions

overlap for any. There is no unification to make the two signatures
have the saméname, argument typgguple, because there is
simply no way to unify{int} with {int,String}.

When two method signatures do unify, there may be overlap
in the declarations. However, if we can prove that overlagle-
ments are infeasible, then the declarations are still unigua over-
lap is infeasible if the unification mapping producing theidap,
when applied to the primary and nested patterns, producasathyu
exclusive conditions. Note that a non-empty primary pattange
states a condition, as well—it is a positive condition tlatssome
element exists in this range.

Consider the following class:

class StillUnique<X> {
<A1>[m]lfor( String m (A1)
void m (Al a) { ... }

: X.methods ; nestedCondsl )

<A2>[n]for( int n (A2)
void n (A2 a) { ... }
}

The declared signatures on lines 3 and 6 unify with the mappin
{m—n, A1—A2}. Applying this mapping to the primary patterns on
lines 2 and 5, we getstring n (A2) : X.methods”, and “int n
(A2) : X.methods”. Methods matched by these patterns can cause
conflicting declarations. However, having at least one wetim

: X.methods ; nestedConds2 )

We have so far neglected to state the rules for when one of the
names used for reference or declaration is a constant nanee. T
range of reference and declaration with such a name conéains
single element. Thus, it can always be subsumed by a range wit
a variable name, but it can never be disjoint from a range with
variable name.

We have also glossed over some details in the unification. In
addition to unifying the pattern variables, there needs doah
additional check on type bounds. For example, a pattern vari
ableA extends Number cannot be unified with variable extends
java.io.File, because they can never match the same types—
there is no type that is a subtype of batfhber andjava.io.File.

This detail is rigorously defined in the rules presented ictiSe 5.

5. Formalization

We formalize MorphJ’s type system with a simplified formatlis
FMJ, based on FGJ1f]. Due to space limitations, we present
only the type rules most relevant to checking declaratiom$ a
expressions enclosed by nested patterns. Interestedrseamdy
consult our technical repori ] for the full text of type rules and
soundness proofs.

5.1 Syntax

both of these ranges means that there need to be two methods ifThe syntax of FMJ is presented in Figu8eWe adopt many of the
X with the same name and argument types, but different return notational conventions of FG&.D denote constant class names;

types. This directly contradicts the fact thatis a well-formed
type. Thus, this unification mapping produces mutually esive
conditions between the two primary pattern conditions, dede

X,Y,Z denote type variablesy,P,q,R denote non-variable types;
S,T,U,V,W denote typesf denotes field namesy denotes non-
variable method names,y denote argument names. Notations

are no elements that would make the mapping possible. Thesenew to FMJ aren denotes a variable method namegdenotes

declarations are thus still disjoint.
There are two ways to determine whether two conditions are
mutually exclusive. Using the same notation as before,

* +(P,,T) and +(P},,S») are mutually exclusive ifl}, is a
subtype ofS,,, and P,,, P, have unifying method name and
argument types, but different return types.

* +(P,,T,) and —(P;,,S,) are mutually exclusive ifP;,S»)
subsumespP,,T,)

We apply these rules on all pairs of conditions. A single raltu
exclusive pair guarantees the disjointness of ranges. \fvkedp
the first rule to prove thattil1Unique<x> contains unique method
declarations. The following example demonstrates an egjbin
of the second rule:

public class UnionOfStatic<X,Y> {

<A*>[m] for( static void m (A) : X.methods; nestedCond)
public static void m(A args) { X.m(args); }
<B*>[n] for( static void n (B) : Y.methods ;

no static void n (int, B) : X.methods )

public static int n(int count, B args) {
for (int i = 0; i < count; i++) Y.n(args);
return count;
}
}

either variable or non-variable namesdenotes a nested pattern
condition operator (either or -) for the keywordssome or no,
respectively.

T = X | N
N = C<T>
CL = class C<X<l>a N {T f; M}
| class C<Xal>a T {T f; Im}
M Tmn (TXx) {Te;}
m = <Y<aP>for(Mp;oMy,) U n (U %) {le;}
o = + | -
M = V7 (V):X.methods
e = x| e.f| e.n (& | new C<T>(e)
n = mln

Figure 3. Syntax

We use the shorthariifor a sequence of typ&s ,Ti, . . . , Tn,
andx for a sequence of unique variables,x1 , . . . ,x,. We uses
to denote an empty sequence. We uge sequence concatenation,
e.g.S:T is a sequence that begins wihfollowed byT. We usec
to mean “is a member of a sequence” (in addition to set member-
ship). We use ... for values of no particular significance tale.
<and? are shorthands for the keywordstends andreturn, re-
spectively. Note that all classes must declare a superchdssh

The two method declarations on lines 3 and 7 have signaturescan belbject.

that can be unified with the mappifga— {int,B}, m—n}. Ap-
plying this substitution to the primary pattern on line 2 lg&
“static void n(int,B) : X.methods”. Having a method in the
range of this pattern directly contradicts the conditiohaf nega-
tive nested pattern on line 6, which states there should beeth-
ods in the range ofstatic void n(int,B) : X.methods”. Thus,
the two method declarations are unique forxadindy.

FMJ formalizes some core Mystique features that are represe
tative of our approach. One simplification is that we allowyon
one nested pattern per reflective block. This does not chdrge
essence of our type system, since we can emulate multipteches
patterns using one nested pattern that reflects over ammietir
ate type, defined itself using reflective declarations.,(lx& can
simulatei nested patterns with— 1 intermediate types with one



nested pattern each.) Another simplification is that we doato
low a nested pattern to use any pattern type or name variabtes
bound by its primary pattern. We also do not formalize reiitect
over a statically known type, or using a constant name ingifke
patterns. These are decidedly less interesting cases fiypirg
perspective. The zero or more length type vectrare also not
formalized. These type vectors are a mere matching convesie
Thus, safety issues regarding their use are covered by ecton/
types. We do not formalize reflectively declared fields—ithgie-
checking is a strict adaptation of the techniques for chreckieth-
ods. Lastly, static name prefixes, casting expressions alychpr-
phic methods are not formalized.

FGJ does not support method overloading, and FMJ inherits
this restriction. Thus, a method name alone uniquely ifiestia
method definition. Since we allow no fresh name variableested
patterns, there can be only one name variable in a refledtoi b
We use for this name variable, and a reflective definition must also
use this same name variable. This results in a small singgiific
over the informal rules in Sectiohbut leaves their essence intact.

A program in FMJ is an(e, CT) pair, wheree is an FMJ
expression, and’'T is the class table. We place some conditions
on CT: every class declaratioalass C... has an entry irCT;
Object is not inCT. The subtyping relation derived fro@T must
be acyclic, and the sequence of ancestors of every indiiantigpe
is finite. (The last two properties can be checked with therilgm
of [1] in the presence of mixins.)

5.2 Typing Judgments
There are three environments used in our typing judgments:

* A: Type environment. Maps type variables to their upper
bounds.

* I': Variable environment. Maps variables (ex9).to their types.

* A: Reflective iteration environment has the form R, ,0R,),
whereR, is the primary pattern, andR,, the nested pattern.
can be+ or -.

* R, has the form(T;, <Y<P>U—Uy). Ty is the type over
whose method®,, iterates. We call it theeflective typeof
R, Y are pattern type variables, boundediyandU—Uy
the method pattern.

= R, has a similar form:(T2, V—V,). However, note the
lack of pattern type variables, due to the (formalism-only)
simplification that the nested pattern not use pattern type
variables not already bound in the primary pattern.

There is no nesting of reflective loops. ThiAsgontains at most
one(R,,0Ry) tuple.

We use the— symbol for mappings in the environments. For ex-
ample, A=X—C<T> means that\ (X)=C<T>. Every type variable
must be bounded by a non-variable type. The funchiomda (T)
returns the upper bound of ty@en A. bounda (N)=N, if N is not
a type variable. Andounda (X)=bounda (S), whereA(X)=S.

In order to keep our type rules manageable, we make two sim-
plifying assumptions. To avoid burdening our rules withaen
ings, we assume that pattern type variables have globaltyuan
names (i.e., are distinct from pattern type variables ieothflec-
tive environments, as well as from non-pattern type vagighl\We
also assume that all pattern type variables introduced bffective
block are bound (i.e., used) in the corresponding primattepa
Checking this property is easy and purely syntactic.

The core of our type system is in determining reflective range
subsumption and disjointness. Thus, we begin our discusgih a
detailed explanation of the rules for subsumption and dligjess.

5.2.1 Subsumption and Disjointness

The range of a reflective environmefR,,0 R, ), comprises meth-
ods in the primary rang&,,, that also satisfy the nested condition
oR,. The nested conditiorR,, (or -R,) is satisfied if there is at
least one method (or no method, resp.) in the rang®,ofWe call
ranges ofR, and R,, single rangesln this section, we explain the
rules for determining the following three relations:

* A;[W/YJFACAA’. Range ofA is subsumed by the range Af,
under the assumptions of type environménand the unifying
type substitutions ofii /Y].

* A;[W/YJFR1CrRs. Single rangeR; is subsumed by single
range R, under the assumptions & and the unifying type
substitutions ofw/Y].

* Akdisjoint(A, A’). The range ofA andA’ are disjoint under
the assumptions ah.

Single range subsumption. In determining the subsumption be-
tween two reflective environments, we must first see how supsu
tion is determined between two single ranges. Rule F5B-ig-
ure 4) states that first, the reflective type of the larger rarige,
should be a subtype d@t;’s reflective type. SecondlyR.’s pattern
should be more general thd®y's pattern. This means thatame-
way unification exists from the pattern @i to the pattern of?,,
where only the pattern type variablesia are considered variables
in the unification procesgii/Y] are the substitutions that satisfy
such one-way unification. Unification is defined by two relas:

o A;[W/Y|Funify(Uo:U, Vo:V). Rule UNI (Figure6) describes a
standard unification condition with a twist: unifying subst
tutions (for pattern type variables) must respect the fubty
ing bounds of the type variables. For example, the substitu-
tion [Y/0Object], where A-Y<:Number, doesnot unify Y and
Object, because the bound ®fis tighter thardbject.

* AFT=:3S (Figure6) indicates that typ& is a valid substitution
of s, i.e., it obeys the bound af, usingZ as pattern type
variables.

Reflective (nested) range subsumptionSB-A (Figure 4) de-
fines the conditions for the range of reflective environment
A=(R;,0R.) to be subsumed by the range &f=(R;,,0o'R;,).
These conditions reflect precisely the informal rules ofti®act.
First, regardless of nested patterns, the primary rangesbbuld at
least be subsumed by the primary rangé\tfSecondly, for every
method inR,, that satisfies the nested pattetR,,, the correspond-
ing method inR;, should satisfy the nested patteri®z;,. There are

a couple of ways to guaranteeR,, implieso’R),. If +R,, is true,
andR,, is subsumed byz,,, then+R,, is also true. This condition is
expressed b\;e+-R,,Cr[W/Y|R,,, if o=0'=+. We apply the uni-
fying type substitutions for the primary ranges to the nsémnge
R},:in order to properly compare the rangesdf andR;,, we need

to restrictR,, to what it can be for the methods that are matched by
both R, andR;,. Note that we are using an empty sequence of type
substitutions €) in determining that?,, is subsumed by /Y| R;,.
This is because nested patterns do not have pattern tymblesi

of their own, and pattern type variables from the primarytgrat
are treated as constants in the nested patterns. Simifarly,, is
true, andR,, subsumes,,, -R,, is also true.

Reflective range disjointness.Disjointness of reflective ranges is
defined by rules DSY1 and DSA2. DS-A1 specifies the condi-
tions for disjointness wher. and A’ reflect over types from the
same subtyping hierarchy. In this cadeandA’ are disjoint if their
primary ranges are disjoint. However, if the two primarygesdo
have overlap, (i.e.A;[W/Z]-unify(Uo:U, Up:U"): a two-wayunifi-
cation exists between the primary ranges) it is still pdesibr A



Reflective range subsumption:
A=(Rp,0R,) AN=(Rj,,0'R}) R,=(T},, <YP>V—=Vo) A;W/Y|FR,CrR,
As;o-R,CRr[W/Y|R], if o=0'=+ Aso-[W/Y|R,CERrRy  if 0=0"=-
A;[W/YJFACAA (SB-A)
Single range subsumption:
R1=(T1, <X<Q>U—Up)  Ro=(T2, <Y<P>V—Vy) AFTe<:Ty A'=AXQY<P  A[W/Y]Funify(Uo:U, Vo:V)
A;[W/Y]FR1CRR: (SB-R)
Reflective range disjointness:
A=(Rp,0Rn) A=(R},0'R}) Rp=(Tp, XQ®U—Uo) R;,=(T), <Y<P>U'—Tp)
AFT,<:T), Or AFT;, <:Tp A'=AX<:Q,Y<:P Z=X,Y
_ _ ) — o A'se - [W/ZJR,ERW/Z|R, ifo=+,0 =—
/. B AR 7 = n )
for all W, A’;[W/Z|Funify (Uo:U, U,:U’) implies { Aot [W/ZR.Cali/ZRy ifo=— o =+
Aldisjoint (A, A”) (DS-A1)
A=(Rp,0R,) MN=(R},,0'R};) Rp=(Tp, <Xa@®>U—Up) R,=(T,, <Y<P>U'—Uj) A'=AX<:QY<:P
A;[W/X] - R,CRR, o=— or
A;[W/Y|F RyCRrR!, o =—
Akdisjoint (A, A”) (DS-A2)
Figure 4. Range subsumption and disjointness rules.
Method type lookup:
A=(Rp,0R,) Rp=(X, <Y<P>U—Up) A=(Rp,+R,) Rp=(X, U—Up)
A; A Fmtype(n, X)=U—Uy (MT-VAR-R1) A; A Fmitype(n, X)=U—Uy (MT-VAR-R2)
A=(Rp,0Ry) Rp=(T, <Y<P>V—Vo) A;A Fmtype(n, bounda (X))=U—Up
A; A Fmtype(n, X)=U—Up (MT-VAR-S)

CT(C)=class C<X<N><T {... 9}
M,=Uy n (U):X;.methods
Rp=(T;, [T/X)(<TP>T—Up))

thods My=Vo n (V):X]‘
Ra=(Tj, [T/X](V—=V0))

<Y<P>for (M ;0My) So n (8 %) {le;} € m
.methods
Ad:<Rp,ORn>

AjF/TFACAA

CT(C)=class C<X<N><T {... 9}

A; A Fmitype(n, C<T>)=[T/X][W/Y](S5—So)

forall  <Y<P>for(M,;oM;) So n (S %) {fe;} € M
Mp=Up n (U):X;.methods My=Vp n (V):X;.methods
Rp=(T;, [T/X(<Y<P>U—Vp))  Rn=(Ti, [T/X)(V—Vp))
implies  Akdisjoint(A, Ag)

(MT-CLASS-R)

Ad:<Rp,ORn>

A; A Fmitype(n, C<T>)=mtype(n, [T/X]T)

(MT-SUPER-R)

Figure 5. Method type lookup.

and A’ to be disjoint if we can establish that for the methods that
fall into the overlap, the nested patterns cannot be satisfiaul-
taneously. There are two ways to establish the exclusivityvo
nested patterns. First, #R,, is true, andR,, is subsumed byg;,,
then-R;, cannot possibly by true. Similarly, #R;, is true, andR,

is subsumed by, then-R,, cannot be true.

DS-A2 specifies a different condition for disjointness: if the
primary range ofA, R,, can be subsumed by the nested range
of A’, R, and the nested pattern is negative (i-&;,), then it
is guaranteed that and A’ have disjoint names. The reason is
that any method matched by the primary radggis guaranteed
to not satisfy the nested patterR,,, thus the two nested ranges are
disjoint. Similarly, if R, is subsumed by,,, and-R;, is the nested
pattern condition, disjointness is also established.

These rules reflect very closely the informal rules of Secfio
modulo the small differences in the formalism mentioned éc-S
tion 5.1: we do not need to distinguish between declarations and
primary patterns in the formalism, as the uniqueness ofiesiin

the primary pattern implies (through name uniquenessedimere
is no overloading) the uniqueness of declared entities.

5.2.2 Valid Method Invocation

The rest of the typing rules add machinery to standard FGd typ
checking to express checks using range subsumption amdndisj
ness. For instance, method invocation rules rely on methaklip
rules,mtype to determine the correct method type. We have shown
in Figure5 the mtyperules pertaining to looking up methods ref-
ered to using name variables. Please consult our techrapaktr
for the full set of rules.

MT-VAR-R1 and MT-VAR-R2 say that the type of method with
a variable name in a typeX, whereX is either the reflective type
for the primary pattern or the reflective type opasitive nested
pattern, is exactly the type specified by the primary (or edst
respectively) pattern. Otherwise, ¥fis a type variable, then we
must look for the method type in its bound (MT-VAR-S). Note
that in the formalism, since all variables are bound in theary



pattern, we can always invoke a method guaranteed to exiat by
positive nested pattern.

MT-CLASS-R lists conditions for retrieving the type @fin
C<T>, wherec<X> has reflectively declared methods. If the range of
reference, which is the current reflective environmentusssmed
by the declaration reflective environment, the typenofs the
declared types in<X>, with the substitutions dft/X], and the type
substitutions for unifying the declaration range and tHerence
range,[W/Y]. MT-SUPER-R simply states that when the reference
reflective environment is disjoint from every declaratieflective
environment inC<T>, we must look to the superclass for the type
of 7.

5.3 Soundness:

We prove the soundness of FMJ by proving Subject Reductidn an
Progress.

Theorem 1 [Subject Reduction]: If A;A;T FecT ande — &',
thenA; A; T Fe’€S andA —s<:T for somes.

Theorem 2 [Progress]: Let e be a well-typed expression. 1.df
hasnew C<T>(e).f as a subexpression, th@h fields(C<T>)=U
f,andf = f;. 2. If e hasnew C<T>(e).m(d) as a subexpression,
thenmbody (m, C<T>)=(%,e0) and[x| = [d|.

Theorem 3 [Type Soundness]:If (); §; f-ecT ande—"*¢’, then
e’ is a valuev such tha®); ; O-ves andP-S<:T for some types.

Type Unification:
[U/zZ]T=[U/zZ]s forall Z,€Z, AFU;<:3Z;
A;[U/Z]-unify(T, S) (UNI)
Pattern matching rules:
AFT=<:,T (PM-REFL)
AFT-<22§
AFC<T>~:7C<S> (PM-CL)
CT(C)=class C<X<N><T {...}
AF[T/X]T<:zD<S>
AFC<T>~:7D<S> (PM-CL-S)
Z€EZ T¢Z  bounda (T)=C<T>
AFC<T><:7[C<T>/Z]bound A (Z)
AFT<:,Z (PM-VAR)
ZZ‘GZ Z; €z
A& [Z;/Z5)bounda (Z5)<:3Z;  or
A+ [Zj/Zi] bounda (ZZ‘)-<:§Z]'
AFZ,<57; (PM-PVARS)

Figure 6. Unification and pattern-matching rules

5.4 Decidability

To establish the decidability of our type system, we enfdiroéa-
tions on possible circularities in either subtyping oristéeration
cross-type references. For the former, we inherit a stahttah-
nique from Allen et al. I]. Applying the same restrictions (i.e., a
declared supertype cannot be a type with a mixin superdizeif);
we can guarantee that there is no cyclic inheritance in FM3. A
other source for non-termination in FMJ is in circularly dadent
method definitions. For example,

class C<X extends D<X>> {
<R>[m]for(R m() : X.methods) ...

class D<X> extends C<D<X>> { ... }

The methods of<X> are circularly defined: they reflect over the
methods ofX, which include the methods @kX>, which, in turn,
include the methods of<D<X>>! This type of definition would
cause infinite recursion in the derivationrofype

We detect such circularity by constructing a chain of reilect
reachability The chain of reachability for a typeis essentially all
the typesmtype (n, T) could recursively call upon. For example, the
chain of reachability for the abowx> is c<x>, X, D<X>, C<D<X>>,

... We stop the chain construction as soon as we see a rereacear

of any type already in the chain, amy form of instantiation. We
reject classes with such circular dependency. Since tBeadinite
number of classes, the chain must either see a reoccurrdnce o
some class, or be finitely sized. The length of the chain seasa
measure function for each call oftype The finite size of the chain
means the measure function cannot decrease infinitelyptiousng
termination. A more sophisticated protocol would be pdssito
make the check less conservative, but we have yet to encoainte
realistic use that needs it.

6. Related Work

As discussed earlier, MorphJ’s closest relatives are M and
CTR [7]. CTR is an extension to C# that pioneered the use of pat-
terns for reflective iteration and was one of the first systéms
aim for modular type safety. Nevertheless, its modular gpies
concern only validity of references and not the absence dade

tion conflicts. Additionally, CTR does not allow matching ftipie
method argument types, and there is currently no formal syge
tem or soundness guarantees. A unique aspect of CTR (codtpare
MJ or MorphJ) is that it transforms classes in-place, whitdbées
some interesting applications. MJ, on the other hand, dioized
two main elements: static checking for disjointness of otfte
declarations, and the integration of static reflection asxaension

of standard generics. MJ has a formal type system, with adsoun
ness proof but with no demonstration of its decidability. rigin)
improves over both CTR and MJ by adding more expressiveness
through nested patterns, while keeping or strengtheniadytbing
guarantees, and by validating the promise of the overallcagh
with larger-scale applications.

Static reflection mechanisms such as Genoéparid SafeGen
[13] attempted to allow declaration using reflection. Yet nofie o
these mechanisms offer full modular type-checking guaestFor
instance, the Genoupé][approach has been shown unsafe, as
its reasoning depends on properties that can change amejnti
SafeGen13] has no soundness proof and relies on the capabilities
of an automatic theorem prover—an unpredictable and urdiye
process for a programmer. Additionally, these mechanisees u
complex syntax for retrieving reflective members, whereaspiJ
utilizes patterns very similar to method and field signagure

An extension of traits 1] offers pattern-based reflection by
allowing a trait to use name variables for declarations. e,
[21] does not offer static iteration over the members of classes
name-generic trait must be mixed in once for each name iostan

The main capabilities of MorphJ can typically be emulated
only with lower-level mechanisms, such as reflection, nuodtigct
protocols [L7], aspect-oriented programmingd], or pattern-based
program generation and transformati@ 4, 24]. The goal of our
work is to promote these abilities to high-level languagetdees,
with full modular type-safety. None of the above mechanisiffer
such safety guarantees: a transform, aspect, or metaeelasst be
type-checked independently from the rest of the prograra,viy
that guarantees it is well-typed for all its possible uses.

An interesting special case of program generatiataging lan-
guagessuch as MetaMLZ23] and MetaOCamlj]. These languages
offer modular type safety: the generated code is guarami@eect
for any input, if the generator type-checks. NeverthellstaML



and MetaOCaml do not allow generating identifiers (e.g., emm
of variables) or types that are not constant. Neither do tiiey
generation of code by reflecting over a program’s structGem-
erally, staging languages target program specializatitimer than
full program generation: the program must remain valid evben
staging annotations are removed. It is interesting thah egeent
meta-programming tools, such as Template Haskd] are ex-
plicitly not modularly type safe—its authors acknowledgattthey
sacrifice the MetaML guarantees for expressiveness.

There has been a line of work focused on providing statically

type-safe generic traversal of data structufieéd 16]. For instance,
the “scrap your boilerplate”1d] line of work offers extensions of
Haskell that allow code to abstract over the exact strustafe
the data types it acts on, and to have the appropriate fursctio
invoked when their expected data types are encounteredgluri
traversal. Abstracting over the structures of data typefuire-
tional languages is similar to abstracting over the fields meth-
ods of classes in object-oriented languag2s]. ¢ffers such generic
traversal capabilities for Java. However, wherekg; L6, 25| fo-
cus on offering structurally-genertcaversal MorphJ focuses on
structurally-genericdeclarations Neither of [L9, 16, 25] allow
more functions to be declared using the names or typeswettie
from a non-specific data type. Thus, these techniques falit sh
of MorphJ (and static reflection work in generd#[ 6, 7, 13)) in
this respect. On the other hand, MorphJ is not well-suitedvfit-
ing generic traversal code. Traversing data structuresrao#ing

methods on objects encountered is largely based on the dlynam

types of these objects. MorphJ’s reflective declaratioesbaised
purely on the static types of fields and methods.

7. Conclusions

We believe that MorphJ and the general approach of classhmorp

ing represent a significant trend in the evolution of prograng

languages. Most major advances in programming languages ar

modularity or re-usability enhancements. The first step taken
with procedural abstractiornn the 50s and 60s, which culminated
in structured programming languages. Procedural abiiracap-
tured algorithmic logic in a form that could be multiply rexaksboth
in the same program and across programs, over differentotiata
jects. The next major abstraction step was argugipyg abstraction

or polymorphismwhich allowed the same abstract logic to be ap-

plied to multiple types of data, although the low-level céaieeach
type would end up being substantially different. The negtsiep
in language evolution can perhaps be cafiedctural abstraction
Structural abstraction is abstraction over the structéicher pro-
gram elements. Mechanisms like CTR, MorphJ, or the “scrap yo
boilerplate” approach are instances of structural absbracthey
allow safe static reflection over members of a type. We belibat
the inclusion of such constructs in mainstream languagbbeva
topic of major importance for decades to come and that thiepa
represents a big step forward in this direction.
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