
Expressive and Safe Static Reflection with MorphJ

Shan Shan Huang
College of Computing

Georgia Institute of Technology
ssh@cc.gatech.edu

Yannis Smaragdakis
Department of Computer and Information Science

University of Oregon
yannis@cs.uoregon.edu

Abstract
Recently, language extensions have been proposed for Java and C#
to supportpattern-based reflective declaration. These extensions
introduce a disciplined form of meta-programming and aspect-
oriented programming to mainstream languages: They allow mem-
bers of a class (i.e., fields and methods) to be declared by statically
iterating over and pattern-matching on members of other classes.
Such techniques, however, have been unable to safely express sim-
ple, but common, idioms such as declaring getter and setter meth-
ods for fields.

In this paper, we present a mechanism that addresses the lackof
expressiveness in past work without sacrificing safety. Ourtech-
nique is based on the idea of nested patterns that elaborate the
outer-most pattern with blocking or enabling conditions. We im-
plemented this mechanism in a language, MorphJ. We demonstrate
the expressiveness of MorphJ with real-world applications. In par-
ticular, the MorphJ reimplementation of DSTM2, a software trans-
actional memory library, reduces 1,107 lines of Java reflection and
bytecode engineering library calls to just 374 lines of MorphJ code.
At the same time, the MorphJ solution is both high level and safer,
as MorphJ can separately type check generic classes and catch er-
rors early. We present and formalize the MorphJ type system,and
offer a type-checking algorithm.

Categories and Subject DescriptorsD.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages

Keywords object-oriented programming, structural abstraction,
class morphing, aspect-oriented programming, meta-programming,
language extensions

1. Introduction
Consider the following task: how would you write a piece of code
that, givenanyclassX, returns another class that contains the exact
same methods asX, but logs each method’s return value? That is,
the code is a modular representation of the functionality “logging”,
and abstracts over the exact methods it may be applied to.

Capturing this level of abstraction has traditionally beenonly
possible with techniques such as meta-object protocols (MOPs)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright © 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

[17], aspect-oriented programming (AOP) [18], or various forms of
meta-programming (e.g., reflection and ad-hoc program generation
using quote primitives, string templates, or bytecode engineering).
While just about any programmer can write a method that logs its
return value, the techniques listed above are largely unapproach-
able. Additionally, these techniques bypass the guarantees offered
by the type system so that there is no pre-application guarantee that
the resulting code would be well-formed.

Recently, extensions have been proposed [14, 7] for Java and
C#, to bridge this gap between the lack of expressiveness in main-
stream languages, and the lack of type safety in the more exotic
techniques mentioned above. Both extensions introduce a notion of
static (as oppose to runtime) iteration over fields or methods of a
class, interface, or type variable. A simple pattern language is used
to match on the elements being iterated over. A declaration can be
made for each element in the iteration, using pattern-matched vari-
ables. We call this type of declarationpattern-based reflective dec-
laration and the general techniqueclass morphing. For example,
using MJ, the Java extension we introduced in [14], we can write
the following generic class:

class LogMe<class X> extends X {1

<R,A*>[m] for (public R m(A) : X.methods)2

public R m (A a) {3

R result = super.m(a);4

System.out.println(result);5

return result;6

}7

}8

This MJ generic class extends its own type parameterX. Lines
2-7 form a reflective declaration block: line 2 defines the range
of elements being iterated over; lines 3-7 are the method being
declared oncefor eachelement in the iteration range.The iteration
happens statically.Line 2 says we want to iterate over all methods
of X that match the pattern “public R m (A)”, where R, A, andm

are pattern variables (declared before the keywordfor). R andA are
pattern type variables, whereR matches any type exceptvoid, and
A, because of the* notation inA’s declaration, matches a sequence
of types of any length, including zero.m is a name variable, and
matches any identifier. Thus, this block iterates over allpublic

methods ofX that take any number of arguments, and have non-
void returns. For each such method, it declares a method with
the same signature. For example,LogMe<java.io.File> gives us
a version ofFile with all its methods’ return values logged. This
task can be similarly accomplished with Compile-Time Reflection
(CTR) [7], an extension proposed for C#.

MJ and CTR increase the expressiveness of their respective
base languages by providing a limited form of meta-programming,
through a familiar syntax accessible to the average programmer.
They additionally offer a level of static type safety that has never
been achieved by mechanisms like MOPs, AOP, or various formsof
meta-programming. For instance, MJ preserves the separatetype-

checkability of Java generics: a generic class can be type checked
separately from the types it may be instantiated with, and a well-
typed generic class will never introduce a type error in its instanti-
ated form. Thus, the classLogMe<X> is guaranteed to never contain
type errors, no matter whatX is instantiated to.

However, simple pattern-based reflective declaration is not ex-
pressive enough for many common tasks that are otherwise per-
fectly suited for this type of mechanism.

Example 1: Consider the pesky problem of defining “getter”
methods for fields in a class. Currently, programmers deal with this
by repeating the same boiler-plate code for each field. This seems
to be a task perfectly suited for pattern-based reflective declaration.
However, we cannot implement this in a type-safe way using MJor
CTR. Consider the following attempt in MJ:

class AddGetter<class X> extends X {
<F>[f] for (F f : X.fields)
F get#f () { return super.f; }

}

AddGetter<X> defines a methodget#f() for each fieldf in
type variableX. get#f denotes an identifier that begins with the
string “get”, followed by the identifier matched byf.1 However,
AddGetter<X> is not modularly type safe—we cannot guarantee
that no matter whatX is instantiated with,AddGetter<X> is always
well-typed! Suppose we have classC:

class C {
Meal lunch; ... // other methods.
boolean getlunch() { return isNoon() ? true : false; }

}

AddGetter<C> contains method “Meal getlunch()”, which in-
correctly overrides method “boolean getlunch()” in its super-
class,C. For this reason, the definition ofAddGetter<X> does not
pass MJ’s type-checking.

This is an error of under-specified requirements. The definition
of AddGetter<X> should clearly specify that it can only declare
methodget#f for those fieldsf where a conflictingly definedget#f
does not already exist inX. However, the pattern-matching language
in MJ (or CTR) does not allow us to specify such a condition.
What we need is to place anegative existential conditionon each
field matched by the pattern: for all fieldsf of X such that method
get#f() does not already exist inX, declare the methodget#f().

Example 2: Consider how one would define a classPair<X,Y>,
which is a container for objectsx andy of typesX andY, respec-
tively. For every non-void method thatX and Y have in common
(i.e., same method name and argument types),Pair<X,Y> should
declare a method with the same name and argument types, but a
return type that is anotherPair, constructed from the return types
of that method inX andY.

Again, this task seems perfectly suited for pattern-based reflec-
tive declaration. Yet there is no way to define such a class using MJ
(or CTR). What we need is apositive existential condition: for all
methods inX, such that another method with the same name and
argument types exists inY, declare a method that invokes both and
returns aPair of their values.

Contributions: In this work, we introducenested patterns.
Nested patterns act as existential conditions that either enable or
block the applicability of the outer-most (primary) pattern. We im-

1 This MJ class only defines getter methods for non-private fields: the se-
mantics of pattern “F f” without modifier specification is that it matches all
non-private fields. This is a limitation with the subclassing-as-extension
based approach that MJ adopts.

plemented nested patterns in our language, MorphJ, an extension
of MJ [14].2 Nested patterns make the following contributions:

• Nested patterns significantly enhance the expressiveness of
pattern-based reflective declarations. Without nested patterns,
languages like MJ and CTR are mostly limited to expressing
wrapper-like patterns [8], such as the logging classLogMe<X>.

• Nested patterns also form the basis for adding more featuresto
the MorphJ language, such as a staticif and a staticerrorif
statements. The staticif allows code to exist or not depend-
ing on the existence or absence of other members. The static
errorif acts as a type-cast: it allows the type system to assume
the existence or absence of a member, and, if the assumption is
violated, an instantiation-time error occurs.

• We demonstrate the power of nested patterns with real-world
applications. We reimplemented parts of DSTM2 [10], a Java
software transactional library that heavily uses reflection and
bytecode engineering (with BCEL [2]) to transform sequential
classes into transactional ones. The MorphJ re-implementation
replaces 1,107 lines of Java reflection and BCEL library calls
with 374 lines of MorphJ code. We also implemented a generic
class that provides default implementations for unimplemented
interface methods, for a combination of any class and any in-
terface. The current solutions to this problem are either imple-
mented as extensions to the underlying language itself, or use
unsafe code generation with templates. We show in Section3
how the MorphJ implementations are easy to write, easy to un-
derstand, as well as type safe.

• Nested patterns create additional challenges for type checking.
We show the techniques involved to preserve the separate type-
checkability of generic classes in MorphJ. We formalize our
type system and prove it sound. We offer a decidable algorithm
for type-checking.
In the remainder of this paper, we start by introducing the syntax

and example usages of nested patterns in MorphJ (Section2).
We then show real-world applications implemented using MorphJ
(Section3). In Section4, we discuss the type-checking issues raised
by nested patterns and introduce our type rules in an informal
manner. We then formalize a core subset of MorphJ and presentthe
type rules in Section5. We continue with a discussion on related
work in Section6 and conclude with our grand-scheme view of the
evolution of programming languages and the role of MorphJ and
other related mechanisms (Section7).

2. Reflective Declarations with Nested Patterns
MorphJ extends the reflective declaration blocks of MJ [14] with
nested patterns. A nested pattern has the same syntactic form as
a primary pattern, but is preceded by the keywords “some” (for
a positivenested pattern) or “no” (for a negativenested pattern).
Like primary patterns, nested patterns can only reflect overcon-
crete types, or type variables of the generic class. A nestedpattern
places a condition (nested condition) on each element matched by
the primary pattern. An element must be matched by the primary
patternand satisfy all nested conditions to be a part of a reflective
block’s iteration range. We illustrate the use of nested patterns with
the following examples.

2.1 Negative Nested Pattern

A negative nested pattern exerts a condition that is only satisfied if
there isnothing in the range of elements matched by the pattern.

2 MorphJ is effectively MJ 2.0. The change of name was decided to avoid
ambiguity in our efforts to release the software for wide use—”MJ” is an
overloaded term for indexing and search purposes. Nevertheless, the change
is also convenient in the context of this paper as it enables us to refer to old
capabilities by name.

Negative nested patterns allow us to implement a modularly type
safeAddGetter<X>:

class AddGetter<X> extends X {1

<F>[f]for(F f : X.fields ; no get#f() : X.methods)2

F get#f() { return super.f; }3

}4

The nested pattern condition on line 2 is only satisfied by those
fields f of X for which there is no methodget#f() in X. (The
missing return type in the nested pattern is a MorphJ shorthand
for matching bothvoid and non-void return types.) Observe that
this AddGetter<X> class will not introduce ill-typed code forany
X. Potentially conflicting method declarations are prevented by the
negative nested pattern. A fieldf for which a methodget#f()
already exists inX does not satisfy the nested condition, and thus is
not in the iteration range of the reflective block.

2.2 Positive Nested Pattern

A positive nested pattern exerts a condition that is only satisfied
if there is someelement in the range matched by the pattern. A
positive nested pattern allows us to define thePair<X,Y> class
discussed in the Introduction as follows:

public class Pair<X,Y> {1

X x; Y y;2

public Pair(X x, Y y) { this.x = x; this.y = y; }3

4

<RX extends Object, RY extends Object, A*>[m]5

for(public RX m(A) : X.methods ;6

some public RY m(A) : Y.methods)7

public Pair<RX,RY> m(A args) {8

return new Pair<RX,RY>(x.m(args), y.m(args));9

}10

}11

Methods ofPair<X,Y> are defined using the reflective block on
lines 5-10. The primary pattern on line 6 matches all non-void and
non-primitive methods ofX. For each such method, the positive
nested condition on line 7 is only satisfied if a method with the
same name and argument types also exists inY. Thus, the primary
and nested patterns in this class find precisely all methods that X
andY share in name and argument types. For each such method,
Pair<X,Y> declares a method with the same name and argument
types, and a body that invokes the corresponding method ofX andY.
The return type is anotherPair, constructed from the return values
of the invocations. Following the same pattern, the class can be
enhanced to also handle methods returning primitive types or void.

2.3 More Features:if, errorif

Nested patterns enable other powerful language features. The re-
flective declarations we have seen so far have been iteration-based:
a piece of code is declared for each element in the iteration range.
MorphJ also supports condition-based reflective declarations and
statements. An example (from an application discussed in detail in
Section3) illustrates the usage of pure conditions in reflective dec-
larations:

<R> if (no public R restore() : X.methods)
public void restore() { ... }

The above reflective declaration block consists of a statically ex-
erted condition, specified by the pattern following theif keyword.
If the pattern condition is satisfied, the code following thecondi-
tion is declared. Thus, methodvoid restore() is only declared if
a methodrestore(), with any non-void return type, does not al-
ready exist inX.

Another useful feature is introduced by theerrorif keyword.
errorif acts as a type-assertion, allowing the programmer to ex-
press facts that he/she knows are true about a type parameter. For

instance, the programmer can express a mixin class that is only ap-
plicable to non-conflicting classes:

class SizeMixin<X> extends X {1

<F> errorif (some F size : X.fields)2

int size = 0;3

}4

In this case, the programmer wants to assert that, if the parame-
ter typeC already contains a field namedsize, this is not an error in
the definition ofSizeMixin but in the instantiationSizeMixin<C>.
Thus, theerrorif construct serves as a typical type-cast: it is both
an assumption that the type system can use (i.e., when checking
SizeMixin<X> it can be assumed thatX has nosize field) and at the
same time a type obligation for a later type-checking stage.Unlike,
however, traditional type-casts that turn a static type check into a
run-time type check, anerrorif turns a modular type check into a
non-modular (type-instantiation time), but still static,type check.

2.4 Semantics of Nested Patterns

Similarly to primary patterns, a nested pattern introducesan itera-
tion. However, nested patterns are only used to return a true/false
decision. For instance, in classPair<X,Y>, the nested pattern iter-
ates over all the methods inY matching the pattern, but the itera-
tion only serves to verify whether a matching method exists,not
to produce different code for each matching method. Furthermore,
multiple nested patterns are all nested at the same level, forming a
conjunction of their conditions.

Nested patterns may use pattern variables that are not boundby
any primary pattern. However, there are restrictions as to how vari-
ables bound only by nested patterns can be used in code introduced
by the reflective block (i.e., the reflective declaration). Pattern vari-
ables bound by only negative nested patterns cannot be used in the
reflective declaration at all. For instance, the pattern “no public R

restore()” above bound type variableR. However,R only appears
in a negative nested pattern, and thus cannot be used in the dec-
laration ofrestore(). Intuitively, a variable in a negative nested
pattern is never bound to any concrete type/identifier—no match
can exist for the negative nested condition to be satisfied. Clearly,
an unbound variable cannot be used in declarations.

Pattern variables that are bound by positive nested patterns,
however, can be used in the reflective declaration, if we can deter-
mine that exactly one element can be matched by the nested pattern.
This is the case only if all uniquely identifying parts of thenested
pattern use either constants, or pattern variables bound bythe pri-
mary pattern. The uniquely identifying parts of a method pattern
are its name and argument types, and the uniquely identifying part
of a field pattern is its name. For example, inPair<X,Y>, the posi-
tive nested pattern “some RY m(A) : Y.methods” usesm andA in its
uniquely identifying parts. Both pattern variables are bound by the
primary pattern. Thus, we can useRY in the reflective declaration,
even though it only appears in the nested pattern.

It may not be immediately obvious howif anderrorif relate to
nested patterns. However, the type system machinery that enables
if and errorif is precisely that of nested patterns. The patterns
used asif and errorif conditions are regular nested patterns
(with some andno) with the same semantics and conditions (e.g.,
limitations on when bound variables can appear in a reflective
declaration). Indeed, even our actual implementation of the static
if statement translates it intermediately into a staticfor loop with
a special “unit” value for the primary pattern condition.

We do not allow the nesting of primary patterns—i.e., it is not
legal to have nested staticfor loops. However,if and errorif

declarations and statements can be freely nested within thescopes
of one another, or within the scope of a staticfor loop.

3. Real-World Applications
We next show two real world applications, re-implemented con-
cisely and safely with nested patterns.

3.1 DSTM2

DSTM2 [10] is a Java library implementing object-based software
transactional memory. It provides a number of “transactional fac-
tories” that take as input a sequential class, and generate atrans-
actional class. Each factory supports a different transactional pol-
icy. The strength of DSTM2 is in its flexibility. Users can mixand
match policies for objects, or define new “factories” implementing
their own transactional policies.

In order to automatically generate transactional classes,DSTM2
factory classes use a combination of Java reflection, bytecode en-
gineering with BCEL [2], and anonymous class definitions. How-
ever, the information needed for these generations is purely static
and structural. The authors of DSTM2 had to employ low-levelrun-
time techniques because the Java language does not offer enough
support for compile-time transformation of classes. MorphJ, how-
ever, is a good fit for this task.

In our re-implementation of DSTM2’s factories and support-
ing classes, 1,107 (non-commented, non-blank) lines of Java
code are replaced with 374 lines of MorphJ code. For example,
we replaced DSTM2’sfactory.shadow.RecoverableFactory<X>
and factory.shadow.Adaptor<X> with the MorphJ class
Recoverable<X> in Figure 1.
@atomic public class Recoverable<class X> extends X {1

// for each atomic field of X, declare a shadow field.2

<F>[f]for(@atomic F f: X.fields; no shadow#f: X.fields)3

F shadow#f;4

5

// for each field of X, declare a getter.6

<F>[f]for(@atomic F f: X.fields; no get#f(): X.methods)7

public F get#f () {8

Transaction me = Thread.getTransaction();9

Transaction other = null;10

while (true) {11

synchronized (this) {12

other = openRead(me);13

if (other == null) { return f; }14

}15

manager.resolveConflict(me, other);16

}17

}18

19

// for each field of X, declare a setter20

<F>[f]for(@atomic F f : X.fields;21

no set#f(F) : X.methods)22

public void set#f (F val) {23

... // code to open transaction.24

f = val;25

... // code resolving conflict.26

}27

28

// create backup method29

<R>if (no R backup() : X.methods)30

public void backup() {31

<F>[f] for (@atomic F f : X.fields)32

shadow#f = f;33

}34

35

// create recover method36

<R>if (no R recover() : X.methods)37

public void recover() {38

// restore field values from shadow fields.39

<F>[f] for (@atomic F f : X.fields)40

f = shadow#f;41

}42

}43

Figure 1. A recoverable transactional class in MorphJ.

For each field ofX, Recoverable<X> creates a shadow field,
as well as getter and setter methods that acquire a lock from a

transactional manager first, perform the read or write, and then
resolve conflicts before returning. Furthermore, it createsbackup()
andrestore() methods to backup and restore fields to and from
their shadow fields.3

The advantage of the MorphJ implementation is two-fold. First,
Recoverable<X> is guaranteed to never declare conflicting declara-
tions. For example,shadow#f is only declared if this field does not
already exist inX, andbackup() is only declared if such a method
does not already exist inX. Implementations using reflection and
bytecode engineering enjoy no such guarantees, and must instead
rely on thorough testing to discover potential bugs.

Secondly, classRecoverable<X> is easier to write and under-
stand. For example, the code for generating abackup() method in
DSTM2’s RecoverableFactory<X> is illustrated in Figure 2. We
invite the reader to compare thebackup() method declaration in
Figure 1 (lines 29-33) to the code in Figure 2.
public class RecoverableFactory<X>1

extends BaseFactory<X> {2

...3

public void createBackup() {4

InstructionList il = new5

InstructionList(); MethodGen method =6

new MethodGen(ACC_PUBLIC, Type.VOID, Type.NO_ARGS,7

new String[] { }, "backup",8

className, il, _cp);9

10

for (Property p : properties) {11

InstructionHandle ih_0 =12

il.append(_factory.createLoad(Type.OBJECT, 0));13

il.append(_factory.createLoad(Type.OBJECT, 0));14

il.append(_factory15

.createFieldAccess(className, p.name,16

p.type,17

Constants.GETFIELD));18

il.append(_factory.19

.createFieldAccess(className,20

p.name + "$",21

p.type,22

Constants.PUTFIELD));23

}24

25

InstructionHandle ih_24 =26

il.append(_factory.createReturn(Type.VOID));27

method.setMaxStack();28

method.setMaxLocals();29

_cg.addMethod(method.getMethod());30

il.dispose();31

}32

}33

Figure 2. DSTM2 code for creating a methodbackup().

Interestingly, the predecessor of DSTM2 is a C# software trans-
actional memory library called SXM [9]. It was re-implemented
by Fähndrich, Carbin and Larus as the “quintessential example” of
Compile-Time Reflection (CTR) [7]. However, CTR’s safety guar-
antees only concern the validity of references, and not declaration
conflicts. We give a more detailed exposition of CTR in Section 6.

3.2 Default Implementations for Interface Methods

Java ensures that a class cannot be declared to “implement” an in-
terface unless it provides implementations for all of the interface’s
methods. This often results in very tedious code. For instance, it
is common in code dealing with the Swing graphics library to im-
plement an event-listener interface, yet provide empty implementa-

3 The MorphJ implementation replicates the functionality ofDSTM2 fac-
tory classes, but with low-level differences. For instance, a DSTM2 factory
generates transactional classes from interface definitions. It parses the inter-
face’s method names that begin with “get” and “set” to determine the field
names to generate. We believe this to be a design artifact dueto the con-
straints of the Java language. We instead statically iterate over the@atomic
fields of classes, and generate backup fields as needed.

tions for most of the interface methods because the application does
not care about the corresponding events. In response to thisneed,
there have been mechanisms proposed [11, 20] that allow the pro-
grammer to specify that he/she wants just a default implementation
for all members of an interface that are not already implemented
by a class. These past solutions introduced new keywords (orJava
annotations) for this specific feature. They either have no guarantee
for the well-typedness of generated code [11], or require extensions
to the Java type system [20]. These changes to the underlying lan-
guage are required to support just thisone feature. In contrast, we
can express these language extensions as a MorphJ generic class
that is guaranteed to always produce well-typed code. Belowis a
slightly simplified version of the MorphJ solution to this problem.
(For conciseness, we elide the declarations dealing withvoid- or
primitive-type-returning methods, which roughly double the code.)

class DefaultImplementation<X,interface I> implements I {1

X x;2

DefaultImplementation(X x) { this.x = x; }3

4

// for all methods in I, if the same method does5

// not appear in X, provide default implementation.6

<R extends Object,A*>[m]for(R m (A) : I.methods ;7

no R m (A) : X.methods)8

R m (A a) { return null; }9

10

// for all methods in X that *do* correctly override11

// methods in I, we need to copy them.12

<R,A*>[m]for(R m (A) : I.methods ;13

some R m (A) : X.methods)14

R m (A a) { return x.m(a); }15

16

// for all methods in X, such that there is no method17

// in I with the same name and arguments, copy method.18

<R,A*>[m]for(R m (A) : X.methods;19

no m (A) : I.methods)20

R m (A a) { return x.m(a); }21

}22

ClassDefaultImplementation<X,I> copies all methods of type
X that either correctly implement methods in interfaceI, or are
guaranteed to not conflict with methods inI. For methods inI
that have no counterpart inX, a default implementation is provided.
Methods inX that conflict with methods inI (same argument types,
different return) are ignored. The above code demonstratesthe
power of nested patterns, both in terms of expressiveness, and in
terms of type safety. The application naturally calls for different
handling of methods in a type, based on the existence of methods in
another type. Furthermore, these declarations are guaranteed to be
unique, and their uniqueness is crucially based on nested patterns.

4. Type-Checking Nested Patterns
The complexity in type-checking pattern-based reflective declara-
tions arises from the existence of pattern type and name variables.
When a declaration is made using such variables, how can we check
that for all concrete types and identifiers these variables could ex-
pand to, the declaration will always be unique? Similarly, how can
we check that a reference made using a name variable always refers
to an entity that is declared?

The key is to treat a declaration as arangeof declared elements.
(A declaration made without pattern variables has a one-element
range.) Determining the uniqueness of two declarations then re-
duces to determining whether their ranges aredisjoint. Similarly, a
reference is also a range. Determining whether a reference is valid
then reduces to determiningsubsumption: do all entities in the ref-
erence range have corresponding entities in the declaration range?

In this section, we introduce the techniques for checking ref-
erence validity and declaration uniqueness with nested patterns.

We focus on declarations and references made by reflecting over
type variables: reflecting over non-variable types is simply syntac-
tic sugar for manually inlining the declarations. We further focus
on the rules for type-checking methods—rules for fields are atriv-
ial adaptation of those for methods.

4.1 Reference Validity

Let us take another look at classLogMe<X> from the Introduction:

class LogMe<class X> extends X {1

<R,A*>[m] for (public R m(A) : X.methods)2

public R m (A a) {3

R result = super.m(a);4

System.out.println(result);5

return result;6

}7

}8

How do we know that the method invocation “super.m(a)” (line
4) is valid? Notice that the range ofm (i.e., all the identifiers it could
expand to) is exactly the names of methods matched by the primary
pattern on line 2: all non-void methods ofX. This range is certainly
subsumed by the range of all methods declared forX. Thus, we
know methodm exists, no matter whatX is. Furthermore, how do
we know we are invokingm with the right arguments? The type of
a is A: exactly the argument typem of X is expecting.

Things get a bit more complex when a name variable bound
in one reflective block references a method declared in a different
reflective block. Consider the following class, which logs the argu-
ments of methods accepting strings, before callingLogMe to log the
return value.

class LogStringArg<class Y> {1

LogMe<Y> loggedY;2

3

<T>[n] for (public T n(String) : Y.methods)4

public T n (String s) {5

System.out.println("arg: " + s);6

return loggedY.n(s);7

}8

}9

How do we know thatloggedY.n(s) (line 7) is a valid reference,
when the methods ofloggedY are defined in a different class and a
different reflective block? The key is to determine that the range of
n is subsumed by the range of methods inLogMe<Y>. This is to say
that the range ofn’s enclosing reflective block should be subsumed
by the range ofLogMe<Y>’s declaration reflective block. Observe
that the declaration block ofLogMe<Y> is defined over methods of
Y (after substitutingY for X), as is the reflective block enclosingn.
Secondly, the pattern for the declaration block ofLogMe<Y> is more
general than the pattern for the reflective block enclosingn: the
former matches all non-void methods, and the latter matches all
non-void methods taking exactly oneString argument. Thus, any
method that is matched by the reference reflective block’s pattern
is matched by the declaration reflective block’s pattern, regardless
of whatY is. Thus, there is always a methodn in LogMe<Y>.

Whether a pattern is more general than another can be sys-
tematically determined by finding aone-way unificationfrom the
more general pattern to the more restricted one. In a one-wayuni-
fication, only pattern variables declared for the more general pat-
tern are used as unification variables. All other pattern variables
are considered constants. In this example, we can unify “public R

m(A)” to “ public T n(String)” using the mapping{R7→T, m7→n,
A7→{String}}.

We also use this unification mapping in determining whethern

is invoked with the right argument types. We apply the mapping to
the method declaration inLogMe<Y>, and get the declared signature
“public T n(String)”. Sinces has the typeString, the invocation

is clearly correct. Furthermore, we can check that the result of the
invocation is of typeT, which is precisely the expected return type
of the method enclosing “loggedY.n(s)”.

For the case of nested patterns, consider the following class:

class VoidPair<X,Y> {1

X x; Y y; ...// constructor to initialize x and y.2

3

<A*>[m]for (public void m(A) : X.methods ;4

some public void m(A) : Y.methods)5

public void m (A a) { x.m(a); y.m(a); }6

}7

VoidPair<X,Y> declares a method for everyvoid method thatX
andY share in name and argument types, and invokes that method
onx andy. Using the reference rules described previously, we know
that x.m(a) is a valid reference. Furthermore, because the pattern
variables used in the positive nested pattern on line 5 are all bound
by the primary pattern, we know that if the nested condition is
satisfied, there is exactly one element in the range of the nested
pattern, so the cally.m(a) is unambiguous. Since the types also
match,y.m(a) is a valid reference, as well.

Let us now consider the general case of a reference made in one
reflective block, to declarations made in another reflectiveblock,
when both blocks have nested patterns. LetRd andRr denote the
ranges for the reflective blocks of the declaration and the reference,
respectively. There are two sufficient conditions to determine that
Rr is subsumed byRd. First, the primary range ofRr must be
subsumed by the primary range ofRd. Second, for all methods
that are in the primary range ofRr (and thus also in the primary
range ofRd), if the method satisfies the nested conditions ofRr, it
should also satisfy the nested conditions ofRd. That is to say, the
nested conditions ofRr should be stronger, and imply the nested
conditions ofRd.

Determining that one nested condition implies another can be
reduced to single range subsumption. Let〈Nr,Tr〉 denote the range
of a nested patternNr matching over the methods of typeTr. Let
〈Nd,Td〉 be similarly interpreted. Let+ prefix a positive nested
condition, and− prefix a negative nested condition. We have two
ways of determining that one condition implies another:

• +〈Nr,Tr〉 implies+〈Nd,Td〉 if 〈Nd,Td〉 subsumes〈Nr,Tr〉.

• −〈Nr,Tr〉 implies−〈Nd,Td〉 if 〈Nr,Tr〉 subsumes〈Nd,Td〉.

Intuitively, +〈Nr,Tr〉 is satisfied if there is at least one element
in 〈Nr,Tr〉. Then there is certainly at least one element in a larger
range, as well. Thus,+〈Nd,Td〉 should be satisfied. Similar reason-
ing applies for the implication between two negative conditions.

To be more concrete, consider the following class:

class CallVoidsWithString<T,S> {8

VoidPair<T,S> voidPair;9

... // constructor to initialize voidPair10

[n]for (public void n(String) : T.methods ;11

some public void n(String) : S.methods)12

public void n (String s) { voidPair.n(s); }13

}14

For everyvoid method taking oneString argument thatT and
S have in common,CallVoidsWithString<T,S> declares a method
with the same signature, and invokes a method with the same name
on voidPair, of typeVoidPair<T,S>. This reference is valid if the
range of the reflective block on lines 11-12 is subsumed by the
range of the declaration reflective block (lines 4-5 in the definition
of VoidPair).

The range of primary pattern on line 11 is subsumed by the
range of declaration’s primary pattern (line 4), by the one-way
unification mapping{m7→n, A7→{String}}.

To check whether the nested pattern on line 5 subsumes the
nested pattern on line 12, note that we first apply the unification

mappings obtained from unifying the primary patterns—we only
want to determine this subsumption relationship for those methods
that lie in the range of both primary patterns. In our example, af-
ter applying the unification mapping to the positive nested pattern
on line 5 (and also substitutingS for Y), we have “public void

n(String) : S.methods”. This clearly subsumes “public void

n(String) : S.methods” on line 12.
These two conditions guarantee us that referencevoidPair.n(s)

is always a valid one. It is easy to check that this is indeed the case.
The above approach generalizes to an arbitrary number of

nested conditions: each nested condition in the declaration range
must be implied by at least one nested condition in the reference
range. A range with no nested patterns is equivalent to a range with
a positive nested pattern that subsumes everything, or a negative
nested pattern that is subsumed by everything. The case where there
are only nested patterns (i.e.,if anderrorif statements) can be re-
duced to a range with a special primary pattern value that subsumes
only itself and is subsumed only by itself.

4.2 Uniqueness of Declarations

We use range disjointness to check whether two declarationsare
unique. In the case of method declarations, uniqueness means two
methods within the same class (including inherited methods) can-
not have the same name and argument types.4

4.2.1 Internally Well-defined Range

A simple property to establish is that declarations introduced by the
same reflective block do not conflict. Consider the followingclass:

class CopyMethods<X> {1

<R,A*>[m] for(R m (A) : X.methods ; nestedConds)2

R m (A a) { ... }3

}4

CopyMethods<X>’s methods are declared within one reflective
block. The iteration range of this block comprises all non-void

methods ofX that also satisfy arbitrary nested conditions,nested-
Conds. For each of these methods, a method with identical signa-
ture is declared forCopyMethods<X>.

How do we guarantee that, given anyX, the method declarations
within this block are always unique? Observe thatX can only be
instantiated with a well-formed type (the base case beingObject),
and all well-formed types have unique method declarations.Thus,
if the declaration block merely copies the name and argumenttypes
of methods from a well-formed type, the methods declared by this
block are guaranteed to be unique, as well.

4.2.2 Uniqueness Across Ranges

When one or both methods are defined using reflective iterations,
their uniqueness means that therange of their 〈name, argument
types〉 tuple cannot overlap. This can be determined by atwo-way
unificationof the two declarations. In a two-way unification, pat-
tern variables frombothreflective blocks are unification variables.

Let us start with a simple example. Consider the following class:

class DisjointDecs<X> {1

<R>[m] for(R m (int) : X.methods; nestedConds1)2

R m (int i) ...3

4

<S>[n] for(S n (int) : X.methods; nestedConds2)5

S n (int i, String s) ...6

}7

4 In Java, methods in a subclass are allowed to override their counterparts in
the superclass with co-variant return types. This involvesa relaxation of the
rules we describe in this section: return types in the subclass are allowed to
be subtypes of their counterparts in the superclass.

It is easy to see that the declarations on lines 3 and 6 cannot
overlap for anyX. There is no unification to make the two signatures
have the same〈name, argument types〉 tuple, because there is
simply no way to unify{int} with {int,String}.

When two method signatures do unify, there may be overlap
in the declarations. However, if we can prove that overlapping ele-
ments are infeasible, then the declarations are still unique. An over-
lap is infeasible if the unification mapping producing the overlap,
when applied to the primary and nested patterns, produces mutually
exclusive conditions. Note that a non-empty primary pattern range
states a condition, as well—it is a positive condition that sayssome
element exists in this range.

Consider the following class:

class StillUnique<X> {1

<A1>[m]for(String m (A1) : X.methods ; nestedConds1)2

void m (A1 a) { ... }3

4

<A2>[n]for(int n (A2) : X.methods ; nestedConds2)5

void n (A2 a) { ... }6

}7

The declared signatures on lines 3 and 6 unify with the mapping
{m7→n, A17→A2}. Applying this mapping to the primary patterns on
lines 2 and 5, we get “String n (A2) : X.methods”, and “int n

(A2) : X.methods”. Methods matched by these patterns can cause
conflicting declarations. However, having at least one method in
both of these ranges means that there need to be two methods in
X with the same name and argument types, but different return
types. This directly contradicts the fact thatX is a well-formed
type. Thus, this unification mapping produces mutually exclusive
conditions between the two primary pattern conditions, andthere
are no elements that would make the mapping possible. These
declarations are thus still disjoint.

There are two ways to determine whether two conditions are
mutually exclusive. Using the same notation as before,

• +〈Pn,Tn〉 and +〈P ′

n,Sn〉 are mutually exclusive ifTn is a
subtype ofSn, andPn, P ′

n have unifying method name and
argument types, but different return types.

• +〈Pn,Tn〉 and−〈P ′

n,Sn〉 are mutually exclusive if〈P ′

n,Sn〉
subsumes〈Pn,Tn〉

We apply these rules on all pairs of conditions. A single mutual
exclusive pair guarantees the disjointness of ranges. We applied
the first rule to prove thatStillUnique<X> contains unique method
declarations. The following example demonstrates an application
of the second rule:

public class UnionOfStatic<X,Y> {1

<A*>[m] for(static void m (A) : X.methods; nestedCond)2

public static void m(A args) { X.m(args); }3

4

<B*>[n] for(static void n (B) : Y.methods ;5

no static void n (int, B) : X.methods)6

public static int n(int count, B args) {7

for (int i = 0; i < count; i++) Y.n(args);8

return count;9

}10

}11

The two method declarations on lines 3 and 7 have signatures
that can be unified with the mapping{ A7→{int,B}, m7→n}. Ap-
plying this substitution to the primary pattern on line 2 yields
“static void n(int,B) : X.methods”. Having a method in the
range of this pattern directly contradicts the condition ofthe nega-
tive nested pattern on line 6, which states there should be nometh-
ods in the range of “static void n(int,B) : X.methods”. Thus,
the two method declarations are unique for allX andY.

4.2.3 Generalizations and Boundary Conditions

We have so far neglected to state the rules for when one of the
names used for reference or declaration is a constant name. The
range of reference and declaration with such a name containsa
single element. Thus, it can always be subsumed by a range with
a variable name, but it can never be disjoint from a range witha
variable name.

We have also glossed over some details in the unification. In
addition to unifying the pattern variables, there needs to be an
additional check on type bounds. For example, a pattern vari-
ableA extends Number cannot be unified with variableB extends

java.io.File, because they can never match the same types—
there is no type that is a subtype of bothNumber andjava.io.File.
This detail is rigorously defined in the rules presented in Section5.

5. Formalization
We formalize MorphJ’s type system with a simplified formalism,
FMJ, based on FGJ [15]. Due to space limitations, we present
only the type rules most relevant to checking declarations and
expressions enclosed by nested patterns. Interested readers may
consult our technical report [12] for the full text of type rules and
soundness proofs.

5.1 Syntax

The syntax of FMJ is presented in Figure3. We adopt many of the
notational conventions of FGJ:C,D denote constant class names;
X,Y,Z denote type variables;N,P,Q,R denote non-variable types;
S,T,U,V,W denote types;f denotes field names;m denotes non-
variable method names;x,y denote argument names. Notations
new to FMJ are:η denotes a variable method name;n denotes
either variable or non-variable names;o denotes a nested pattern
condition operator (either+ or -) for the keywordssome or no,
respectively.

T ::= X | N

N ::= C<T>

CL ::= class C<X⊳N>⊳ N {T f; M}

| class C<X⊳N>⊳ T {T f; M }

M ::= T m (T x) {↑e;}

M ::= <Y⊳P>for(Mp;oMn) U η (U x) {↑e;}
o ::= + | -

M ::= V η (V):X.methods

e ::= x | e.f | e. n (e) | new C<T>(e)

n ::= m | η

Figure 3. Syntax

We use the shorthandT for a sequence of typesT0,T1,...,Tn,
andx for a sequence of unique variablesx0,x1,...,xn. We use•
to denote an empty sequence. We use: for sequence concatenation,
e.g.S:T is a sequence that begins withS, followed byT. We use∈
to mean “is a member of a sequence” (in addition to set member-
ship). We use . . . for values of no particular significance to arule.
⊳ and↑ are shorthands for the keywordsextends andreturn, re-
spectively. Note that all classes must declare a superclass, which
can beObject.

FMJ formalizes some core Mystique features that are represen-
tative of our approach. One simplification is that we allow only
one nested pattern per reflective block. This does not changethe
essence of our type system, since we can emulate multiple nested
patterns using one nested pattern that reflects over an intermedi-
ate type, defined itself using reflective declarations. (I.e., we can
simulatei nested patterns withi − 1 intermediate types with one

nested pattern each.) Another simplification is that we do not al-
low a nested pattern to use any pattern type or name variablesnot
bound by its primary pattern. We also do not formalize reflecting
over a statically known type, or using a constant name in reflective
patterns. These are decidedly less interesting cases from atyping
perspective. The zero or more length type vectorsT* are also not
formalized. These type vectors are a mere matching convenience.
Thus, safety issues regarding their use are covered by non-vector
types. We do not formalize reflectively declared fields—their type-
checking is a strict adaptation of the techniques for checking meth-
ods. Lastly, static name prefixes, casting expressions and polymor-
phic methods are not formalized.

FGJ does not support method overloading, and FMJ inherits
this restriction. Thus, a method name alone uniquely identifies a
method definition. Since we allow no fresh name variables in nested
patterns, there can be only one name variable in a reflective block.
We useη for this name variable, and a reflective definition must also
use this same name variable. This results in a small simplification
over the informal rules in Section4 but leaves their essence intact.

A program in FMJ is an(e,CT) pair, wheree is an FMJ
expression, andCT is the class table. We place some conditions
on CT: every class declarationclass C... has an entry inCT;
Object is not inCT. The subtyping relation derived fromCT must
be acyclic, and the sequence of ancestors of every instantiation type
is finite. (The last two properties can be checked with the algorithm
of [1] in the presence of mixins.)

5.2 Typing Judgments

There are three environments used in our typing judgments:

• ∆: Type environment. Maps type variables to their upper
bounds.

• Γ: Variable environment. Maps variables (e.g.,x) to their types.

• Λ: Reflective iteration environment.Λ has the form〈Rp ,oRn 〉,
whereRp is the primary pattern, andoRn the nested pattern.o
can be+ or -.

Rp has the form(T1, <Y⊳P>U→U0). T1 is the type over
whose methodsRp iterates. We call it thereflective typeof
Rp

.

Y are pattern type variables, bounded byP, andU→U0

the method pattern.
Rn has a similar form:(T2, V→V0). However, note the
lack of pattern type variables, due to the (formalism-only)
simplification that the nested pattern not use pattern type
variables not already bound in the primary pattern.

There is no nesting of reflective loops. Thus,Λ contains at most
one〈Rp ,oRn〉 tuple.

We use the7→ symbol for mappings in the environments. For ex-
ample,∆=X7→C<T> means that∆(X)=C<T>. Every type variable
must be bounded by a non-variable type. The functionbound∆ (T)
returns the upper bound of typeT in ∆. bound∆(N)=N, if N is not
a type variable. Andbound∆ (X)=bound∆(S), where∆(X)=S.

In order to keep our type rules manageable, we make two sim-
plifying assumptions. To avoid burdening our rules with renam-
ings, we assume that pattern type variables have globally unique
names (i.e., are distinct from pattern type variables in other reflec-
tive environments, as well as from non-pattern type variables). We
also assume that all pattern type variables introduced by a reflective
block are bound (i.e., used) in the corresponding primary pattern.
Checking this property is easy and purely syntactic.

The core of our type system is in determining reflective range
subsumption and disjointness. Thus, we begin our discussion with a
detailed explanation of the rules for subsumption and disjointness.

5.2.1 Subsumption and Disjointness

The range of a reflective environment,〈Rp ,oRn 〉, comprises meth-
ods in the primary rangeRp , that also satisfy the nested condition
oRn . The nested condition+Rn (or -Rn) is satisfied if there is at
least one method (or no method, resp.) in the range ofRn . We call
ranges ofRp andRn single ranges. In this section, we explain the
rules for determining the following three relations:

• ∆;[W/Y]⊢Λ⊑ΛΛ′. Range ofΛ is subsumed by the range ofΛ′,
under the assumptions of type environment∆ and the unifying
type substitutions of[W/Y].

• ∆;[W/Y]⊢R1⊑RR2. Single rangeR1 is subsumed by single
rangeR2, under the assumptions of∆ and the unifying type
substitutions of[W/Y].

• ∆⊢disjoint(Λ, Λ′). The range ofΛ andΛ′ are disjoint under
the assumptions of∆.

Single range subsumption. In determining the subsumption be-
tween two reflective environments, we must first see how subsump-
tion is determined between two single ranges. Rule SB-R (Fig-
ure 4) states that first, the reflective type of the larger range,R2,
should be a subtype ofR1’s reflective type. Secondly,R2’s pattern
should be more general thanR1’s pattern. This means that aone-
wayunification exists from the pattern ofR2 to the pattern ofR1,
where only the pattern type variables inR2 are considered variables
in the unification process.[W/Y] are the substitutions that satisfy
such one-way unification. Unification is defined by two relations:

• ∆;[W/Y]⊢unify(U0:U, V0:V). Rule UNI (Figure6) describes a
standard unification condition with a twist: unifying substi-
tutions (for pattern type variables) must respect the subtyp-
ing bounds of the type variables. For example, the substitu-
tion [Y/Object], where∆⊢Y<:Number, doesnot unify Y and
Object, because the bound ofY is tighter thanObject.

• ∆⊢T≺:ZS (Figure6) indicates that typeT is a valid substitution
of S, i.e., it obeys the bound ofS, using Z as pattern type
variables.

Reflective (nested) range subsumption.SB-Λ (Figure 4) de-
fines the conditions for the range of reflective environment
Λ=〈Rp ,oRn 〉 to be subsumed by the range ofΛ′=〈R′

p ,o′R′

n 〉.
These conditions reflect precisely the informal rules of Section 4.
First, regardless of nested patterns, the primary range ofΛ should at
least be subsumed by the primary range ofΛ′. Secondly, for every
method inRp that satisfies the nested patternoRn , the correspond-
ing method inR′

p should satisfy the nested patterno′R′

n . There are
a couple of ways to guaranteeoRn implieso′R′

n . If +Rn is true,
andRn is subsumed byR′

n , then+R′

n is also true. This condition is
expressed by∆;•⊢Rn⊑R[W/Y]R′

n , if o=o′=+. We apply the uni-
fying type substitutions for the primary ranges to the nested range
R′

n : in order to properly compare the ranges ofRn andR′

n , we need
to restrictR′

n to what it can be for the methods that are matched by
bothRp andR′

p . Note that we are using an empty sequence of type
substitutions (•) in determining thatRn is subsumed by[W/Y]R′

n .
This is because nested patterns do not have pattern type variables
of their own, and pattern type variables from the primary pattern
are treated as constants in the nested patterns. Similarly,if -Rn is
true, andRn subsumesR′

n , -R′

n is also true.

Reflective range disjointness.Disjointness of reflective ranges is
defined by rules DS-Λ1 and DS-Λ2. DS-Λ1 specifies the condi-
tions for disjointness whenΛ andΛ′ reflect over types from the
same subtyping hierarchy. In this case,Λ andΛ′ are disjoint if their
primary ranges are disjoint. However, if the two primary rangesdo
have overlap, (i.e.,∆;[W/Z]⊢unify(U0:U, U

′

0:U
′): a two-wayunifi-

cation exists between the primary ranges) it is still possible for Λ

Reflective range subsumption:

Λ=〈Rp ,oRn〉 Λ′=〈R′

p ,o′R′

n 〉 R′

p=(T′p, <Y⊳P>V→V0) ∆;[W/Y]⊢Rp⊑RR′

p

∆;•⊢Rn⊑R[W/Y]R′

n if o=o′=+ ∆;•⊢[W/Y]R′

n⊑RRn if o=o′=-

∆;[W/Y]⊢Λ⊑ΛΛ′ (SB-Λ)

Single range subsumption:

R1=(T1, <X⊳Q>U→U0) R2=(T2, <Y⊳P>V→V0) ∆ ⊢T2<:T1 ∆′=∆,X<:Q,Y<:P ∆′;[W/Y]⊢unify(U0:U, V0:V)

∆;[W/Y]⊢R1⊑RR2 (SB-R)

Reflective range disjointness:

Λ=〈Rp ,oRn〉 Λ′=〈R′

p ,o′R′

n 〉 Rp=(Tp, <X⊳Q>U→U0) R′

p=(T′p, <Y⊳P>U′→U′
0
)

∆⊢Tp<:T′p or ∆⊢T′p<:Tp ∆′=∆,X<:Q,Y<:P Z=X,Y

for all W, ∆′;[W/Z]⊢unify(U0:U, U′
0
:U′) implies

∆′; • ⊢ [W/Z]Rn⊑R[W/Z]R′

n if o = +, o′ = −
∆′; • ⊢ [W/Z]R′

n⊑R[W/Z]Rn if o = −, o′ = +

∆⊢disjoint(Λ, Λ′) (DS-Λ1)

Λ=〈Rp ,oRn〉 Λ′=〈R′

p ,o′R′

n 〉 Rp=(Tp, <X⊳Q>U→U0) R′

p=(T′p, <Y⊳P>U′→U′
0
) ∆′=∆,X<:Q,Y<:P

∆; [W/X] ⊢ R′

p⊑RRn o = − or
∆; [W/Y] ⊢ Rp⊑RR′

n o′ = −

∆⊢disjoint(Λ, Λ′) (DS-Λ2)

Figure 4. Range subsumption and disjointness rules.

Method type lookup:

Λ=〈Rp ,oRn〉 Rp=(X, <Y⊳P>U→U0)

∆;Λ ⊢mtype(η, X)=U→U0 (MT-VAR-R1)
Λ=〈Rp ,+Rn〉 Rn=(X, U→U0)

∆; Λ ⊢mtype(η, X)=U→U0 (MT-VAR-R2)

Λ=〈Rp ,oRn 〉 Rp=(T, <Y⊳P>V→V0) ∆;Λ ⊢mtype(η, bound∆(X))=U→U0

∆; Λ ⊢mtype(η, X)=U→U0 (MT-VAR-S)

CT (C)=class C<X⊳N>⊳T {... M} <Y⊳P>for(Mp;oMf) S0 η (S x) {↑e;} ∈ M

Mp=U0 η (U):Xi.methods Mf=V0 η (V):Xj.methods

Rp=(Ti, [T/X](<Y⊳P>U→U0)) Rn=(Tj , [T/X](V→V0)) Λd=〈Rp ,oRn 〉 ∆;[W/Y]⊢Λ⊑ΛΛd

∆;Λ ⊢mtype(η, C<T>)=[T/X][W/Y](S→S0) (MT-CLASS-R)

CT (C)=class C<X⊳N>⊳T {... M}
for all <Y⊳P>for(Mp;oMf) S0 η (S x) {↑e;} ∈ M

Mp=U0 η (U):Xi.methods Mf=V0 η (V):Xj.methods

Rp=(Ti, [T/X](<Y⊳P>U→U0)) Rn=(Ti, [T/X](V→V0)) Λd=〈Rp ,oRn 〉
implies ∆⊢disjoint(Λ, Λd)

∆;Λ ⊢mtype(η, C<T>)=mtype(η, [T/X]T) (MT-SUPER-R)

Figure 5. Method type lookup.

andΛ′ to be disjoint if we can establish that for the methods that
fall into the overlap, the nested patterns cannot be satisfied simul-
taneously. There are two ways to establish the exclusivity of two
nested patterns. First, if+Rn is true, andRn is subsumed byR′

n ,
then-R′

n cannot possibly by true. Similarly, if+R′

n is true, andR′

n

is subsumed byRn , then-Rn cannot be true.
DS-Λ2 specifies a different condition for disjointness: if the

primary range ofΛ, Rp , can be subsumed by the nested range
of Λ′, R′

n , and the nested pattern is negative (i.e.,-R′

n), then it
is guaranteed thatΛ and Λ′ have disjoint names. The reason is
that any method matched by the primary rangeR′

p is guaranteed
to not satisfy the nested pattern-Rn , thus the two nested ranges are
disjoint. Similarly, ifRp is subsumed byRn , and-R′

n is the nested
pattern condition, disjointness is also established.

These rules reflect very closely the informal rules of Section 4
modulo the small differences in the formalism mentioned in Sec-
tion 5.1: we do not need to distinguish between declarations and
primary patterns in the formalism, as the uniqueness of entities in

the primary pattern implies (through name uniqueness, since there
is no overloading) the uniqueness of declared entities.

5.2.2 Valid Method Invocation

The rest of the typing rules add machinery to standard FGJ type
checking to express checks using range subsumption and disjoint-
ness. For instance, method invocation rules rely on method lookup
rules,mtype, to determine the correct method type. We have shown
in Figure5 the mtyperules pertaining to looking up methods ref-
ered to using name variables. Please consult our technical report
for the full set of rules.

MT-VAR-R1 and MT-VAR-R2 say that the type of method with
a variable nameη in a typeX, whereX is either the reflective type
for the primary pattern or the reflective type of apositivenested
pattern, is exactly the type specified by the primary (or nested,
respectively) pattern. Otherwise, ifX is a type variable, then we
must look for the method type in its bound (MT-VAR-S). Note
that in the formalism, since all variables are bound in the primary

pattern, we can always invoke a method guaranteed to exist bya
positive nested pattern.

MT-CLASS-R lists conditions for retrieving the type ofη in
C<T>, whereC<X> has reflectively declared methods. If the range of
reference, which is the current reflective environment, is subsumed
by the declaration reflective environment, the type ofη is the
declared types inC<X>, with the substitutions of[T/X], and the type
substitutions for unifying the declaration range and the reference
range,[W/Y]. MT-SUPER-R simply states that when the reference
reflective environment is disjoint from every declaration reflective
environment inC<T>, we must look to the superclass for the type
of η.

5.3 Soundness:

We prove the soundness of FMJ by proving Subject Reduction and
Progress.

Theorem 1 [Subject Reduction]: If ∆;Λ; Γ ⊢e∈T ande → e′,
then∆;Λ; Γ ⊢e′∈S and∆ ⊢S<:T for someS.

Theorem 2 [Progress]: Let e be a well-typed expression. 1. Ife
hasnew C<T>(e).f as a subexpression, then∅⊢fields(C<T>)=U
f, andf = fi. 2. If e hasnew C<T>(e).m(d) as a subexpression,
thenmbody(m, C<T>)=(x,e0) and|x| = |d|.

Theorem 3 [Type Soundness]:If ∅; ∅; ∅⊢e∈T ande−→∗e′, then
e′ is a valuev such that∅; ∅; ∅⊢v∈S and∅⊢S<:T for some typeS.

Type Unification:

[U/Z]T=[U/Z]S for all Zi∈Z, ∆⊢Ui≺:ZZi

∆;[U/Z]⊢unify(T, S) (UNI)

Pattern matching rules:

∆⊢T≺:ZT (PM-REFL)

∆⊢T≺:ZS

∆⊢C<T>≺:ZC<S> (PM-CL)

CT (C)=class C<X⊳N>⊳T {...}
∆⊢[T/X]T≺:ZD<S>

∆⊢C<T>≺:ZD<S> (PM-CL-S)

Z∈Z T6∈Z bound∆(T)=C<T>
∆⊢C<T>≺:Z[C<T>/Z]bound∆(Z)

∆⊢T≺:ZZ (PM-VAR)

Zi∈Z Zj∈Z

∆ ⊢ [Zi/Zj]bound∆(Zj)≺:ZZi or
∆ ⊢ [Zj/Zi]bound∆(Zi)≺:ZZj

∆⊢Zi≺:ZZj (PM-PVARS)

Figure 6. Unification and pattern-matching rules

5.4 Decidability

To establish the decidability of our type system, we enforcelimita-
tions on possible circularities in either subtyping or static iteration
cross-type references. For the former, we inherit a standard tech-
nique from Allen et al. [1]. Applying the same restrictions (i.e., a
declared supertype cannot be a type with a mixin superclass itself),
we can guarantee that there is no cyclic inheritance in FMJ. An-
other source for non-termination in FMJ is in circularly dependent
method definitions. For example,

class C<X extends D<X>> {1

<R>[m]for(R m() : X.methods) ...2

}3

class D<X> extends C<D<X>> { ... }4

The methods ofC<X> are circularly defined: they reflect over the
methods ofX, which include the methods ofD<X>, which, in turn,
include the methods ofC<D<X>>! This type of definition would
cause infinite recursion in the derivation ofmtype.

We detect such circularity by constructing a chain of reflective
reachability. The chain of reachability for a typeT is essentially all
the typesmtype(n, T) could recursively call upon. For example, the
chain of reachability for the aboveC<X> is C<X>, X, D<X>, C<D<X>>,
... We stop the chain construction as soon as we see a re-occurrence
of any type already in the chain, inany form of instantiation. We
reject classes with such circular dependency. Since there is a finite
number of classes, the chain must either see a reoccurrence of
some class, or be finitely sized. The length of the chain serves as a
measure function for each call ofmtype. The finite size of the chain
means the measure function cannot decrease infinitely, thusproving
termination. A more sophisticated protocol would be possible, to
make the check less conservative, but we have yet to encounter a
realistic use that needs it.

6. Related Work
As discussed earlier, MorphJ’s closest relatives are MJ [14] and
CTR [7]. CTR is an extension to C# that pioneered the use of pat-
terns for reflective iteration and was one of the first systemsto
aim for modular type safety. Nevertheless, its modular guarantees
concern only validity of references and not the absence of declara-
tion conflicts. Additionally, CTR does not allow matching multiple
method argument types, and there is currently no formal typesys-
tem or soundness guarantees. A unique aspect of CTR (compared to
MJ or MorphJ) is that it transforms classes in-place, which enables
some interesting applications. MJ, on the other hand, introduced
two main elements: static checking for disjointness of reflective
declarations, and the integration of static reflection as anextension
of standard generics. MJ has a formal type system, with a sound-
ness proof but with no demonstration of its decidability. MorphJ
improves over both CTR and MJ by adding more expressiveness
through nested patterns, while keeping or strengthening the typing
guarantees, and by validating the promise of the overall approach
with larger-scale applications.

Static reflection mechanisms such as Genoupe [6] and SafeGen
[13] attempted to allow declaration using reflection. Yet none of
these mechanisms offer full modular type-checking guarantees. For
instance, the Genoupe [6] approach has been shown unsafe, as
its reasoning depends on properties that can change at runtime;
SafeGen [13] has no soundness proof and relies on the capabilities
of an automatic theorem prover—an unpredictable and unfriendly
process for a programmer. Additionally, these mechanisms use
complex syntax for retrieving reflective members, whereas MorphJ
utilizes patterns very similar to method and field signatures.

An extension of traits [21] offers pattern-based reflection by
allowing a trait to use name variables for declarations. However,
[21] does not offer static iteration over the members of classes—a
name-generic trait must be mixed in once for each name instance.

The main capabilities of MorphJ can typically be emulated
only with lower-level mechanisms, such as reflection, meta-object
protocols [17], aspect-oriented programming [18], or pattern-based
program generation and transformation [3, 4, 24]. The goal of our
work is to promote these abilities to high-level language features,
with full modular type-safety. None of the above mechanismsoffer
such safety guarantees: a transform, aspect, or meta-classcannot be
type-checked independently from the rest of the program, ina way
that guarantees it is well-typed for all its possible uses.

An interesting special case of program generation isstaging lan-
guagessuch as MetaML [23] and MetaOCaml [5]. These languages
offer modular type safety: the generated code is guaranteedcorrect
for any input, if the generator type-checks. Nevertheless,MetaML

and MetaOCaml do not allow generating identifiers (e.g., names
of variables) or types that are not constant. Neither do theyallow
generation of code by reflecting over a program’s structure.Gen-
erally, staging languages target program specialization rather than
full program generation: the program must remain valid evenwhen
staging annotations are removed. It is interesting that even recent
meta-programming tools, such as Template Haskell [22] are ex-
plicitly not modularly type safe—its authors acknowledge that they
sacrifice the MetaML guarantees for expressiveness.

There has been a line of work focused on providing statically
type-safe generic traversal of data structures [19, 16]. For instance,
the “scrap your boilerplate” [19] line of work offers extensions of
Haskell that allow code to abstract over the exact structures of
the data types it acts on, and to have the appropriate functions
invoked when their expected data types are encountered during
traversal. Abstracting over the structures of data types infunc-
tional languages is similar to abstracting over the fields and meth-
ods of classes in object-oriented languages. [25] offers such generic
traversal capabilities for Java. However, whereas [19, 16, 25] fo-
cus on offering structurally-generictraversal, MorphJ focuses on
structurally-genericdeclarations. Neither of [19, 16, 25] allow
more functions to be declared using the names or types retrieved
from a non-specific data type. Thus, these techniques fall short
of MorphJ (and static reflection work in general [14, 6, 7, 13]) in
this respect. On the other hand, MorphJ is not well-suited for writ-
ing generic traversal code. Traversing data structures andinvoking
methods on objects encountered is largely based on the dynamic
types of these objects. MorphJ’s reflective declarations are based
purely on the static types of fields and methods.

7. Conclusions
We believe that MorphJ and the general approach of class morph-
ing represent a significant trend in the evolution of programming
languages. Most major advances in programming languages are
modularity or re-usability enhancements. The first step wastaken
with procedural abstractionin the 50s and 60s, which culminated
in structured programming languages. Procedural abstraction cap-
tured algorithmic logic in a form that could be multiply reused both
in the same program and across programs, over different dataob-
jects. The next major abstraction step was arguablytype abstraction
or polymorphism, which allowed the same abstract logic to be ap-
plied to multiple types of data, although the low-level codefor each
type would end up being substantially different. The next big step
in language evolution can perhaps be calledstructural abstraction.
Structural abstraction is abstraction over the structure of other pro-
gram elements. Mechanisms like CTR, MorphJ, or the “scrap your
boilerplate” approach are instances of structural abstraction: they
allow safe static reflection over members of a type. We believe that
the inclusion of such constructs in mainstream languages will be a
topic of major importance for decades to come and that this paper
represents a big step forward in this direction.

Availability and Acknowledgments

MorphJ is available athttp://code.google.com/p/morphing/
This work was funded by the NSF under grant CCR-0735267.

References
[1] E. Allen, J. Bannet, and R. Cartwright. A first-class approach to

genericity. InProc. of Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2003.

[2] Apache Software Foundation.Byte-code engineering library.
”http://jakarta.apache.org/bcel/manual.html”. Accessed Mar.’08.

[3] J. Bachrach and K. Playford. The Java syntactic extender(JSE). In
Proc. of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2001.

[4] J. Baker and W. C. Hsieh. Maya: multiple-dispatch syntax
extension in Java. InProc. of Programming Language Design and
Implementation (PLDI), 2002.

[5] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing
multi-stage languages using ASTs, gensym, and reflection. In Proc.
of Generative Programming and Component Engineering (GPCE),
2003.

[6] D. Draheim, C. Lutteroth, and G. Weber. A type system for reflective
program generators. InProc. of Generative Programming and
Component Engineering (GPCE), 2005.

[7] M. Fähndrich, M. Carbin, and J. R. Larus. Reflective program
generation with patterns. InProc. of Generative Programming and
Component Engineering (GPCE), 2006.

[8] E. Gamma, R. Helm, and R. Johnson.Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley, 1995.

[9] M. Herlihy. SXM: C# Software Transactional Memory.
”http://www.cs.brown.edu/ mph/SXM/README.doc”. Accessed
Mar.’08.

[10] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework
for implementing software transactional memory. InOOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006.

[11] S. S. Huang and Y. Smaragdakis. Easy language extensionwith
Meta-AspectJ. InProc. of International Conference on Software
Engineering (ICSE), 2006.

[12] S. S. Huang and Y. Smaragdakis. Morphing with nested patterns:
Making generic classes highly configurable. Technical report, 2007.
http://www.cc.gatech.edu/∼ssh/mjnested-tr.pdf.

[13] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically safe program
generation with SafeGen. InProc. of Generative Programming and
Component Engineering (GPCE), 2005.

[14] S. S. Huang, D. Zook, and Y. Smaragdakis. Morphing: Safely shaping
a class in the image of others. InProc. of the European Conference
on Object-Oriented Programming (ECOOP), 2007.

[15] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweightjava: a
minimal core calculus for java and gj.ACM Trans. Program. Lang.
Syst., 23(3):396–450, 2001.

[16] P. Jansson and J. Jeuring. PolyP - a polytypic programming language
extension. InPOPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1997.

[17] G. Kiczales, J. des Rivieres, and D. G. Bobrow.The Art of the
Metaobject Protocol. MIT Press, 1991.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. InProc. of
European Conf. on Object-Oriented Programming (ECOOP), 1997.

[19] R. Lämmel and S. P. Jones. Scrap your boilerplate: a practical design
pattern for generic programming. InTLDI ’03: Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages
design and implementation, 2003.

[20] M. Mohnen. Interfaces with default implementations inJava. InProc.
of Principles and Practice of Programming, 2002.

[21] J. Reppy and A. Turon. Metaprogramming with traits. InECOOP
’07: Proceedings of the European Conference on Object-Oriented
Programming, 2007.

[22] T. Sheard and S. P. Jones. Template meta-programming for Haskell.
In Proc. of the ACM SIGPLAN workshop on Haskell, 2002.

[23] W. Taha and T. Sheard. Multi-stage programming with explicit
annotations. InProc. of Partial Evaluation and semantics-based
Program Manipulation (PEPM), 1997.

[24] E. Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in Stratego/XT 0.9. InDomain-Specific
Program Generation. Springer-Verlag, 2004. LNCS 3016.

[25] S. Weirich and L. Huang. A design for type-directed Java. In
Workshop on Object-Oriented Developments (WOOD), 2004.

	Introduction
	Reflective Declarations with Nested Patterns
	Negative Nested Pattern
	Positive Nested Pattern
	More Features: if, errorif
	Semantics of Nested Patterns

	Real-World Applications
	DSTM2
	Default Implementations for Interface Methods

	Type-Checking Nested Patterns
	Reference Validity
	Uniqueness of Declarations
	Internally Well-defined Range
	Uniqueness Across Ranges
	Generalizations and Boundary Conditions

	Formalization
	Syntax
	Typing Judgments
	Subsumption and Disjointness
	Valid Method Invocation

	Soundness:
	Decidability

	Related Work
	Conclusions

