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Abstract

We present NRMI: a drop-in replacement for Java RMI
that supports call-by-copy-restore semantics for arbitrary
linked data structures, in addition to regular call-by-copy
semantics. Call-by-copy-restore middleware is more natu-
ral to use than traditional call-by-copy RPC mechanisms,
enabling distributed calls to behave much like local calls.
We discuss in depth the effect of calling semantics for mid-
dleware, describe how call-by-copy-restore middleware
can be implemented efficiently, and show examples of Java
programs where NRMI is more convenient than regular
Java RMI.

1. Introduction

Remote Procedure Call (RPC) is one of the most
widespread paradigms for distributed middleware. The
goal of RPC middleware is to provide an interface for
remote services that is as convenient to use as local calls.
RPC middleware withcall-by-copy-restoresemantics has
been often advocated in the literature, as it offers a good
approximation of local execution (call-by-reference)
semantics, without sacrificing performance. Nevertheless,
call-by-copy-restore middleware is not often used to han-
dle arbitrary linked data structures, like lists, graphs, trees,
hash tables, or even non-recursive structures like a “cus-
tomer” object with pointers to separate “address” and
“company” objects. This is a serious restriction and one
that has been often identified. The recent (2002) Tanen-
baum and van Steen “Distributed Systems” textbook [17]
summarizes the problem and (most) past approaches:

... Although [call-by-copy-restore] is not always identi-
cal [to call-by-reference], it frequently is good enough.
... [I]t is worth noting that although we can now handle
pointers to simple arrays and structures, we still cannot
handle the most general case of a pointer to an arbitrary
data structure such as a complex graph. Some systems
attempt to deal with this case by actually passing the
pointer to the server stub and generating special code in
the server procedure for using pointers. For example, a

request may be sent back to the client to provide the r
erenced data.

This paper addresses exactly the problem outlined
the above passage. We describe an algorithm for imp
menting call-by-copy-restore middleware so that arbitra
linked structures are fully supported. The technique is ve
efficient (comparable to regularcall-by-copy middle-
ware)—none of the overheads suggested by Tanenba
and van Steen are incurred. A pointer dereference by
server does not generate requests to the client. (This wo
be dramatically less efficient than our approach, as o
measurements show.) We do not “generate special code
the server” for using pointers: the server code can proce
at full speed—not even the overhead of a local read
write barrier is necessary.

We implemented our ideas in the form ofNRMI (Nat-
ural Remote Method Invocation). NRMI is a modified ver-
sion of the Java RMI, such that the user can select call-b
copy-restore semantics for object types in remote calls,
addition to the standard call-by-copy semantics of Ja
RMI. (For primitive Java types the default Java call-by
copy semantics is used.) The implementation of call-b
copy-restore in NRMI is fully general, with respect to
linked data structures, but also with respect to argume
that share structure. NRMI is much friendlier to the use
than standard Java RMI: in most cases, programming w
NRMI is identical to non-distributed Java programming
In fact, the call-by-copy-restore implementation in NRM
is guaranteed to offer identical semantics to call-by-refe
ence in the important case when single-threaded clie
and stateless servers are used (i.e., when the server ca
maintain state reachable from the arguments of a call af
the end of the call). Since statelessness is a desirable pr
erty for distributed systems, anyway, NRMI offers behav
ior practically indistinguishable from local calls.

We would be amiss not to mention up front that othe
middleware services (most notably the DCE RPC sta
dard) have attempted to approximate call-by-copy-resto
semantics, with implementation techniques similar
ours. Nevertheless, DCE RPC stops short of full call-b
copy-restore semantics, as we discuss in Section 4.2.
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This paper makes the following contributions:

• A clear exposition of different calling semantics, as
these pertain to RPC middleware. There is confusion in
the literature regarding calling semantics with respect to
pointers. This confusion is apparent in the specification
and popular implementations of existing middleware
(especially DCE RPC, due to its semantic complexity).

• A case for the use of call-by-copy-restore semantics in
actual middleware. We argue that such a semantics is
convenient to use, easy to implement, and efficient in
terms of the amount of transferred data.

• An applied result in the form of NRMI. NRMI is a
mature and efficient middleware implementation that
Java programmers can adopt on a per-case basis as a
transparent enhancement of Java RMI. The results of
NRMI (call-by-copy-restore even for arbitrary linked
structures) can be simulated with RMI (call-by-copy)
but this task is complicated, inefficient, and application-
specific. In simple benchmark programs, NRMI saves
up to 100 lines of code per remote call. More impor-
tantly, this code cannot be written without complete
understanding of the application’s aliasing behavior
(i.e., what pointer points where on the heap). NRMI
eliminates all such complexity, allowing remote calls to
be used almost as conveniently as local calls.

2. Background and Motivation

Remote calls in RPC middleware cannotefficiently
support the same semantics as local calls for data accessed
through memory pointers (referencesin Java—we will use
the two terms interchangeably). The reason is that effi-
ciently sharing data through pointers (call-by-reference)
relies on the existence of a shared address space. The
problem is significant because most common data struc-
tures in existence (trees, graphs, linked lists, hash tables,
etc.) are heap-based and use pointers to refer to the stored
data.

A simple example demonstrates the issues. This will
be our main running example throughout the paper. We
will use Java as our demonstration language and Java RMI
as the main point of reference in the middleware space.
Nevertheless, both Java and Java RMI are highly typical of
languages that support pointers and RPC middleware
mechanisms, respectively. Consider a simple linked data
structure: a binary tree,t , storing integer numbers. Every
tree node will have three fields,data , left , and right .
Consider also that some of the subtrees are also pointed to

by non-tree pointers (akaaliases). An instance of such a
tree is shown in Figure 1.

When the treet is passed to a local function that mod
ifies some of its nodes, the modifications affect the da
reachable fromt , alias1 , andalias2 . For instance, con-
sider the function:

void foo(Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null;
Tree temp = new Tree(2, tree.right.right,null);
tree.right.right = null;
tree.right = temp;

}

If a call foo(t) is performed locally, the results on the
data structure will be those shown in Figure 2.

(New number values shown in bold and italic, new nod
and references are dashed. Null references are not show

In other words, a local call can change all data reac
able from a memory reference. All changes will be visibl
to aliasing references. The reason is that Java hascall-by-
valuesemantics for all values, including references, resu
ing intocall-by-referencesemantics for the data pointed to
by these references. (From a programming languag
standpoint, the Java calling semantics is more accurat
called call-by-reference-value. In this paper, we follow th
convention of the Distributed Systems community and ta
about “call-by-reference” semantics, although referenc
themselves are passed by value.) The callfoo(t) proceeds
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Figure 1: A tree data structure and two aliasing
references to its internal nodes.
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Figure 2: A local call can affect all reachable data
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by creating a copy,tree , of the reference valuet . Then
every modification of data reachable fromtree will also
modify data reachable fromt , astree andt operate on the
same memory space. This behavior is standard in the vast
majority of programming languages that allow pointers.

Consider now what happens whenfoo is a remote
method, implemented by a server on a different machine.
The obvious solution would be to maintain exact call-by-
reference semantics by introducing “remote references”
that can point to data in a different address space. This is
shown in Figure 3.

Remote references can indeed ensure call-by-refer-
ence semantics. Nevertheless, this solution is extremely
inefficient. It means that every pointer dereference has to
generate network traffic.

Most object-oriented middleware (e.g., RMI,
CORBA, etc. and not just traditional RPC) allow the use
of remote references, as remotely-accessible objects have
unique identifiers and references to them can be passed
around like regular local references. For instance, Java
RMI allows the use of remote references for subclasses of
the UnicastRemoteObject class. All instances of the sub-
class are remotely accessible throughout the network
through a Java interface.

Nevertheless, the usual semantics for reference data in
RMI calls (and the vast majority of other middleware) is
call-by-copy. (“Call-by-copy” is really the name used in
the Distributed Systems community forcall-by-value,
when the values are complex data structures.) When a ref-
erence parameter is passed as an argument to a remote rou-
tine, all data reachable from the reference are deep-copied
to the server side. The server then operates on the copy.
Any changes made to the deep copy of the argument-
reachable data are not propagated back to the client, unless
the user explicitly arranges to do so (e.g., by passing the
data back as part of the return value).

A well-studied alternative of call-by-copy in middle-
ware is call-by-copy-restore. Call-by-copy-restore is a
parameter passing semantics that is usually defined infor-
mally as “having the variable copied to the stack by the

caller ... and then copied back after the call, overwritin
the caller’s original value” [17]. A more strict (yet still
informal) definition of call-by-copy-restore is:

Making accessible to the callee a copy of all data reac
able by the caller-supplied arguments. After the call, a
modifications to the copied data are reproduced on th
original data, overwriting the original data values in-
place.

Often, existing middleware (notably CORBA imple-
mentations throughinout parameters) support call-by-
copy-restore but not for pointer data. Here we discu
what is needed for a fully-general implementation of cal
by-copy-restore, per the above definition. Under call-b
copy-restore, the results of executing a remote call to t
previously described functionfoo will be those of Figure
2. That is, as far as the client is concerned, the call-b
copy-restore semantics is indistinguishable from a call-b
reference semantics for this example. (As we discuss
Section 4, the two semantics have differences only wh
the server maintains state that outlives the remote call.)

There are several complications in supporting the ca
by-copy-restore semantics for pointer-based data. O
example functionfoo  illustrates them:

• call-by-copy-restore has to “overwrite” the original dat
(e.g., t.right.data in our example), not just link new
data in the structure reachable from the reference arg
ment of the remote call (t in our example). The reason is
that, at the client site, the data may be reachable throu
other references (alias2 in our example) and the
changes should be visible to them as well.

• some data (e.g., nodet.left before the call) may
become unreachable from the reference argument (t in
our example) because of the remote call. Neverthele
the new values of such data should be visible to the c
ent, because at the client site the data may be reacha
through other references (alias1  in our example).

• as a result of the remote call, new data may be crea
(t.right after the call in our example) and they may b
the only way to reach some of the originally reachab
data (t.right.left  after the call in our example).

Most of the above complications have to do wit
aliasing references, i.e., multiple paths for reaching t
same heap data. Common reasons to have such alia
include multiple indexing (e.g., the data may be indexed
one way using the tree and in another way using a link
list), caching (storing some recent results for fa
retrieval), etc. Aliasing is very common in heap-based da
and supporting it correctly for remote calls is important.

t
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Figure 3: Call-by-reference semantics can be
maintained with remote references.
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3. Supporting Copy-Restore

Having seen the complications of copy-restore mid-
dleware, we now discuss an algorithm that addresses them.
The algorithm appears below in pseudo-code and is illus-
trated on our running example in Figures 4-7.

1. Create a linear map of all objects reachable from the ref-
erence parameter. Keep a reference to it.

2. Send a deep copy of the linear map to the server site
(this will also copy all the data reachable from the refer-
ence argument, as the reference is reachable from the
map). Execute the remote procedure on the server.

3. Send a deep copy of the linear map (or a “delta” struc-
ture—see Section 5) back to the client site. This will
copy back all the “interesting” objects, even if they have
become unreachable from the reference parameter.

4. Match up the two linear maps so that “new” objects (i.e.,
objects allocated by the remote routine) can be distin-
guished from “old” objects (i.e., objects that did exist
before the remote call even if their data have changed as
a result). Old objects have two versions: original and
modified.

5. For each old object, overwrite its original version data
with its modified version data. Pointers to modified old
objects should be converted to pointers to the corre-
sponding original old objects.

6. For each new object, convert its pointers to modified old
objects to pointers to the corresponding original old
objects. The above algorithm reproduces the modifica-
tions introduced by the server routine on the client data
structures. The interesting part of the algorithm is the
automatically keeping track (on the server) of all objects
initially reachable by the arguments of a remote method,
as well as their mapping back to objects in client mem-
ory. The advantage of the algorithm is that it does not
impose overhead on the execution of the remote routine.
In particular, there is no need to trap either the read or
the write operations performed by the remote routine by
introducing a read or write barrier. Similarly, no data are
transmitted over the network during execution of the
remote routine.

Furthermore, note that supporting call-by-copy-
restore only requires transmitting all data reachable from
parameters during the remote call (just like call-by-copy)
and sending it back after the call ends. This is already
quite efficient and will only become more so in the future,
when network bandwidth will be much less of a concern
than network latency.

4. Discussion

4.1. Copy-Restore vs Call-by-Reference

Call-by-copy-restore is a desirable semantics for RP
middleware. Because all mutations performed on th
server are restored on the client site, call-by-copy-resto
approximates local execution very closely. In fact, one c
simply observe that (for a single-threaded client) call-b
copy-restore semantics is identical to call-by-reference
the remote routine is stateless—i.e., keeps no aliases
the input data) that outlive the remote call. Interestingl
statelessness is a very desirable (for many even indispe
able) property for distributed services due to fault tole
ance considerations. Thus, a call-by-copy-resto
semantics guaranteesnetwork transparency: a stateless
routine can be executed either locally or remotely wit
indistinguishable results.

The above discussion only considers single-thread
programs. In the case of a multi-threaded client (i.e
caller) network transparency is not preserved. The remo
routine acts as a potential mutator of all data reachable
the parameters of the remote call. All updates are pe
formed in an order determined by the middleware impl
mentation. The programmer needs to be aware that the
is remote and that a call-by-copy-restore semantics
used. In the common case, remote calls need to at le
execute in mutual exclusion with calls that read/write th
same data. If the order of updating matters, call-by-cop
restore can probably not be used at all. (Of course, t
consideration is for the case of multi-threaded clients—
servers can always be multi-threaded and accept requ
from multiple client machines without sacrificing network
transparency.)

Another issue regarding call-by-copy-restore con
cerns the use of parameters that share structure.
instance, consider passing the same parameter twice
remote procedure. Should two distinct copies be creat
on the remote site or should the sharing of structure
detected and only one copy be created? This issue is
specific to call-by-copy-restore, however. Regular call-b
copy middleware has to answer the same question. Cre
ing multiple copies can be avoided using exactly the sam
techniques as in call-by-copy middleware (e.g., Ja
RMI)—the middleware implementation can notice th
sharing of structure and replicate the sharing in the cop
Unfortunately, there has been confusion on the issu
Based on existing implementations of call-by-copy-resto
for primitive (non-pointer) types, an often repeated (mis
taken) assertion is that call-by-copy-restore semant
implies that shared structure results into multiple copi
[16][17][21].
4
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Figure 4: State after steps 1 and 2 of the algorithm. Remote procedure foo has performed modifica-
tions to the server version of the data.
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Figure 5: State after steps 3 and 4 of the algorithm. The modified objects (even the ones no longer
reachable through tree ) are copied back to the client. The two linear representations are
“matched”—i.e., used to create a map from modified to original versions of old objects.
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Figure 6: State after step 5 of the algorithm. All original versions of old objects are updated to
reflect the modified versions.
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Figure 7: State after step 6 of the algorithm. All new objects are updated to point to the original ver-
sions of old objects instead of their modified versions. All modified old objects and their linear rep-
resentation can now be deallocated. The result is identical to Figure 3.
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4.2. DCE RPC

The DCE RPC specification [10] is the foremost
example of a middleware design that tries to enable dis-
tributed programming in a way that is as natural as local
programming. The most widespread DCE RPC implemen-
tation nowadays is that of Microsoft RPC, forming the
base of middleware for the Microsoft operating systems.
Readers familiar with DCE RPC may have already won-
dered if the specification for pointer passing in DCE RPC
is not identical to call-by-copy-restore. The DCE RPC
specification stops one step short of call-by-copy-restore
semantics, however.

DCE RPC supports three different kinds of pointers,
only one of which (full pointers) supports aliasing. DCE
RPC full pointers, declared with theptr attribute, can be
safely aliased and changed by the callee of a remote call.
The changes will be visible to the caller, even through
aliases to existing structure. Nevertheless, DCE RPC only
guarantees correct updates of aliased data for aliases that

are declared in the parameter lists of a remote call.1 In
other words, for pointers that are not reachable from the
parameters of a remote call, there is no guarantee of cor-
rect update.

In practical terms, the lack of full alias support in the
DCE RPC specification means that DCE RPC implemen-
tations do not support call-by-copy-restore semantics for
linked data structures. In Microsoft RPC, for instance, the
calling semantics differs from call-by-copy-restore when
data become unreachable from parameters after the execu-
tion of a remote call. Consider again our example from
Section 2. Figure 2 is reproduced here as Figure 8 for easy
reference.

The remote call that operates on argumentt , changes
the data so that the former objectst.left andt.right are

no longer reachable fromt . Under call-by-copy-restore
semantics, the changes to these objects should still
restored on the caller site (and thus made visible toalias1

andalias2 ). This does not occur under DCE RPC, how
ever. The effects of statements

tree.left.data = 0;
tree.right.data = 9;
tree.right.right = null;

would be disregarded on the caller site. The actual resu
for DCE RPC are shown in Figure 9.

4.3. Usability: Copy-Restore vs Call-by-Copy

Compared to call-by-copy, the main benefits of cal
by-copy-restore semantics are in usability. Call-by-cop
restore simulates very closely the local execution sema
tics, as discussed in Section 4.1. Clearly, the behavior
call-by-copy-restore can be achieved by using call-b
copy and adding application-specific code to register a
re-perform any updates necessary. Nevertheless, this
several disadvantages:

• The programmer has to be aware of all aliases, in ord
be able to update the values changed during the rem
call, even if the changes are to data that becam
unreachable from the original parameters.

• The programmer needs to write extra code to perfor
the update. This code can be long for complex updat
(e.g., up to 100 lines per remote call for the microbenc
marks we discuss in Section 5.3).

• The programmer cannot perform the updates witho
full knowledge of what the server code changed. That
the changes to the data have to be part of the proto
between the server programmer and the client progra
mer. This complicates the remote interfaces and spec
cations.

As we discuss in Section 2, a call-by-copy-restor
semantics is most valuable in the presence of aliased d
There are several common implementation techniques
mainstream programming languages that result into alia

1. The specification reads “For both out and in, out parameters, when
full pointers are aliases, according to the rules specified in Aliasing
in Parameter Lists[these rules read: If two pointer parameters in a
parameter list point at the same data item], the stubs maintain the
pointed-to objects such that any changes made by the server are
reflected to the client for all aliases.”
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Figure 8: Changes after execution of method.
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Figure 9: Under DCE RPC, the changes to data
that became unreachable from t will not be
restored on the client site.
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ing. All of these techniques produce code that is more con-
venient to write using call-by-copy-restore middleware
than by call-by-copy middleware. Specific examples
include:

• Common GUI patterns like model-view-controller. Most
GUI toolkits register multiple views, all of which corre-
spond to a single model object. That is, all views alias
the same model object. An update to the model should
result in an update to all of the views. Such an update
could be the result of a remote call.

A variant of this pattern occurs when GUI elements
(menus, toolbars, etc.) hold aliases to program data that
can be modified. The reason for multiple aliasing is that
the same data may be visible in multiple toolbars,
menus, etc. or that the data may need to be modified
programmatically with the changes reflected in the
menu or toolbar. For example, we distribute with NRMI
a modified version of one of the Swing API example
applications. We changed the application to be able to
display its text strings in multiple languages. The
change of language is performed by calling a remote
translation server when the user chooses a different lan-
guage from a drop-down box. (That is, the remote call is
made in the event dispatching thread, conforming to
Swing thread programming conventions.) The remote
server accepts a vector of words (strings) used through-
out the graphical interface of the application and trans-
lates them between English, German and French. The
updated list is restored on the client site transparently
and the GUI is updated to show the translated words in
its menus, labels, etc. The distributed version code only
has two tiny changes compared to local code: a single
class needs to implementjava.rmi.Restorable and a
method has to be looked up using a remote lookup
mechanism before getting called. In contrast, the version
of the application that uses regular Java RMI, has to use
a more complex remote interface for getting back the
changed data and the programmer has to write code in
order to perform the update.

• Multiple indexing. Most applications in imperative pro-
gramming languages create some multiple indexing
scheme for their data. For example, a business applica-
tion may keep a list of the most recent transactions per-
formed. Each transaction, however, is likely to also be
retrievable through a reference stored in a customer’s
record, through a reference from the daily tax record
object, etc. Similarly, every customer may be retrievable
from a data structure ordered by zip code, and from a
second data structure ordered by name. All of these ref-
erences are aliases to the same data (customers, business
transactions). NRMI allows such references to be
updated correctly as a result of a remote call (e.g., an

update of purchase records from a different location,
a retrieval of a customer’s address from a central da
base), in much the same way as they would be upda
if the call were local.

5. NRMI

We now describe the particulars of NRMI design an
implementation. Despite the fact that our implementatio
is Java specific, the insights are largely language indep
dent. Our call-by-copy- restore algorithm can be applied
any other distribution middleware that supports pointers

5.1. NRMI Programming Interface

NRMI is a drop-in replacement for Java RMI that sup
ports a strict superset of the RMI functionality by provid
ing call-by-copy-restore as an additional paramet
passing semantics to the programmer. NRMI follows th
design principles of RMI in having the programmer decid
the calling semantics for object parameters on a per-ty
basis. In brief, indistinguishably from RMI, NRMI passe
subclasses ofjava.rmi.server.UnicastRemoteObject

by-reference and types that implementjava.io.Serial-

izable by-copy. Primitive types are passed by-copy (“by
value” in programming languages terminology). That i
just like in regular RMI, the following definition makes
instances of classA be passed by-copy to remote method

//Instances will be passed by-copy by NRMI
class A implements java.io.Serializable {...}

NRMI introduces a marker interface
java.rmi.Restorable to allow the programmer to choose
the by-copy-restore semantics: parameters whose cl
implementsjava.rmi.Restorable are passed by copy-
restore. For example:

//Instances passed by-copy-restore by NRMI
class A implements java.rmi.Restorable {...}

java.rmi.Restorable extendsjava.io.Serializ-

able , reflecting the fact that call-by-copy-restore is bas
cally an extension of call-by-copy. In particular
“restorable” classes have to adhere to the same set
requirements as if they were to be passed by-copy—i.
they have to be serializeable by Java Serialization [14].

In the case of JDK classes,java.rmi.Restorable

can be implemented by their direct subclasses.

//Instances passed by-copy-restore by NRMI
class RestorableHashMap extends java.util.HashMap
implements java.rmi.Restorable {...}

In those cases when subclassing is not possible, a d
egation-based approach can be used.
7
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//Instances passed by-copy-restore by NRMI
class SetDelegator
implements java.rmi.Restorable {

java.util.Set _delegatee;
//expose the necessary functionality
void add (Object o) { _delegatee.add (o); }
...

}

Declaring a class to implementjava.rmi.Restor-

able is all that is required from the programmer: NRMI
will pass all instances of such classes by-copy-restore
whenever they are used in remote method calls. The
restore phase of the algorithm is hidden from the program-
mer, being handled completely by the NRMI runtime. This
saves lines of tedious and error-prone code as we illustrate
in Section 4.3.

In order to make NRMI easily applicable to existing
types (e.g., arrays) that cannot be changed to implement
java.rmi.Restorable , we adopted the policy that a
reachable, serializable sub-object is passed by-copy-
restore, if its parent object implementsjava.rmi.Restor-

able . Thus, if a parameter is of a “restorable” type, every-
thing reachable from it will be passed by-copy-restore
(assuming it is serializable, i.e., it would otherwise be
passed by call-by-copy).

It is worth noting that Java is a good language for
demonstrating the benefits of call-by-copy-restore middle-
ware because of the local Java method call semantics. In
local Java method calls, all primitive parameters are
passed by-copy (“by-value” using programming languages
terminology). This is identical behavior with remote calls
in Java using Java RMI or NRMI. With NRMI we also add
call-by-copy-restore semantics for reference types, thus
making the behavior of remote calls be (almost) identical
to local calls even for non-primitive types. Thus, with
NRMI, distributed Java programming is remarkably simi-
lar to local Java programming.

5.2. Implementation Insights (High-Level)

Having introduced the programming interface offered
by NRMI, we now describe our implementation in greater
detail. We analyze one-by-one each of the major steps of
the algorithm presented in Section 3.

5.2.1  Creating a linear map.Creating a linear map of all
objects reachable from the reference parameter is obtained
by tapping into the Java Serialization mechanism. The
advantage of this approach is that we get a linear map
almost for free. The parameters passed by-copy-restore
have to be serialized anyway and all objects reachable
from a remote call’s parameters need to be traversed for
that. The linear map that we need is just a data structure
storing references to all such objects in the order that they

were traversed. We get this data structure with a tin
change to the serialization code. The overhead is minu
cule and only exists when call-by-copy-restore semant
have been chosen.

5.2.2  Performing remote calls.On the remote site, a
remote method invocation proceeds exactly as in regu
RMI. After the method completes, we marshall back line
map representations of all those parameters whose ty
implement java.rmi.Restorable along with the return
value if there is any.

5.2.3  Updating original objects.Correctly updating
original reference parameters on the client site includ
matching up the new and old linear maps and performing
traversal of the new linear map. Both step 5 and step 6
the algorithm are performed in a single depth-first tra
versal by just performing the right update actions when
object is first visited and last visited (i.e., after all its
descendants have been traversed).

5.2.4  Optimizations.There are two optimizations that
can be applied to an implementation like NRMI in order t
trade processing time for reduced bandwidth consumptio
First, instead of sending the linear map over the netwo
we can reconstruct it during the un-serialization phase
the site of the remote call. Second, instead of returning t
new values for all objects to the caller site, we can se
just a “delta” structure, encoding the difference betwee
the original data and the data after the execution of t
remote routine. In this way, the cost of passing an obje
by-copy-restore and not making any changes to it is almo
identical to the cost of passing it by-copy. NRMI applie
the first optimization, while the second will be part o
future work.

5.3. Implementation (Low-Level) and Perfor-
mance Experiments

Although NRMI emphasizes usability, it also attempt
to offer an efficient implementation. The main point of ou
experiments is to demonstrate thatNRMI is efficient
enough for real-world use. The implementation of NRMI
is optimized and suffers only small overheads. The op
mized NRMI for JDK 1.4 is about 20% slower than regu
lar RMI for JDK 1.4. To put this number in perspective
this also means that NRMI for JDK 1.4 is about 20-30%
faster than regular RMI for the previous version, JDK 1.

5.3.1  NRMI Low-Level Optimizations. In principle, the
only significant overhead of call-by-copy-restore middle
ware over call-by-copy middleware is the cost of transfe
ring the data back to the client after the remote routin
8
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execution. In practice, middleware implementations suffer
several overheads related to processing the data, so that
processing time often becomes as significant as network
transfer time. Java RMI has been particularly criticized for
inefficiencies, as it is implemented as a high level layer on
top of several general purpose (and thus slow) facilities—
RMI often has to suffer the overheads of security checks,
Java serialization, indirect access through mechanisms
offered by the Java Virtual Machine, etc. NRMI has to suf-
fer the same overheads to an even greater extent, since it
has to perform an extra traversal and copying over object
structures.

Currently, NRMI has two implementations: a “porta-
ble”, high-level one and an “optimized” one. Theportable
implementation makes use of high-level features like Java
reflection for traversing and copying object structures.
Although NRMI is currently tied to Sun’s JDK, the porta-
ble implementation works with both JDK 1.3 and JDK 1.4
on all supported platforms. The portability means some
loss of performance: Java reflection is a very slow way to
examine and update unknown objects. The NRMI imple-
mentation minimizes the overhead by caching reflection
information aggressively. Additionally, the portable NRMI
implementation uses native code for reading and updating
object fields without suffering the penalty of a security
check for every field. These two optimizations are suffi-
cient for significantly reducing the NRMI overheads, even
for the portable version. Our original implementation of
NRMI was more than two times slower than the current
portable one.

The optimizedimplementation of NRMI only works
with JDK 1.4 and takes advantage of special features
exported by the JVM in order to achieve better perfor-
mance. The performance of regular Java RMI improved
significantly between versions 1.3 and 1.4 of the JDK (as
we show in our measurements). The main reason was the
flattening of the layers of abstraction in the implementa-
tion. Specifically, object serialization was optimized
through non-portable direct access to objects in memory
through an “Unsafe” class exported by the Java Virtual
Machine. The optimized version of NRMI also uses this
facility to quickly inspect and change objects.

5.3.2  Description of Experiments.In order to see how
our implementation of call-by-copy-restore measures up
against the standard implementation of RMI, we created
three micro-benchmarks. Each benchmark consists of a
single randomly-generated binary tree parameter passed to
a remote method. The remote method performs random
changes to its input tree.The invariant maintained is that
all the changes are visible to the caller. In other words, the
resulting execution semantics is as if both the caller and
the callee were executing within the same address space.

With NRMI or distributed call-by-reference (through
remote pointers, as in Figure 3) this is done automatical
For call-by-copy, the programmer needs to simulate it b
hand.

We have considered three different scenarios
parameter use, listed in the order of difficulty of achievin
the call-by-copy-restore semantics “by-hand” using th
means provided by RMI.

• In the first benchmark scenario, we assume that none
the objects reachable from the parameter is aliased
the client.

• In the second benchmark scenario, we allow aliases
assume that the structure of the tree stays the sa
(although the tree data may be modified by the remo
method).

• In the third benchmark scenario, aliasing and modific
tions can be arbitrarily complex: tree nodes can b
aliased on the client site and the tree structure can
changed by the remote call.

Network
4

0 1

tree
4

3 1

7 5

tree

no aliases, data and
structure may change

Network
4

0 1

tree
4

3 5

tree

alias

structure does not
change but data may

Network
4

0 1

tree
4

3 1

7 5

tree

structure changes
aliases present

alias
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Consider how a programmer can replay the server
changes on the client using regular Java RMI in each of
the three cases. We assume that the programmer is fully
aware of the server’s behavior, as well as whether aliases
exist on the client site.

• In the first case, the parameter just has to be returned as
the return value of the remote method. Once the remote
call completes, the reference pointing to the original
data structure gets reassigned to point to the return
value. This will work for any changes to both the data
and structure of the tree. The only complication here is
that the method might already have a return value.
Resolving this problem would require defining a special
return class type that would contain both the original
return type and the parameter. Besides the code for this
new return class type itself, some additional code has to
be written to call its constructor, populate it with its con-
stituent members on the callee site, and retrieve them
when the call completes.

• In the second case, the client needs to reassign the
aliases pointing to some nodes in the original tree to
point to the corresponding nodes in the new tree. After
this step is performed, the reference reassignment
described in the previous benchmark can be used. If the
programmer knows all the aliases, as well as where in
the tree they point to (i.e., how to get to the aliased node
from the tree root) then the aliases can be reassigned
directly. If, however, the programmer only knows the
aliases but not how to get to the aliased nodes, then a
search needs to be performed before the update takes
place. Both the original and the modified trees (that are
now isomorphic) can be traversed simultaneously. Upon
encountering each node, all aliases should be reassigned
from pointing from the original tree to the modified one.

• In the third case, returning the changed structure alone is
not very useful since the original and the modified trees
are no longer isomorphic. To complicate matters further,
the remote method invocation might make some
changes to some of the tree nodes data that were aliased
by the caller and then disconnect them from the tree
structure. This way the modified data nodes might no
longer be part of the tree structure. Obviously just
returning the new tree is not enough. Emulating the call-
by-copy-restore or call-by-reference semantics is partic-
ularly cumbersome in this case. The simplest way to do
it is by having the remote method create a “shadow tree”
of its tree parameter prior to making any changes to it.
The “shadow tree” points to the original tree’s data and
serves as a reminder of the structure of the original tree.
Then both the parameter tree and the “shadow tree” are
returned to the caller. The “shadow tree” is isomorphic
to the original parameter and can be used for simulta-

neous traversal and copying of aliases. After that th
new tree is used for the reference reassignment ope
tion as in the previous cases. Note that correct update
not possible without modifying both the server and th
client.

For all benchmarks, the NRMI version of the distrib
uted code is quite similar to the local version, with th
exception of remote method lookup and declaring a cla
to beRestorable . Analogous changes have to be made
order to go from the local version to the distributed on
that updates client data correctly using regular Java RM
Several extra lines of code have to be added/modified
the latter case, however. For all three benchmarks, ab
45 lines of code were needed in order to define retu
types. For the second and third benchmark scenario,
extra 16 lines of code were needed to perform the updat
traversal. For the third benchmark scenario, about 35 mo
lines of code were needed for the “shadow tree”.

5.3.3  Experimental Results.For each of these bench-
marks, we measure the performance of call-by-cop
(RMI), call-by-copy-restore (NRMI), and call-by-refer-
ence implemented using remote pointers (RMI). (O
course, NRMI can also be used just like regular RMI wit
identical performance. In this section when we talk o
“NRMI” we mean “under call-by-copy-restore seman
tics”.) For reference, we also provide three base line nu
bers by showing how long it takes to execute the sam
methods within the same JVM locally, on different JVM
through RMI but on the same physical machine, and o
different machines but without caring to restore th
changes to the client (i.e., only sending the tree to t
server but not sending the changed tree back to the clie
We show measurements for both implementations
NRMI and both JDK 1.3 and JDK 1.4. The environmen
consists of a SunBlade 1000 (two UltraSparc III 750MH
processors and 2GB of RAM) and a Sun Ultra 10 (UltraS
parc II 440MHz) machines connected with a 100Mbp
effective bandwidth network. This environment certainl
does not unfairly benefit NRMI measurements—the ne
work speed is on the high end of typical networks whe
high-level middleware is used and the machines have re
istic speeds for this kind of processing. For faste
machines and slower networks, the performance of NRM
would strictly improve relative to the baselines.

The results of our experiments are shown in Table
Table 6. All numbers are in milliseconds per remote ca
rounded to the nearest millisecond. We ensured that
measured programs had been dynamically compiled
the JVM before the measurements. The local measu
ments of Table 1 are given for both the fast and the slo
machines. The local measurements of Table 3 are from
dual processor SunBlade machine. (This allowed us
10



Table 1: Baseline 1—Local Execution (processing overhead) on both the fast (750MHz) and the slow
(440MHz) machine

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I <1 / <1 <1 / 1 1 / 2 6 / 8 <1 / <1 <1 / 1 1 / 1 4 / 6

II <1 / 1 1 / 1 4 / 5 15 / 20 <1 / 1 1 / 1 3 / 4 12 / 16

III <1 / 1 1 / 2 5 / 6 19 / 24 <1 / 1 1 / 1 4 / 5 15 / 19

Table 2: Baseline 2—RMl Execution, without Restore (one-way traffic)

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I 3 7 18 65 2 4 9 33

II 3 7 21 74 3 4 12 41

III 3 8 22 79 3 5 12 44

Table 3: Baseline 3—RMI Execution with Restore on local machine (no network overhead)

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I 3 7 17 59 3 4 11 41

II 4 8 19 67 3 5 13 48

III 4 9 24 87 3 6 16 66

Table 4: RMI Execution with Restore (two-way traffic)

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I 5 11 29 102 4 6 18 68

II 5 12 32 112 4 7 21 77

III 6 13 38 143 4 9 27 106

Table 5: NRMI (Call-by-copy-restore). Both the portable and optimized implementation shown for JDK 1.4

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I 6 13 36 130 5 / 4 8 / 8 25 / 22 93 / 82

II 6 13 38 141 5 / 4 9 / 8 27 / 24 103 / 95

III 6 14 39 146 5 / 4 9 / 8 28 / 25 106 / 97

Table 6: Call-by-Reference with Remote References (RMI)

Benchmark/
Tree Size

JDK 1.3 JDK 1.4

16 64 256 1024 16 64 256 1024

I 41 50 87 - 44 48 124 -

II 35 50 85 - 49 53 95 -
11

III 113 123 164 - 131 131 228 -
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avoid context switching and get a fair measurement. The
numbers were significantly tainted on a uniprocessor
machine.) The main observations from these measure-
ments are as follows:

• The benchmarks have very low computation times—
their execution consists mostly of middleware process-
ing and data transmission.

• Java RMI in JDK 1.4 is significantly faster than RMI in
JDK 1.3. The speedup is in the order of 50-60% for this
experimental setting. The speedup will be lower for a
network that is slower relative to the processor speeds.

• The results of Table 4 minus the corresponding results
of Table 3 will only yield an upper bound for the raw
data transmission time, because the Table 3 results were
computed exclusively on the fast (750MHz) machine
while the Table 4 results include computation on both
the fast and the slow (440MHz) node. The difference
between the raw data transmission time and the “Table
4-minus-Table 3” value can be as high as the difference
between the computation times on the fast and slow
machines, shown in Table 1. Even then, however, JDK
1.3 seems to perform much better when no network is
involved than the corresponding difference in JDK 1.4.
This leads us to conclude that probably RMI in JDK 1.4
uses the underlying OS/networking facilities much more
efficiently than JDK 1.3 and this difference disappears
when the two hosts are sharing memory. We indepen-
dently corroborated the raw data transmission time
shown in the tables by profiling the benchmarks and not-
ing the amount of time they spent blocked for I/O. We
found that the real transmission time for JDK 1.3 is
much higher even for transmitting the exact same
amount of data as 1.4.

• For benchmarks I and II, NRMI is quite efficient. Even
the portable version is rarely more than 30% slower than
the corresponding RMI version. The optimized imple-
mentation of NRMI is about 20% slower than RMI in
JDK 1.4. This is certainly fast enough for use in real
applications. For instance, the optimized implementa-
tion of NRMI for JDK 1.4 is 20-30% faster than regular
RMI in JDK 1.3.

• For benchmark III, which is hard to simulate by hand
with call-by-copy alone, the portable implementation of
NRMI gets similar performance to regular RMI in all
cases, while the optimized implementation is faster. The
cause isnot the processing time for restoring the values
changed by the header. (In fact, we performed the same
experiments ignoring the manual restoring of changes
and got almost identical timings.) Instead, the reason is
that the regular RMI version transfers more data: the
“shadow tree” is a simple way to emulate the local

semantics by hand, but stores more information th
that of the NRMI linear map. (Specifically, it stores al
the original structure of the tree instead of just pointe
to all the reachable nodes.) The only alternative wou
be to compute a linear mapping to all reachable nod
on both sides, effectively imitating NRMI in user space

• Call-by-reference implemented by remote pointers
extremely inefficient (as expected). Every access
parameter data by the remote method results in netwo
traffic. Java RMI does not seem fit for this kind of com
munication at all—the memory consumption of th
benchmarks grew uncontrollably. For the 1,024 nod
trees, the benchmarks took more than 600ms per c
(repeated over 1,000 times) and in fact failed to com
plete as they exceeded the 1GB heap limit that we h
set for our Java virtual machines. The reason for th
memory leak is that the references back from the serv
to the client create distributed circular garbage. Sin
RMI only supports reference counting garbage colle
tion, it cannot reclaim the garbage data.

The conclusion from our experiments is that NRMI i
optimized enough for real use. NRMI (copy-restore) fo
JDK 1.4 is close to the optimized RMI in JDK 1.4 and
faster than regular RMI (call-by-copy with results passe
back) in JDK 1.3. Of course, with NRMI the programme
maintains the ability to use call-by-copy semantics whe
deemed necessary. When, however, a more natural p
gramming model is desired, NRMI is without competi
tion—the only alternative is the very slow call-by-
reference through RMI remote pointers.

6. Related Work

Distributed computing has been the main focus
systems research in the past two decades. A large port
of the research community’s efforts is aimed at improvin
the performance and usability aspects of distributed co
puting. Since the objective of NRMI lies mostly in usabil
ity but without sacrificing performance, there is a wealt
of work that exhibits similar goals or methodologies t
ours. Hence, we will be selective in our presentation a
we will separate performance and usability related work

6.1. Performance Improvement Work

There have been several efforts targeted at providing
more efficient implementation of the facilities offered b
standard RMI [14]. Krishnaswamy et al. [6] achieve RM
performance improvements by replacing TCP with UD
and by utilizing object caching. Upon receiving a remot
call, a remote object is transferred to and cached on t
caller site. In order for the runtime to implement a consi
12
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tency protocol, the programmer must identify whether a
remote method is read-only (e.g., will only read the object
state) or not, by including the throwing of “read” or
“write” exceptions. That is, instead of transferring the data
to a read-only remote method, the server object is moved
to the data instead, which results in better performance in
some cases.

There are several systems that improve the perfor-
mance of RMI by using a more efficient serialization
mechanism. KaRMI [8] uses a serialization implementa-
tion based on explicit routines for writing and reading
instance variables along with more efficient buffer man-
agement. Maassen et al.’s work [7] takes an alternative
approach by using native code compilation to support
compile and run time generation of marshalling code.

It is interesting to observe that most of the optimiza-
tions aimed at improving the performance of the standard
RMI and call-by-copy can be successfully applied to
NRMI and call-by-copy-restore. Furthermore, such opti-
mizations would be even more beneficial to NRMI due to
its heavier use of serialization and networking.

6.2. Usability Improvement Work

Thiruvathukal et al. [20] propose an alternative
approach to implementing a remote procedure call mecha-
nism call for Java based on reflection. The proposed
approach employs the reflective capabilities of the Java
languages to invoke methods remotely. This simplifies the
programming model since a class does not have to be
declared remote for its instances to receive remote calls.

While CORBA does not currently support object seri-
alization, the OMG is reviewing the possibilities of mak-
ing such support available in some future version of IIOP
[7]. Once object serialization becomes available, both call-
by-copy and call-by-copy-restore can be implemented
enabling [in] and [in out] parameters passing semantics for
objects.

Distributed Shared Memory (DSM)systems are the
main way employed in the research literature to making
distributed computing easier. Traditional DSM approaches
create the illusion of a shared address space, when the data
are really distributed across different machines. Example
DSM systems include Munin [3], Orca [2], and, in the Java
world, CJVM [1], and Java/DSM [23]. DSM systems can
be viewed as sophisticated implementations of call-by-ref-
erence semantics, to be contrasted with the naive “remote
pointer” approach shown in Figure 3. Nevertheless, the
focus of DSM systems is very different than that of mid-
dleware. DSMs are used when distributed computing is a
means to achieve parallelism. Thus, they have concen-
trated on providing correct and efficient semantics for
multi-threaded execution. To achieve performance, DSM

systems create complex memory consistency models a
require the programmer to implicitly specify the sharin
properties of data. In practice, the applicability of DSM
has been restricted to high-performance parallel applic
tions, mainly in a research setting. In contrast, NRM
attempts to support natural semantics to straightforwa
middleware, which is always under the control of the pro
grammer. NRMI (and all other middleware) do not try to
support “distribution for parallelism” but instead facilitate
distributed computing in the case where an application
data and input are naturally far away from the computatio
that needs them.

A special kind of tools that attempt to bridge the ga
between DSMs and middleware areautomatic partitioning
tools. Such tools split centralized programs into sever
distinct parts that can run on different network sites. Thu
automatic partitioning systems try to offer DSM-like
behavior but with more ease of use and compatibilit
Automatically partitioned applications run on existing
infrastructure (e.g., DCOM or regular unmodified JVMs
but relieve the programmer from the burden of dealin
with the idiosyncrasies of various middleware mech
nisms. At the same time, this reduces the field of applic
tion to programs where locality patterns are very cle
cut—otherwise performance can suffer greatly. In the Ja
world, the J-Orchestra [19], Addistant [18] and Panga
[12][13] systems can be classified as automatic partitio
ing tools.

The JavaParty system [5][11] works much like a
automatic partitioning tool, but gives a little more pro
grammatic control to the user. JavaParty is designed
ease distributed cluster programming in Java. It exten
the Java language with the keywordremote to mark those
classes the can be called remotely. The JavaParty comp
then generates the required RMI code to enable rem
access. Compared to NRMI, JavaParty is much closer t
DSM system, as it incurs similar overheads and emplo
similar mechanisms for exploiting locality.

Doorastha [4] represents another piece of work o
making distributed programming more natural. Doorasth
allows the user to annotate a centralized program to turn
into a distributed application. Although Doorastha allow
fine-grained control without needing to write comple
serialization routines, the choice of remote calling sema
tics is limited to call-by-copy and call-by-reference imple
mented through RMI remote pointers or object mobility
Call-by-copy-restore can be introduced orthogonally in
framework like Doorastha. In practice, we expect that ca
by-copy-restore will often be sufficient instead of the cos
lier, DSM-like call-by-reference semantics.

Finally, we should mention that approaches that hid
the fact that a network is present have often been criticiz
(e.g., see the well-known Waldo et al. “manifesto” on th
13
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subject [22]). The main point of criticism has been that
distributed systems fundamentally differ from centralized
systems because of the possibility of partial failure, which
needs to be handled differently for each application. The
“network transparency” offered by NRMI does not violate
this principle in any way. Just like RMI, NRMI remote
methods throw remote exceptions that the programmer is
responsible for catching. Thus, programmers are always
aware of the network’s existence, but with NRMI they
often do not need to program differently, except to concen-
trate on the important parts of distributed computing, i.e.,
handling partial failure.

7. Conclusions

Distributed computing has moved from an era of “dis-
tribution for parallelism” to an era of “data-driven distribu-
tion”: the data sources of an application are naturally
remote to each other or to the computation. In this setting,
call-by-copy-restore is a very useful middleware seman-
tics, as it closely approximates local execution. In this
paper we describe the implementation and benefits of call-
by-copy-restore middleware for arbitrary linked data struc-
tures. Our ideas are concretely implemented in NRMI: an
efficient Java middleware mechanism that supports call-
by-copy-restore semantics in addition to standard call-by-
copy semantics. We believe that NRMI is a valuable tool
for Java distributed programmers and that the same ideas
can be applied to middleware design and implementation
for other languages.
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