
Residual Investigation:
Predictive and Precise Bug Detection

Kaituo Li,
Christoph Reichenbach

∗

Computer Science Dept.
University of Massachusetts
Amherst, MA 01003, USA

kaituo@cs.umass.edu,
creichen@gmail.com

Christoph Csallner
Department of Computer
Science and Engineering

University of Texas at
Arlington,

Arlington, TX 76019, USA
csallner@uta.edu

Yannis Smaragdakis
Dept. of Informatics,

U. of Athens
Athens 15784, Greece

and Comp. Sci.,
U. Massachusetts

Amherst, MA 01003, USA
smaragd@di.uoa.gr

ABSTRACT
We introduce the concept of “residual investigation” for program
analysis. A residual investigation is a dynamic check installed as a
result of running a static analysis that reports a possible program er-
ror. The purpose is to observe conditions that indicate whether the
statically predicted program fault is likely to be realizable and rel-
evant. The key feature of a residual investigation is that it has to be
much more precise (i.e., with fewer false warnings) than the static
analysis alone, yet significantly more general (i.e., reporting more
errors) than the dynamic tests in the program’s test suite pertinent
to the statically reported error. That is, good residual investigations
encode dynamic conditions that, when taken in conjunction with
the static error report, increase confidence in the existence of an
error, as well as its severity, without needing to directly observe a
fault resulting from the error.

We enhance the static analyzer FindBugs with several residual
investigations, appropriately tuned to the static error patterns in
FindBugs, and apply it to 7 large open-source systems and their
native test suites. The result is an analysis with a low occurrence
of false warnings (“false positives”) while reporting several actual
errors that would not have been detected by mere execution of a
program’s test suite.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Validation

General Terms
Design, Reliability, Verification

Keywords
False warnings, existing test cases, RFBI

∗Current affiliation: Google Inc., Mountain View, CA, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’12, July 15–20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$15.00.

1. INTRODUCTION AND MOTIVATION
False error reports are the bane of automatic bug detection—this

experience is perhaps the most often-reported in the program anal-
ysis research literature [1,21,22,27,28]. Programmers are quickly
frustrated and much less likely to trust an automatic tool if they
observe that reported errors are often not real errors, or are largely
irrelevant in the given context. This is in contrast to error detection
at early stages of program development, where guarantees of de-
tecting all errors of a certain class (e.g., type soundness guarantees)
are desirable. Programmers typically welcome conservative sanity
checking while the code is actively being developed, but prefer later
warnings (which have a high cost of investigation) to be with much
higher confidence, even at the expense of possibly missing errors.

The need to reduce false or low-value warnings raises difficul-
ties especially for static tools, which, by nature, overapproximate
program behavior. This has led researchers to devise combina-
tions of static analyses and dynamic observation of faults (e.g.,
[6, 9, 10, 12, 17, 25, 26]) in order to achieve higher certainty than
purely static approaches.

In this paper we present a new kind of combination of static and
dynamic analyses that we termresidual investigation. A residual
investigation is a dynamic analysis that serves as the run-time agent
of a static analysis and to discern with higher certainty whether the
error identified by the static analysis is likely true. In other words,
one can see the dynamic analysis as the “residual” of the static
analysis at a subsequent stage: that of program execution. The
distinguishing feature of a residual investigation, compared to past
static-dynamic combinations, is that the residual investigation does
not intend to report the error only if it actually occurs, but to iden-
tify generalconditions that confirm the statically detected error.
That is, a residual investigation is apredictivedynamic analysis,
predicting errors in executions not actually observed.

Consider as an example the “equal objects must have equal hash-
codes” analysis (codenamed HE) in the FindBugs static error detec-
tor for Java [1,14,16]. The HE analysis emits a warning whenever
a class overrides the methodequals(Object) (originally defined
in theObject class, the ancestor of all Java classes) without over-
riding the hashCode() method (or vice versa). The idea of the
analysis is that the hash code value of an object should serve as
an equality signature, so a class should not give a new meaning to
equality without updating the meaning ofhashCode() . An actual
fault may occur if, e.g., two objects with distinct hash code values
are equal as far as theequals method is concerned, and are used in
the same hash table. This error will be hard to trace, as it can lead
to a violation of fundamental program invariants. The programmer

may validly object to the error warning, however: objects of this
particular class may never be used in hash tables in the current pro-
gram. Our residual investigation consists of determining whether
(during the execution of the usual test suite of the program) objects
of the suspect class are ever used inside a hash table data structure,
or otherwise have theirhashCode method ever invoked. (The for-
mer is a strong indication of an error, the latter a slightly weaker
one.) Note that this will likely not cause a failure of the current
test execution: all objects inserted in the hash table may have dis-
tinct hash code values, or object identity in the hash table may not
matter for the end-to-end program correctness. Yet, the fact that ob-
jects of a suspect type are used in a suspicious way is a very strong
indication that the program will likely exhibit a fault for different
inputs. In this way the residual investigation is both more general
than mere testing, as well as more precise than static analysis.

We have designed and implemented residual investigations for
several of the static analyses/bug patterns in the FindBugs sys-
tem. The result is a practical static-dynamic analysis prototype
tool, RFBI (for Residual FindBugs Investigator). Our implemen-
tation uses standard techniques for dynamic introspection and code
interposition, such as bytecode rewriting and customized AspectJ
aspects [18]. The addition of extra analyses is typically hindered
only by engineering (i.e., implementation) overheads. Designing
the residual investigation to complement a specific static pattern re-
quires some thought, but it is typically quite feasible, by following
the residual investigation guidelines outlined earlier: the analysis
should be significantly more general than mere testing while also
offering a strong indication that the statically predicted fault may
indeed occur.

We believe that the ability to easily define such analyses is tes-
tament to the value of the concept of residual investigation. Pre-
dictive dynamic analyses are usually hard to invent. To our knowl-
edge, there is only a small number of predictive dynamic analyses
that have appeared in the research literature. (A standard example
of a predictive dynamic analysis is the Eraser race detection algo-
rithm [23]: its analysis predicts races based on inconsistent locking,
even when no races have appeared in the observed execution.) In
contrast, we defined seven predictive analyses in a matter of days,
by merely examining the FindBugs list of bug patterns under the
lens of residual investigation.

In summary, the main contributions of this work are:

• We introduce residual investigation as a general concept and
illustrate its principles.

• We implement residual investigations for several of the most
common analyses in the FindBugs system, such as “clone-
able not implemented correctly”, “dropped exception”, “read
return should be checked”, and several more. This yields a
concrete result of our work, in the form of the Residual Find-
Bugs Investigator (RFBI) tool.

• The real experimental validation of our work consists of the
ability to invent residual investigations easily. However, we
also validate our expectation that the resulting analyses are
useful by applying them to 7 open-source applications (in-
cluding large systems, such as JBoss, Tomcat, NetBeans, and
more) using their native test suites. We find that residual in-
vestigation produces numerous (31) warnings that do not cor-
respond to test suite failures and are overwhelmingly bugs.

2. RESIDUAL INVESTIGATION
Residual investigation is a simple concept—it is a vehicle that

facilitates communication rather than a technical construction with

a strict definition. We next discuss its features and present the ex-
ample analyses we have defined.

2.1 Preliminary Discussion
We consider a dynamic check that is tied to a static analysis to

be a residual investigation if it satisfies the informal conditions out-
lined in the Introduction:

• The check has to identify with very high confidence that the
statically predicted behavior (typically a fault1) is valid and
relevant for actual program executions. A residual investi-
gation should substantially reduce the number of false (or
low-value) error reports of the static analysis.

• The analysis has to be predictive: it should be generalizing
significantly over the observed execution. A residual investi-
gation should recognize highly suspicious behaviors, not just
executions with faults.

A bit more systematically, we can define the following predicates
over a programp:

• B(p), for “p has a bug”, i.e., the program text contains a
possible error of a kind we are concerned with (e.g., class
overridesequals but nothashcode) and there is some exe-
cutionep of p for which this error leads to a fault.

• S(p), for “p induces a static error report”, i.e., the program
text contains a possible error that the static analysis reports.

• T (p), for “p causes a test case fault”, when executed withp’s
test suite.

• R(p), for “p causes a residual investigation report”, when
executed withp’s test suite.

We assume that our static analysis is complete for the kinds of
errors we consider, and the dynamic testing is sound for the execu-
tion it examines.2 Thus, we have:

∀p : B(p) ⇒ S(p)

(by completeness of static analysis)

∀p : T (p) ⇒ B(p)

(by soundness of dynamic testing).
The requirements for having a valid and useful residual investi-

gation then become:

1The computing literature is remarkably inconsistent in the use of
the terms “error”, “fault”, “failure”, etc. In plain English “error”
and “fault” are dictionary synonyms. Mainstream Software Engi-
neering books offer contradicting definitions (some treat an “error”
as the cause and a “fault” as the observed symptom, most do the op-
posite). Standard systems parlance refers indiscriminately to “bus
errors” and “segmentation faults”, both of which are quite similar
program failures. In this paper we try to consistently treat “error”
(as well as “bug” and “defect”) as the cause (in the program text) of
unexpected state deviation, and “fault” as the dynamic occurrence
that exhibits the consequences of an error. That is we think ofpro-
grammingerrors, andexecutionfaults. It should also be possible
for the reader to treat the two terms as synonyms.
2This assumption holds only for the purposes of the formalism in
this sub-section. The notion of residual investigation holds per-
fectly well for incomplete bug finders. We view all analyses as bug
detectors, not as correctness provers. Therefore soundness means
that warning about an error implies it is a true error, and complete-
ness means that having an error implies it will be reported. For a
correctness prover the two notions would be exactly inverse.

p

TS B TS B

Figure 1: The goal of residual investigation (R) is to provide a
filter for the static bug warnings (S), such that R and S com-
bined (i.e., the intersection of R and S) better approximates the
set of true bugs (B) than static analysis and dynamic testing (T).

1. The static analysis is unsound (i.e., some warnings are false):

∃p : S(p) ∧ ¬B(p)

(We are only interested in non-trivial and therefore undecid-
able program properties. As our static analysis is complete,
it has to be unsound. Note that sinceT is sound, this implies
∃p : S(p) ∧ ¬T (p) i.e., the dynamic analysis also does not
flag this program that the static analysis flags.)

2. The dynamic testing (of a program’s test suite) is incomplete
(i.e., bugs are missed by testing):

∃p : B(p) ∧ ¬T (p)

(Again, the undecidability of non-trivial program properties
combined with the soundness of testing implies testing is in-
complete.)

3. The residual investigation should be an appropriate bridge
for the gap between the static analysis and the bug (see also
Figure 1):

∀p : B(p) ∼= (S(p) ∧R(p))

We use∼= for “approximately equivalent”. This is the only
informal notion in the above. It is practically impossible to
have exact equivalence for realistic programs and error con-
ditions, sinceR(p) examines a finite number of program ex-
ecutions. Note that (approximate) equivalence means both
thatS(p) ∧R(p) (likely) implies a bug and that, if there is a
bug,R(p) will (likely) be true, i.e., will detect it. In practice,
we place a much greater weight on the former direction of
the implication. That is, we are happy to give up on com-
pleteness (which is largely unattainable anyway) to achieve
(near-)soundness of error warnings.

The question then becomes: how does one identify a good resid-
ual investigation? We have used some standard steps:

• Start with the static analysis and identify under what condi-
tions it is inaccurateor irrelevant.

• Estimate how likely these conditions can be. In other words,
is this static analysis likely to yield error reports that the pro-
grammer will object to, seeing them as false or of low-value?

• If so, is there a concise set of dynamic information (other
than a simple fault) that can invalidate the programmer’s ob-
jections? That is, can we determine based on observable
dynamic data if the likely concerns of a programmer to the
static warnings do not apply?

Recognizing such “likely objections of the programmer” has
been the key part in our design. With this approach we proceeded to
identify residual investigations for seven static analyses in the Find-
Bugs system, including some of the analyses that issue the most
common FindBugs warnings.

2.2 Catalog of Analyses
We next present the residual investigations defined in our RFBI

(Residual FindBugs Investigator) tool, each tuned to a static anal-
ysis in the FindBugs system. We list each analysis (uniquely de-
scribed by the corresponding FindBugs identifier) together with the
likely userobjectionswe identified and a description ofcluesthat
dynamic analysis can give us to counter such objections. To sim-
plify the presentation, we detail our implementation at the same
time.

2.2.1 Bad Covariant Definition of Equals (Eq)
The equals(Object) method is defined in theObject class

(java.lang.Object) and can be overridden by any Java class to
supply a user-defined version of object value equality. A common
mistake is that programmers writeequals methods that accept a
parameter of type other thanObject . The typical case is that of a
covariant re-definition ofequals , where the parameter is a subtype
of Object , as in the example classPixel :

class Pixel {
int x;
int y;
int intensity;

boolean equals(Pixel p2)
{ return x==p2.x && y==p2.y; }

}

This equals method does not override theequals method in
Object but instead redefines it for arguments of the appropri-
ate, more specific, static type. As a result, unexpected behav-
ior will occur at runtime, especially when an object of the class
type is entered in a Collections-based data structure (e.g.,Set ,
List). For example, if one of the instances ofPixel is put
into an instance of a class implementing interfaceContainer ,
then when theequals method is needed,Object.equals() will
get invoked at runtime, not the version defined inPixel . One
of the common instances of this scenario involves invoking the
Container.contains(Object) method. A common skeleton
for Container.contains(Object) is:

boolean contains(Object newObj) {
Iterator cur = this.iterator();
while(cur.hasNext()) {

if(cur.next().equals(newObj))
return true;

}
return false;

}

Here, contains(Object) will use Object.equals , which
does not perform an appropriate comparison: it compares refer-
ences, not values. Therefore, objects of typePixel are not com-
pared in the way that was likely intended.

Possible programmer objections to static warnings.FindBugs is-
sues an error report for each occurrence of a covariant definition
of equals . Although the covariant definition ofequals is very
likely an error, it is also possible that no error will ever arise in
the program. This may be an accidental artifact of the program
structure, or even a result of the programmer’s calculation that for
objects of the suspect class the dynamic type will always be equal
to the static type, for every invocation ofequals . For instance, the
redefinedequals(Pixel) method may be used only inside class
Pixel , with arguments that are always instances of subtypes of

Pixel , and the programmer may have chosen the covariant defini-
tion because it is more appropriate and convenient (e.g., obviates
the need for casts).

Dynamic clues that reinforce static warnings. Our residual inves-
tigation consists of simply checking whether the ancestralequals
method,Object.equals(Object) , is called on an instance of a
class that has a covariant definition ofequals . The implementa-
tion first enters suspect classes into a blacklist and then instruments
all call sites ofObject.equals(Object) to check whether the
dynamic type of the receiver object is in the blacklist.

Implementation. We transform the application bytecode, using
the ASM Java bytecode engineering library. Generally, for all
our analyses, we instrument incrementally (i.e., when classes are
loaded), except in applications that perform their own bytecode
rewriting which may conflict with load-time instrumentation. In
the latter case, we pre-instrument the entire code base in advance
(build time).

2.2.2 Cloneable Not Implemented Correctly (CN)
Java is a language without direct memory access, hence generic

object copying is done only via the convention of supplying a
clone() method and implementing theCloneable interface. Ad-
ditionally, theclone() method has to return an object of the right
dynamic type: the dynamic type of the returned object should be
the same as the dynamic type of the receiver of theclone method
andnot the (super)class in which the executed methodclone hap-
pened to be defined. This is supported via a user convention: any
definition ofclone() in a classS has to callsuper.clone() (i.e.,
the corresponding method inS’s superclass). The end result is that
the (special)clone() method in thejava.lang.Object class is
called, and produces an object of the right dynamic type.

Possible programmer objections to static warnings.FindBugs stat-
ically detects violations of the above convention and reports an er-
ror whenever a class implements theCloneable interface, but does
not directly invokesuper.clone() in its clone method (typically
because it merely creates a new object by calling a constructor).
Although this condition may at first appear to be quite accurate,
in practice it often results in false error reports because the static
analysis is not inter-procedural. Theclone method may actually
call super.clone() by means of invoking a different intermediate
method that callssuper.clone() and returns the resulting object.

Dynamic clues that reinforce static warnings. A dynamic check
that determines whether aclone method definition is correct con-
sists of callingclone on a subclass of the suspect classS and
checking the return type (e.g., by casting and possibly receiving
a ClassCastException). Our residual investigation introduces a
fresh subclassC of S defined and used (in a minimal test case) via
the general pattern:

class C extends S {
public Object clone()
{ return (C) super.clone(); }

}
... ((new C()).clone()) // Exception

(If S does not have a no-argument constructor, we statically repli-
cate inC all constructors with arguments and dynamically propa-
gate the actual values of arguments used for construction ofS ob-
jects, as observed at runtime.)

If the test case results in aClassCastException then the def-
inition of clone in classS is indeed violating convention. Con-
versely, if S implements theclone convention correctly (i.e., in-
directly callssuper.clone()) no exception is thrown. This test
code is executed the first time an object of classS is instantiated. In

this way, if classS does not get used at all in the current test suite,
no error is reported.

The above residual investigation provides a very strong indica-
tion of a problem that will appear in an actual execution of the pro-
gram, without needing to observe the problem itself. Indeed, the
current version of the program may not even have any subclasses
of S, but a serious error is lurking for future extensions.

Implementation. Our implementation of this analysis uses As-
pectJ to introduce the extra class and code. In the case of com-
plex constructors, we retrieve those with Java reflection and use
AspectJ’s constructor joinpoints instead of generating customized
calls. A subtle point is that if the superclass,S, only has private
constructors, the residual investigation does not apply. This is ap-
propriate, since the absence of any externally visible constructor
suggests this class is not to be subclassed. Similarly, the generated
code needs to be in the same package as the original classS, in
order to be able to access package-protected constructors.

2.2.3 Dropped Exception (DE)
Java haschecked exceptions: any exception that may be thrown

by a method needs to either be caught or declared to be thrown in
the method’s signature, so that the same obligation is transferred
to method callers. To circumvent this static check, programmers
may catch an exception and “drop it on the floor”, i.e., leave empty
thecatch part in atry -catch block. FindBugs statically detects
dropped exceptions and reports them.

Possible programmer objections to static warnings.Detecting all
dropped exceptions may be a good practice, but is also likely to
frustrate the programmer or to be considered a low-priority error
report. After all, the type system has already performed a check for
exceptions and the programmer has explicitly disabled that check
by dropping the exception. The programmer may be legitimately
certain that the exception will never be thrown in the given setting
(a common case—especially for I/O classes—is that of a general
method that may indeed throw an exception being overridden by
an implementation that never does).

Dynamic clues that reinforce static warnings.Our residual investi-
gation consists of examining which methods end up being dynam-
ically invoked in the suspect code block and watching whether the
same methods ever throw the dropped exception when called from
anywherein the program. For instance, the following code snippet
shows a methodmeth1 whosecatch block is empty. In thetry
block of meth1 , first foo1 is executed, thenfoo2 (possibly called
from foo1), thenfoo3 , and so on:

void meth1() {
try {

foo1();
//Call-graph foo1()->foo2()->...->fooN()

} catch(XException e) { } //empty
}

The residual investigation will report an error if there is any
other method,methX , calling somefoo i where foo i throws an
XException during that invocation (regardless of whether that ex-
ception is handled or not):

void methX {
try { ...

//Call-graph ...->fooN()->...
} catch(XException e) {

... // handled
}

}

In this case the user should be made aware of the possible threat.
If foo i can indeed throw an exception, it is likely to throw it in any
calling context. By locating the offending instance, we prove to
programmers that the exception can occur. Although the warning
may still be invalid, this is a much less likely case than in the purely
static analysis.

Implementation. The implementation of this residual investiga-
tion uses both the ASM library for bytecode transformation and
AspectJ, for ease of manipulation.

We execute the program’s test suite twice. During the first pass,
we instrument the beginning and end of each emptytry -catch
block with ASM, then apply an AspectJ aspect to find all meth-
ods executed in the dynamic scope of thetry -catch block (i.e.,
transitively called in the block) that may throw the exception be-
ing caught.3 (We also check that there is no intermediate method
that handles the exception, by analyzing the signatures of parent
methods on the call stack.) In the first pass we collect all such
methods and generate custom AspectJ aspects for the second pass.
During the second pass, we then track the execution of all methods
we identified in the first pass and identify thrown exceptions of the
right type. For any such exception we issue an RFBI error report.

2.2.4 Equals Method Overrides Equals in Super-
class and May Not Be Symmetric
(EQ_OVERRIDING_EQUALS_NOT_SYMMETRIC)

Part of the conventions of comparing for value equality (via the
equals method) in Java is that the method has to be symmetric:
the truth value ofo1.equals(o2) has to be the same as that of
o2.equals(o1) for every o1 and o2. FindBugs has a bug pat-
tern “equals method override equals in super class and may not be
symmetric”, which emits a warning if both the overriding equals
method in the subclass and the overridden equals method in the
superclass useinstanceof in the determination of whether two
objects are equal. The rationale is that it is common for program-
mers to begin equality checks with a check of type equality for the
argument and the receiver object. If, however, both the overridden
and the overridingequals methods use this format the result will
likely be asymmetric because, in the case of a superclass,S, of a
classC, the instanceof S check will be true for aC object but
not vice versa.

Possible programmer objections to static warnings. The above
static check is a blunt instrument. The programmer may be well
aware of the convention and might be usinginstanceof quite
legitimately, instead of merely in the naive pattern that the Find-
Bugs analysis assumes. For instance, the code of the JBoss sys-
tem has some such correctequals methods that happen to use
instanceof and are erroneously flagged by FindBugs.

Dynamic clues that reinforce static warnings. Our residual inves-
tigation tries to establish some confidence before it reports the po-
tential error. We checked this pattern dynamically by calling both
equals methods whenever we observe a comparison involving a
contentious object and test if the results match (this double-calling
is safe as long as there are no relevant side effects). If the two
equals methods ever disagree (i.e., one test is true, one is false)
we emit an error report.

Implementation. We implemented this residual investigation us-
ing AspectJ to intercept calls to theequals method and perform
the dual check in addition to the original.

3To apply the combination of ASM and AspectJ at load time, we
had to make two one-line changes to the source code of AspectJ.
The first allows aspects to apply to ASM-transformed code, while
the second allows AspectJ-instrumented code to be re-transformed.

2.2.5 Equal Objects Must Have Equal Hashcodes
(HE)

As mentioned in the Introduction, FindBugs reports an error
when a class overrides theequals(Object) method but not the
hashCode() method, or vice versa. All Java objects support these
two methods, since they are defined at the root of the Java class hi-
erarchy, classjava.lang.Object . Overriding only one of these
methods violates the standard library conventions: an object’s hash
code should serve as an identity signature, hence it needs to be con-
sistent with the notion of object value-equality.

Possible programmer objections to static warnings.This warning
can easily be low-priority or irrelevant in a given context. Devel-
opers may think that objects of the suspect type are never stored in
hashed data structures or otherwise have their hash code used for
equality comparisons in the course of application execution. Fur-
thermore, the warning may be cryptic for programmers who may
not see how exactly this invariant affects their program or what the
real problem is.

Dynamic clues that reinforce static warnings.Our Residual Find-
Bugs Investigator installs dynamic checks for the following cases:

• Object.hashCode() is called on an object of a class that
redefinesequals(Object) and inherits the implementation
of hashCode() .

• Object.equals(Object) is called on a class that re-
defines hashCode() and inherits the implementation of
equals(Object) .

Meeting either of these conditions is a strong indication that the
inconsistent overriding is likely to matter in actual program execu-
tions. Of course, the error may not exhibit as a fault in the current
(or any other) execution.

Implementation. Our detector is implemented using the
ASM Java bytecode engineering library. First, we create
a blacklist containing the classes that only redefine one of
Object.equals(Object) andObject.hashCode() in a coor-
dinated manner. Then we introduce our own implementations
of the missing methods in the blacklisted classes. The result
is to intercept every call to eitherObject.equals(Object) or
Object.hashCode() in instances of blacklisted classes.

2.2.6 Non-Short-Circuit Boolean Operator (NS)
Programmers may mistakenly use non-short-circuiting & and|

where they intend to use short circuiting boolean operators && and
|| . This could introduce bugs if the first argument suffices to de-
termine the value of the expression and the second argument con-
tains side-effects (e.g., may throw exceptions for situations like a
null-pointer dereference or division by zero). Therefore, FindBugs
issues warnings for uses of & and| inside the conditions of anif
statement.

Possible programmer objections to static warnings.Such warnings
can clearly be invalid or irrelevant, e.g. if the programmer used
the operators intentionally or if they don’t affect program behav-
ior. FindBugs can sometimes identify the latter case through static
analysis, but such analysis must be conservative (e.g., FindBugs
considers any method call on the right hand side of an && or|| to
be side-effecting). Therefore the error reports are often false.

Dynamic clues that reinforce static warnings.Using a residual in-
vestigation we can check for actual side-effects on the right-hand
side of a non-short-circuiting boolean operator. It is expensive
to perform a full dynamic check for side-effects, therefore we
check instead for several common cases. These include dynam-
ically thrown exceptions (directly or in transitively called meth-
ods, as long as they propagate to the current method), writes to

any field of the current class, writes to local variables of the cur-
rent method, and calls to well-known (library) I/O methods. Since
the residual investigation can miss some side-effects, it can also
miss actual bugs. Additionally, the residual investigation will of-
ten fail to generalize: there are common patterns for which it will
report an error only if the error actually occurs in the current execu-
tion. For instance, in the following example an exception is thrown
only when the left-hand side of the boolean expression should have
short-circuited:

if (ref == null | ref.isEmpty()) ...

Still, the residual investigation generally avoids the too-
conservative approach of FindBugs, while reporting dynamic be-
havior that would normally go unnoticed by plain testing.

Implementation. The implementation of this residual investiga-
tion is one of the most complex (and costly) in the Residual Find-
Bugs Investigator arsenal. We rewrite boolean conditions with the
ASM bytecode rewriting framework to mark a region of code (the
right-hand side of the operator) for an AspectJ aspect to apply, us-
ing a “conditional check pointcut”. The aspect then identifies side-
effects that occur in this code region, by instrumenting field writes,
installing an exception handler, and detecting method calls to I/O
methods over files, network streams, the GUI, etc. Additionally,
we use ASM to detect local variable writes (in the current method
only) in the right-hand side of a boolean condition.

2.2.7 Read Return Should Be Checked (RR)
The java.io.InputStream class in the Java standard library

provides tworead methods that return the number of bytes actu-
ally read from the stream object (or an end-of-file condition). It
is common for programmers to ignore this return value. FindBugs
reports an error in this case. At first glance this check looks to
be foolproof: the code should always check the stream status and
received number of bytes against the requested number of bytes.
If the return value fromread is ignored, we may read uninitial-
ized/stale elements of the result array or end up at an unexpected
position in the input stream.

Possible programmer objections to static warnings.Perhaps sur-
prisingly, this FindBugs check is the source of many false posi-
tives. Although the originaljava.io.InputStream class can in-
deed read fewer bytes than requested, the class is notfinal and
can be extended. Its subclasses have to maintain the same method
signature (i.e., return a number) when overriding either of the two
read methods, yet may guarantee to always return as many bytes
as requested (Notably, the Eclipse system defines such a subclass
and suffers from several spurious FindBugs error reports.)

Dynamic clues that reinforce static warnings.Our residual investi-
gation first examines whether the read method is called on a sub-
class ofjava.io.InputStream that overrides theread method.
If so, we wait until we see aread method on an object of the sus-
pect subclass return fewer bytes than requested (even for a call that
doescheck the return value). Only then we reportall use sites that
do not check the return value ofread , as long as they are reached
in the current execution and the receiver object ofread has the
suspect dynamic type.

Implementation. The implementation of this analysis involves
two computations, performed in the same execution. For the first
computation, we instrument allread methods that override the
one in InputStream (using AspectJ) to observe which ones re-
turn fewer bytes than requested. We collapse this information by
dynamic object type, resulting in a list of all types implementing
a read method that may return fewer bytes than requested; we

always includejava.io.InputStream in that list. For the sec-
ond computation, we instrument all suspectedread call sites with
ASM, to determine the dynamic type of the receiver object. These
dynamic types are the output of the second computation. At the
end of the test suite execution, we cross-check the output of both
passes. We then report any use ofread without a result check on
an object with a dynamic type for which we know thatread may
return fewer bytes than the maximum requested.

2.3 Discussion
The main purpose of a residual investigation is to provide in-

creased soundness for bug reports: an error report should be likely
valid and important. In this sense, a residual investigation is not in
competition with its underlying static analysis, but instead comple-
ments it. In the case of RFBI, the point is not to obscure the output
of FindBugs: since the static analysis is performed anyway, its re-
sults are available to the user for inspection. Instead, RFBI serves
as a classifier and reinforcer of FindBugs reports: the RFBI error
reports are classified as higher-certainty than the average FindBugs
report.

This confidence filtering applies both positively and negatively.
RFBI may confirm some FindBugs error reports, fail to confirm
many because of lack of pertinent dynamic observations, but also
fail to confirm somedespitenumerous pertinent dynamic observa-
tions. To see this, consider an analysis such as “dropped exception”
(DE). RFBI will issue no error report if it never observes an excep-
tion thrown by a method dynamically called from a suspicioustry -
catch block. Nevertheless, it could be the case that the program’s
test suite never results in exceptions or (worse) that there are ex-
ceptions yet the suspicioustry -catch block was never exercised,
and hence the methods under its dynamic scope are unknown. In
this case, RFBI has failed to confirm an error report due to lack
of observations and not due to the observations not supporting the
error. This difference is important for the interpretation of results.
It is an interesting future work question how to report effectively
to the user the two different kinds of negative outcomes (i.e., un-
exercised code vs. exercised code yet failure to confirm the static
warning). In our experimental evaluation, we do this via a metric of
the dynamic opportunities the residual investigation had to confirm
an error report, as discussed in the next section.

3. EVALUATION

3.1 Subject applications
We evaluated RFBI on several large open-source systems: JBoss

(v.6.0.0.Final), BCEL (v.5.2), NetBeans (v.6.9), Tomcat (7.0),
JRuby (v.1.5.6), Apache Commons Collections (v.3.2.1), and
Groovy (v.1.7.10). The advantage of using third-party systems for
evaluation is that we get a representative view of what to expect
quantitatively by the use of residual investigation. The disadvan-
tage is that these systems are large, so great effort needs to be ex-
pended to confirm or disprove bugs by manual inspection.

It is common in practice to fail to confirm a static error report
because of a lack of relevant dynamic observations. This is hardly
a surprise since our dynamic observations are dependent on the ex-
amined program’s test suite. For all systems, we used the test suite
supplied by the system’s creators, which in some cases was sparse
(as will also be seen in our test running times).

3.2 Dynamic potential
In order to make the important distinction between “relevant

code not exercised” and “relevant code exercised, yet no confir-
mation of the bug found”, we use adynamic potentialmetric. Gen-

erally, for each static error report, we automatically pick a related
method (chosen according to the kind of bug reported) and mea-
sure how many times this method gets executed by the test suite.
We found this metric to be invaluable, despite occasional arbitrari-
ness in what we pick to measure. Generally, when multiple condi-
tions need to be satisfied for the dynamic error to occur, we choose
one of them arbitrarily. For instance, for the “equal objects must
have equal hashcodes” analysis, we measure the number of times
the overriddenequals is called on objects of the suspect class that
redefinesequals and nothashCode (and vice versa). This is not
directly tied to the opportunities to find the bug (which, recall, is
reported ifhashCode is ever called on such a suspect object) but it
is a good indication of how much this part of the code is exercised.

Table 1: Summary of results: reports by FindBugs (S) vs. RFBI
(R), the Dynamic Potential (DP) metric of how many of the
static error reports had related methods that were exercised
dynamically, and the number of original test cases (T) that re-
ported an error.

Bug Pattern S R DP T
Bad Covariant Definition of Equals 5 0 0 0
Cloneable Not Implemented Correctly 41 4 5 0
Dropped Exception 128 0 7 0
Equals Method May Not Be Symmetric 8 1 1 0
Equal Objects Must Have Eq. Hashcode 211 25 28 0
Non-Short-Circuit Boolean Operator 18 0 1 0
Read Return Should Be Checked 25 1 1 0

Total 436 31 43 0

3.3 Volume of reports
Table 1 shows the number of static error reports (FindBugs), re-

ports produced by residual investigation (RFBI), and dynamic po-
tential metric. The difference between FindBugs and RFBI reports
is roughly an order of magnitude: a total of 436 potential bugs
are reported by FindBugs for our test subjects and, of these, RFBI
produces reports for 31. Thus, it is certainly the case that resid-
ual investigation significantly narrows down the area of focus com-
pared to static analysis. Similarly, none of the test cases in our
subjects’ test suites failed. Therefore, the 31 reports by RFBI do
generalize observations significantly compared to mere testing. Of
course, these numbers alone mean nothing about thequality of the
reports—we examine this topic later.

By examining the dynamic potential metric in Table 1, we see
that much of the difference between the numbers of FindBugs and
RFBI reports is due simply to the suspicious conditions not being
exercised by the test suite. Most of the static bug reports are on
types or methods that do not register in the dynamic metrics. This
can be viewed as an indication of “arbitrariness”: the dynamic anal-
ysis can only cover a small part of the static warnings, because of
the shortcomings of the test suite. A different view, however, is to
interpret this number as an indication of why static analysis suf-
fers from the “slew of false positives” perception mentioned in the
Introduction. Programmers are likely to consider static warnings
to be irrelevant if the warnings do not concern code that is even
touched by the program’s test suite.

3.4 Quality of research reports (summary)
RFBI narrows the programmer’s focus compared to FindBugs

but the question is whether the quality of the RFBI reports is higher
than that of FindBugs reports, and whether RFBI succeeds as a

classifier (i.e., whether it classifies well the dynamically exercised
reports into bugs and non-bugs).

Since our test subjects are large, third-party systems, we cannot
manually inspect all (436) FindBugs reports and see which of them
are true bugs. Instead, we inspected the 43 reports that are dynam-
ically exercised (per the DP metric) as well as a sample of 10 other
FindBugs reports that were never dynamically exercised (and, thus,
never classified by RFBI as either bugs or non-bugs). The latter
were chosen completely at random (blind, uniform random choice
among the reports).

If we view RFBI as a classifier of the 43 dynamically exercised
FindBugs reports, its classification quality is high. As seen in Ta-
ble 1, RFBI classifies 31 of the 43 dynamically exercised reports
as bugs (i.e., reinforces them), thus rejecting 12 reports. Table 2
shows which of these RFBI classifications correspond to true bugs
vs. non-bugs. The number for the correct outcome for each row is
shown in boldface.

Table 2: Quality of RFBI warnings on the 43 dynamically exer-
cised FindBugs reports.

Dynamic reports bug non-bug undetermined
31 reinforced 24 6 1
12 rejected 0 11 1

43 total 24 17 2

From Table 2, we have that the precision of RFBI is≥ 77% (or
that RFBI produces< 23% false warnings) and that its recall is≥
96%, over the 43 dynamically exercised FindBugs reports.

For comparison, among the 10 non-exercised FindBugs reports
that we sampled at random, only one is a true bug. Thus, the preci-
sion of FindBugs on this sample was 10%, which is a false warning
rate of 90%. We see, therefore, that RFBI reports are of higher
quality than FindBugs reports and the programmer should priori-
tize their inspection.

3.5 Detailed discussion of reports
We next discuss in detail the RFBI results that we inspected man-

ually. This yields concrete examples of bug reports reinforced and
rejected (both correctly and falsely) for the numbers seen above.
Table 3 breaks down the reports dynamically exercised by test sub-
ject and analysis, as well as their dynamic potential. Note that in
the rest of this section we are not concerned with FindBugs reports
that are not exercised dynamically.

• RFBI correctly confirms four dynamically exercised in-
stances of “Cloneable Not Implemented Correctly” and re-
jects one. This is a sharp distinction, and, we believe, correct.
In three of the four instances (in Apache Commons)clone
directly constructs a new object, rather than calling the par-
entclone . One bug in Groovy arises in an instance where a
delegator violates the cloning protocol by returning a clone
of its delegate instead of a clone of itself. The rejected bug
report is aclone method for a singleton object that returned
this , which is entirely typesafe.

• RFBI rejects seven “Dropped Exception” reports, of which
our manual inspection found six to be accurate and one un-
clear The unclear case involved the NetBeans test harness ig-
noring an exception caused by backing store problems during
synchronisation; we expect that such an exception is likely
to trigger further bugs and hence unit test failures but ar-
gue that it might have been appropriate to log the exception

Table 3: Breakdown of all RFBI warnings as well as the dynamic potential metric for the warning. “a/b/c” means there werea
RFBI warnings of this kind, b dynamic potential methods executed (zero typically means there was no opportunity for the residual
investigation to observe an error of the statically predicted kind), and each of them was observed to executec times (on average).
Thus, the sum of all as is the number of RFBI reinforced reports (31) and the sum of allbs is the number of total dynamically
exercised FindBugs reports (43). Empty cells mean that there were no static error reports for this test subject and analysis—this is
in contrast to 0/0/0 cells, which correspond to static warnings that were never exercised dynamically.

Bug Pattern #confirmed bugs/dynamic potential(#executed methods)/avg. times executed
JBoss BCEL NetBeans Tomcat JRuby ApacheCC Groovy

Bad Covariant Definition of Equals 0/0/0 0/0/0
Cloneable Not Implemented Correctly 0/0/0 0/1/9 3/3/657.7 1/1/11
Dropped Exception 0/4/378 0/1/79 0/0/0 0/1/5 0/1/25
Equals Method May Not Be Symmetric 0/0/0 0/0/0 1/1/2.6M
Equal Objects Must Have Eq. Hashcodes 1/2/1 20/20/77k 0/0/0 1/1/5k 2/2/3.5 1/3/14
Non-Short-Circuit Boolean Operator 0/0/0 0/1/194
Read Return Should Be Checked 0/0/0 0/0/0 0/0/0 1/1/571

rather than ignoring it. Of the remaining six cases, four af-
fected JBoss. In three of these cases the code correctly han-
dles the erroneous case by exploiting the exceptional con-
trol flow in other ways (e.g., when an assignment throws
an exception, the left-hand side retains its previous value,
which the code can test for) or by falling back on alterna-
tive functionality (for example, JBoss attempts to use I/O
access to/dev/urandom to generate random numbers, but
falls back on the Java random number generator if that ap-
proach fails). The fourth JBoss case ignores exceptions that
may arise while shutting down network connections. We as-
sume that the programmers’ rationale is that they can do no
more but trust that the library code tries as hard as possible to
release any resources that it has acquired, and that afterwards
the program should run in as robust a fashion as possible.

In one of the two remaining cases (JRuby), exceptions are
dropped in debug code and can only arise if the JRuby VM
has been corrupted or has run out of memory. In the final case
(Groovy), the dropped exception is a ClassLoaderException
that could only arise if the Java standard library were missing
or corrupt.

• We observed one out of eight “Equals Method May Not Be
Symmetric” instances dynamically, in JRuby’sRubyString
class. RFBI here indicated that the report was correct, point-
ing to an implementation ofequals that differs subtly from
the equivalent Ruby equality check for the same class. In
practice, the ‘Java’ version of equality is only used in rare
circumstances and unlikely to cause problems, unless the in-
tegration between Java and Ruby were to be changed signifi-
cantly. We thus found it unclear whether this bug report was
a true positive (as suggested by RFBI) or not.

• RFBI confirms 20 “Equal Objects Must Have Equal Hash-
codes” reports for BCEL. The 20 RFBI reports concern
classes that represent branch instructions in the Java byte-
code language. All reported classes define an application-
specific value equalityequals method, without ever defin-
ing hashCode . Objects for branch instructions, however,
get entered in aHashSet , as part of a seemingly oft-used
call: InstructionHandle.addTargeter . Therefore, we
believe that the bug warning is accurate for these instructions
and can result in obscure runtime faults.

RFBI incorrectly confirms two “Equal Objects Must Have
Equal Hashcodes” bug reports in JRuby: in both cases,

equals is overridden buthashCode is not. In one of the per-
tinent classes, the superclasshashCode implementation uses
a custom virtual method table for Ruby to look up a correct
subclass-specifichashCode implementation; such complex
indirection is impossible to detect in general. In the other
class,hashCode is only used to generate a mostly-unique
identifier for debugging purposes, instead of hashing. This
breaks the heuristic assumption thathashCode andequals
collaborate. In Groovy, RFBI incorrectly confirms a bug for
exactly the same reason. Meanwhile, the two bugs we re-
jected in Groovy again did not see invocations of the missing
methods, and we consider our results to be accurate in those
cases. RBFI also incorrectly confirms a bug for JBoss (and
rejects one, correctly): although theequals method is over-
ridden, it does nothing more than delegate to the superclass
method, which also defines an appropriatehashCode .

• RFBI correctly rejects a “Non-Short Circuit Boolean Oper-
ator” bug report in JRuby involving a method call, as the
method in question is only a getter method (and thus has no
side effects that might unexpectedly alter program behavior).

• Only one report of “Read Return Should Be Checked” is ex-
ercised in unit tests. This report involves Groovy’s Json lexer,
which in one instance does not check the number of bytes re-
turned by a read operation. However, the bytes read are writ-
ten into an empty character array that is immediately con-
verted to a string, which is then checked against an expected
result: if the number of bytes read was less than requested,
this later check must fail, because the generated string will be
too short. Such complex logic is beyond the scope of RFBI,
which erroneously confirms the static report.

In summary, the few misjudged bug reports arose because the
code violated the assumptions behind our concrete residual inves-
tigation heuristics (e.g., application-specific use ofhashCode). In-
correct RFBI bug reports typically were due to complex mecha-
nisms that achieve the desired result in a way that requires higher-
level understanding yet proves to be semantically correct (e.g.,
leaving out a test for bytes read because it is subsumed by a string
length check). It is unlikely that any automatic technique can elim-
inate bug reports that are erroneous because of such factors.

3.6 Runtime overhead
Table 4 shows the runtime overhead of our residual investigation.

As can be seen, compared to the baseline (of uninstrumented code)

residual investigation slows down the execution of the test suite
typically by a factor of 2-to-3, but even going up to 6. The “dropped
exception” analysis is the worst offender due to executing the test
suite twice and watching a large number of the executed method
calls.

3.7 Threats to validity
Our experimental evaluation of the efficacy of residual investiga-

tion shows that it yields higher-precision bug reporting and a reli-
able classification of bugs. The main threats to validity include the
following threats to external validity.

• Choice of subject applications: We did not select our seven
subject applications truly randomly from the space of all pos-
sible Java applications or even from all current Java applica-
tions. I.e., our empirical results may not generalize well to
other applications. However, our applications cover a variety
of application areas. I.e., we use a data structure library, two
language runtime systems, a bytecode engineering library,
two web servers, and an IDE. Given the large size of these
subject applications, we suspect that our findings will gen-
eralize to a large extent, but this remains to be confirmed as
part of a larger empirical study.

• Choice of FindBugs patterns: We did not select the patterns
randomly from the list of all FindBugs patterns. I.e., resid-
ual investigation likely does not generalize to all FindBugs
patterns. Our choice of patterns was influenced by subjec-
tive considerations such as how well-known we deemed a
pattern to be. I.e., six of our patterns have been described
in an article [15] by the FindBugs authors. That article de-
scribes a total of 18 patterns. For our evaluation we picked
patterns for which we suspected that FindBugs would pro-
duce false warnings on our subject applications. We argue
that this is not a strong threat to validity, since we easily ob-
tained strong results for a third of the sample presented by
the earlier FindBugs article.

If we step back and review all current FindBugs bug patterns,
we can easily identify several of them that are simple enough
to allow for a fully precise static detector, and such a fully
precise static detector will not benefit from residual investi-
gation. However, many other bug patterns are too complex
to allow for a precise static detector. For example, Hove-
meyer and Pugh tested twelve out of the 18 patterns they
described (including four of ours) for false positives in two
applications. They found that ten of the twelve patterns (in-
cluding ours) produced false positives with the pattern im-
plementations they had available in 2004. We suspect that
the 18 patterns that they described are at least somewhat rep-
resentative of all FindBugs patterns, which would mean that
many other current FindBugs detectors may similarly benefit
from a residual investigation.

• Choice of static analysis system: We did not select Find-
Bugs, our static analysis system, truly randomly. We picked
FindBugs because it is arguably the most widely known and
used such tool for Java. We suspect that our findings will
generalize to other static analysis tools and approaches.

4. RELATED WORK
Static and dynamic analyses are routinely chained together for

checking program correctness conditions in programming lan-
guages, i.e., in compilers and runtime systems. Compilers check

certain properties statically and insert runtime checks for remain-
ing properties. A classic example is checking that an array read
does not read a memory location outside the bounds of the array.
To enforce this property, Java compilers traditionally insert a dy-
namic check into the code before each array read. To reduce the
runtime overhead, static analyses such as ABCD [5] have been de-
veloped that can guarantee some reads as being within bounds, just
the remaining ones have then to be checked dynamically. Beyond
array bounds checking, a similar static dynamic analysis pipeline
has been applied to more complex properties. The Spec# extended
compiler framework [2] is the prime example, it can prove some
pre- and post-conditions statically and generates runtime checks for
the remaining ones. Gopinathan and Rajamani [13] use a combina-
tion of static and dynamic analysis for enforcing object protocols.
Their approach separates the static checking of protocol correctness
from a dynamic check of program conformance to the protocol.

In residual dynamic typestate analysis, explored by Dwyer and
Purandare [11] and Bodden et al. [3, 4], a dynamic typestate anal-
ysis that monitors all program transitions for bugs is reduced to a
residual analysis that just monitors those program transitions that
are left undecided by a previous static analysis. This approach ex-
ploits the fact that a static typestate analysis is typically complete,
i.e., it over-approximates the states a program can be in. If for a
small sub-region of the program the over-approximated state sets
do not contain an error state, all transitions within such a region
can therefore safely be summarized and ignored by the subsequent
residual dynamic analysis. At a high level, our approach adopts
this idea, by only monitoring those aspects of the program that the
static analysis has flagged as suspicious. However, our approach
is more general in two dimensions, (1) typestate analysis is re-
stricted to verifying finite state machine properties (“do not pop
before push”), while our approach can be applied to more complex
properties (“do not pop more than pushed”) and (2) our dynamic
analysis is predictive: It leverages dynamic results to identify bugs
in code both executed and not executed during the analysis.

Beyond typestates, the idea of speeding up a dynamic program
analysis by pre-computing some parts statically has been applied
to other analyses, such as information flow analysis. For example,
recent work by Chugh et al. [8] provides a fast dynamic informa-
tion flow analysis of JavaScript programs. JavaScript programs are
highly dynamic and can load additional code elements during ex-
ecution. These dynamically loaded program elements can only be
checked dynamically. Their staged analysis statically propagates
its results throughout the statically known code areas, up to the bor-
ders at which code can change at runtime. These intermediate re-
sults are then packaged into residual checkers that can be evaluated
efficiently at runtime, minimizing the runtime checking overhead.

Our analysis can be seen in a similar light as residual dynamic
typestate analysis and residual information flow analysis. If we
take as a hypothetical baseline somebody running only our residual
checkers, then adding the static bug finding analysis as a pre-step
would indeed make the residual dynamic analysis more efficient,
as the static analysis focuses the residual analysis on code that may
have bugs. However, our goals are very different. Our real baseline
is an established static analysis technique whose main problem is
over-approximation, which leads to users ignoring true warnings.

Our earlier work on Check ’n’ Crash [9] and DSD-Crasher [10,
24] can be seen as strict versions of residual analysis. These ear-
lier techniques share our goal of convincing users of the validity of
static bug warnings. However, Check ’n’ Crash and DSD-Crasher
guarantee that a given warning is true, by generating and execut-
ing concrete test cases that satisfy the static warning, until a static
warning can be replicated in a concrete execution or a user-defined

Table 4: Running times for all residual investigations. The baseline (bottom line of the table) is the non-instrumented test suite
running time. Empty cells mean that there were no static error reports for this test subject and analysis.

Bug Pattern Execution time with and without instrumentation [min:s]
JBoss BCEL NetBeans Tomcat JRuby ApacheCC Groovy

Bad Covariant Definition of Equals 13:07 3:04
Cloneable Not Implemented Correctly 7:17 5:20 5:25 39:15
Dropped Exception 655:01 16:00 16:05 17:08 41:44
Equals Method May Not Be Symmetric 531:42 8:23 11:03
Equal Objects Must Have Eq. Hashcodes 363:48 1:20 13:07 3:03 3:44 7:25
Non-Short-Circuit Boolean Operator 9:36 11:13
Read Return Should Be Checked 16:49 10:19 12:30 42:25
No Instrumentation 178:07 :23 6:42 3:03 3:28 2:05 7:13

limit is reached. While such proof is very convincing, it also nar-
rows the techniques’ scope. I.e., our earlier tools could only con-
firm very few warnings. In our current residual analysis, we relax
this strict interpretation and also consider clues that are just very
likely to confirm a static warning.

Dynamic symbolic execution is a recent combination of static
and dynamic program analysis [6, 12, 17, 25]. Dynamic symbolic
execution is also a strict approach that warns a user only after it
has generated and executed a test case that proves the existence of
a bug. Compared to our analysis, dynamic symbolic execution is
heavier-weight, by building and maintaining during program exe-
cution a fully symbolic representation of the program state. While
such detailed symbolic information can be useful for many kinds of
program analyses, our current residual investigations do not need
such symbolic information, making our approach more scalable.

Monitoring-oriented programming (MOP), by Chen and Roşu,
shows how runtime monitoring of correctness conditions can be
implemented more efficiently, even without a prefixed static anal-
ysis [7]. JavaMOP, for example, compiles correctness conditions
to Java aspects that add little runtime overhead. This technique is
orthogonal to ours. I.e., as some of our dynamic analyses are cur-
rently implemented manually using AspectJ, expressing them in
terms of JavaMOP would be a straightforward way to reduce our
runtime overhead.

Our analysis can be viewed as a ranking system on static analy-
sis error reports. There has been significant work in this direction.
Kremenek et al. [20] sort error reports by their probabilities. A
model is used for computing probabilities for each error report by
leveraging code locality, code versioning, and user feedback. The
effectiveness of the model depends on (1) a fair number of reports
and (2) strong clustering of false positives. Kim and Ernst [19]
prioritize warning categories by mining change log history mes-
sages. Intuitively, they expect a warning category to be important
if warning instances from the category are removed many times in
the revision history of a system. Their method requires change logs
with good quality. For static tools such as FindBugs, which analyze
Java bytecode to generate warnings, they also require compilation
of each revision.

5. CONCLUSIONS
We presented residual investigation: the idea of accompanying a

static error analysis with an appropriately designed dynamic anal-
ysis that will report with high confidence whether the static error
report is valid. We believe that residual investigation is, first and
foremostly, an interestingconcept. Identifying this concept helped
us design dynamic analyses for a variety of static bug patterns and

implement them in a tool, RFBI. We applied RFBI to a variety of
test subjects to showcase the potential of the approach.

There are several avenues for future work along the lines of resid-
ual investigation. First and foremostly, our current work has been
a proof of concept. That is, we have been interested in examining
whethersomeapplication of residual investigation can be fruitful
and not in determining how universally applicable the concept is
to the realm of static analyses (i.e., how likely is it that a specific
static analysis for bug detection can be accompanied by a profitable
residual investigation).

Overall, we feel that for bug finding tools to get to the next level
of practicality they need to incorporate some flavor of the dynamic
validation that residual investigation offers.

6. ACKNOWLEDGMENTS
We thank Bill Pugh for helpful comments and interesting dis-

cussions. This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 0917774, 0934631,
1115448, 1117369, and 1017305.

7. REFERENCES
[1] N. Ayewah and W. Pugh. The Google FindBugs fixit. In

Proc. 19th International Symposium on Software Testing and
Analysis (ISSTA), pages 241–252. ACM, 2010.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. InProc. International
Workshop on the Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS), pages 49–69.
Springer, Mar. 2004.

[3] E. Bodden. Efficient hybrid typestate analysis by
determining continuation-equivalent states. InProc. 32nd
ACM/IEEE International Conference on Software
Engineering (ICSE), pages 5–14. ACM, May 2010.

[4] E. Bodden, L. Hendren, and O. Lhoták. A staged static
program analysis to improve the performance of runtime
monitoring. InProc. 21st European Conference on
Object-Oriented Programming (ECOOP), pages 525–549,
July 2007.

[5] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array
bounds checks on demand. InProc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 321–333. ACM, June 2000.

[6] C. Cadar and D. R. Engler. Execution generated test cases:
How to make systems code crash itself. InProc. 12th
International SPIN Workshop on Model Checking Software,
pages 2–23. Springer, Aug. 2005.

[7] F. Chen and G. Roşu. Mop: An efficient and generic runtime
verification framework. InProc. 22nd ACM SIGPLAN

Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 569–588.
ACM, Oct. 2007.

[8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. InProc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 50–62. ACM, June 2009.

[9] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. InProc. 27th
International Conference on Software Engineering (ICSE),
pages 422–431. ACM, May 2005.

[10] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. InProc. ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA), pages 245–254. ACM, July 2006.

[11] M. B. Dwyer and R. Purandare. Residual dynamic typestate
analysis exploiting static analysis: Results to reformulate and
reduce the cost of dynamic analysis. InProc. 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 124–133. ACM, Nov. 2007.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InProc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 213–223. ACM, June 2005.

[13] M. Gopinathan and S. K. Rajamani. Enforcing object
protocols by combining static and runtime analysis. InProc.
23rd ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 245–260. ACM, Oct. 2008.

[14] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to the 19th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 132–136. ACM, Oct. 2004.

[15] D. Hovemeyer and W. Pugh. Finding bugs is easy.SIGPLAN
Notices, 39(12):92–106, Dec. 2004.

[16] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. InProc. 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 9–14. ACM, June 2007.

[17] M. Islam and C. Csallner. Dsc+Mock: A test case + mock
class generator in support of coding against interfaces. In
Proc. 8th International Workshop on Dynamic Analysis
(WODA), pages 26–31. ACM, July 2010.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. InProc. 15th

European Conference on Object Oriented Programming
(ECOOP), pages 327–353. Springer, June 2001.

[19] S. Kim and M. D. Ernst. Which warnings should I fix first?
In Proc. 11th European Software Engineering Conference
and the 15th ACM SIGSOFT Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 45–54. ACM,
Sept. 2007.

[20] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler.
Correlation exploitation in error ranking. InProc. 12th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pages 83–93. ACM, Oct. 2004.

[21] M. Musuvathi and D. Engler. Some lessons from using static
analysis and software model checking for bug finding. In
Proc. Workshop on Software Model Checking (SoftMC).
Elsevier, July 2003.

[22] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of
bug finding tools for Java. InProc. 15th International
Symposium on Software Reliability Engineering (ISSRE),
pages 245–256. IEEE, Nov. 2004.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multi-threaded programs. InProc. 16th Symposium on
Operating Systems Principles (SOSP), pages 27–37. ACM,
Oct. 1997.

[24] Y. Smaragdakis and C. Csallner. Combining static and
dynamic reasoning for bug detection. InProc. International
Conference on Tests And Proofs (TAP), pages 1–16.
Springer, Feb. 2007.

[25] N. Tillmann and J. de Halleux. Pex - white box test
generation for .Net. InProc. 2nd International Conference on
Tests And Proofs (TAP), pages 134–153. Springer, Apr. 2008.

[26] A. Tomb, G. P. Brat, and W. Visser. Variably interprocedural
program analysis for runtime error detection. InProc. ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pages 97–107. ACM, July 2007.

[27] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.
Comparing bug finding tools with reviews and tests. InProc.
17th IFIP TC6/WG 6.1 International Conference on Testing
of Communicating Systems (TestCom), pages 40–55.
Springer, May 2005.

[28] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis
tools using exploitable buffer overflows from open source
code. InProc. 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), pages
97–106. ACM, Oct. 2004.

