Set-Based Pre-Processing for Points-To Analysis

Yannis Smaragdakis

George Balatsouras

George Kastrinis

Department of Informatics
University of Athens, 15784, Greece

{smaragd,gbalats,gkastrinis}@di.uoa.gr

Abstract

We present set-based pre-analysis: a virtually universal op-
timization technique for flow-insensitive points-to analysis.
Points-to analysis computes a static abstraction of how ob-
ject values flow through a program’s variables. Set-based
pre-analysis relies on the observation that much of this rea-
soning can take place at the set level rather than the value
level. Computing constraints at the set level results in sig-
nificant optimization opportunities: we can rewrite the in-
put program into a simplified form with the same essential
points-to properties. This rewrite results in removing both
local variables and instructions, thus simplifying the sub-
sequent value-based points-to computation. Effectively, set-
based pre-analysis puts the program in a normal form opti-
mized for points-to analysis.

Compared to other techniques for off-line optimization of
points-to analyses in the literature, the new elements of our
approach are the ability to eliminate statements, and not just
variables, as well as its modularity: set-based pre-analysis
can be performed on the input just once, e.g., allowing the
pre-optimization of libraries that are subsequently reused
many times and for different analyses. In experiments with
Java programs, set-based pre-analysis eliminates 30% of the
program’s local variables and 30% or more of computed
context-sensitive points-to facts, over a wide set of bench-
marks and analyses, resulting in a ~20% average speedup
(max: 110%, median: 18%).

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords points-to analysis; optimization; off-line

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

OOPSLA ’13, October 29-31, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2374-1/13/10... . $15.00.
http://dx.doi.org/10.1145/2509136.2509524

1. Introduction

Points-to analysis consists of computing a static abstraction
of all the data that a pointer variable (and, by extension, any
pointer expression) can point to during program execution.
In modern languages, points-to analysis forms the substrate
of practically any other static analysis: any use of static anal-
ysis (e.g., for optimization, bug detection, program compre-
hension, online programming assistance) needs to discover
the true value of an expression involving pointers (or “refer-
ences”, in Java and C#).

In a points-to analysis, objects are represented by their
allocation sites, possibly qualified with a “context” for more
precision. These object representations are the values of the
analysis. Analysis algorithms operate at the value level, dis-
tinguishing between different values as the program requires.
For instance, in a simple Java code fragment, such as the
one below, the analysis needs to distinguish the different al-
location sites and to reason about the flow of such values
throughout the program.

new AQ;
= new BQ);
new AQ);
= new CQ;
=p.f;
.foo();

p

;'hll

H KR .QO.oDT
H ol

Even though lines 1 and 3 allocate an object of the
same type, the allocations are distinguished (even in a flow-
insensitive analysis, which considers all statements in any
order). Such value-based reasoning is key: since the two
objects are used in different ways throughout the fragment
(e.g., their £ field receives objects of different dynamic type)
the distinction is kept and leads to higher analysis precision.
Eventually, the fact that r can only be assigned the B object
allocated in line 2 is essential for deciding what method will
be called in line 6, due to dynamic dispatch.

Our set-based reasoning/pre-analysis technique is based
on the observation that value-based reasoning is not always
essential in the course of executing a points-to analysis algo-
rithm. Instead, some reasoning can be performed entirely at
the set level, i.e., by considering the entire set of values that
a variable may hold as a black-box. This is a very general
observation, practically applicable to any flow-insensitive

points-to analysis algorithm. For a simple example, con-
sider the three-statement pattern below! and their effects on
a points-to analysis:

b =4a;

r =Dp;

r = q; // redundant

Regardless of what values flow into variables p, q, and r,
the assignment in line 3 can be eliminated without affecting
the results of the points-to analysis. The reasoning for this
is entirely at the set level: the set of values flowing from q
to r (due to the assignment of line 3) is a subset of the set
of values flowing from p to r via the assignment of line 2,
because the set of values flowing into q is a subset of those
flowing into p (due to line 1). As we show later in detail,
similar reasoning also applies to several cases of value flow
through fields, establishing the redundancy of field-read,
field-write, or pointer assignment instructions, e.g., in the
two patterns below. (Again, statements may actually appear
in any order, but they have to be in the same procedure.)

r=agq; p.f=gq;
p.f =r; r = p.f;
p.f = q; // redundant q; // redundant

Contributions. The main contributions of our work are as
follows:

e We introduce “set-based pre-analysis” as the idea of set-
based reasoning and program transformation for points-to
analysis, and demonstrate its potential via numerous op-
timizations. Set-based pre-analysis introduces a set-based
(abstract) reasoning phase, to complement existing value-
based (concrete) reasoning in points-to analysis.

e We implement set-based points-to reasoning as a pre-
analysis and pre-transformation step over the Doop frame-
work for Java points-to analysis by Bravenboer et al. [4].
This allows us to transparently apply set-based transfor-
mation to more than 20 different flow-insensitive points-
to analysis algorithms and two different intermediate
representations—the default Jimple representation of the
Soot framework [21, 22] and a Static Single Assignment
(SSA) version. None of the closest comparable past tech-
niques have had such wide applicability.

e We evaluate the impact of set-based pre-analysis and pre-
transformation over several large Java programs and the
standard library. (Notably, no past work on pre-processing
constraints has been applied and evaluated in the con-
text of OO languages—our technique is intraprocedural
and fully compatible with dynamic dispatch/on-the-fly-
callgraph discovery.) In all, 30% of the program’s local
variables and the same amount or more of the context-
sensitive points-to facts can be safely eliminated. This re-

! For all such statement patterns throughout the paper, we consider the state-
ments to appear in any order and amidst any other program instructions, as
long as they are in the same procedure.

sults in space savings and an average speedup of about
20% over all analyses, with significantly higher numbers
(up to 110%) for specific analyses and input programs.

The rest of the paper places our approach amongst its
closest relatives in the literature (Section 2), introduces the
base reasoning for points-to analysis and connects it to our
optimization approach (Section 3), describes our patterns
(Section 4), details our implementation (Section 5), presents
experimental results (Section 6), and concludes (Section 7).

2. Placement of the Work

The literature on points-to analysis and its optimizations is
extensive and covers intriguing breadth and depth. There-
fore, it is useful to place our approach in relation to others
early on, to make clear its similarities to the closest past work
and its novelty.

The closest past work to our approach consists of tech-
niques to establish that two variables are clones, i.e., that
a variable’s points-to set is identical to that of another.
Such clone detection has been explored in the context of
flow-insensitive C-language analyses, by techniques that are
based on the concept of the constraint graph: a graph with
nodes denoting pointer variables and an edge between nodes
p and q denoting flow (e.g., a direct assignment) from vari-
able p to variable g. Online cycle elimination by Findrich et
al. [5] detects cycles in the constraint graph and collapses all
nodes in a cycle into a representative node, since such nodes
will have identical points-to information. (An enhancement,
which does not change the essence of online cycle elimina-
tion, is offered by the projection merging technique of Su
et al. [20].) The technique of Nasre [14] extends such con-
straint graph reasoning based on the observation that if two
nodes have the same dominator in the constraint graph, then
they are clones: the values flowing to them are (only) those
of the dominator node. Even more closely related to our
approach are constraint-graph-based techniques that are ap-
plied off-line (i.e., before the points-to analysis runs). Prime
examples of such techniques are Rountev and Chandra’s [16]
and Hardekopf and Lin’s [8]. (Hardekopf and Lin have also
applied similar ideas in a hybrid online/offline setting [7], but
for the purposes of our work the offline technique is a closer
comparable.) Both of these techniques perform an off-line
detection of equivalent points-to sets and use this knowl-
edge to eliminate redundant work in subsequent points-to
computations. Hardekopf and Lin’s approach is impressively
general, computing hash codes that encode all the logical
processing of a points-to set that is induced by the current
program and, thus, detecting equivalent points-to sets even
through complex program patterns.

Set-based pre-analysis has two benefits compared to all
such past work:

e Generality: Our reasoning is not centered around points-
to sets but around instructions, offering more opportunities

for optimization. In constraint-graph terms, our approach
can also eliminate edges of the graph, whereas past ap-
proaches could only eliminate entire nodes (which was the
only way to eliminate their incident edges).

e Modularity: Past approaches applied such optimizations
as an integral part of the analysis. The optimization was
tied to the representation structure (constraint-graph) used
for the analysis implementation itself. In contrast, our ap-
proach can be applied as a local pre-processing step.

Specifically, set-based pre-analysis generalizes past ap-
proaches because it does not need to establish equivalence
(i.e., that two variables are clones) in order to reap optimiza-
tion benefits. All our earlier examples are applicable even
when the variables involved are not clones of each other. For
instance, consider the program pattern:

=Qq;
f=r;
.f = q; // redundant

T T H

Past approaches could avoid the computation of the last
line but only if points-to sets r and ¢ (or q and p. £) were
shown equivalent. Our observation is that merely knowing
that points-to set r is a superset of points-to set q is sufficient
for establishing the redundancy of the last instruction, when
taken in conjunction with the second line. Thus, the above
pattern is applicable even when the program contains other
assignments to r and to p. f.

At the same time, set-based pre-analysis is more mod-
ular and orthogonal. Specifically, we apply set-based pre-
analysis entirely intraprocedurally, i.e., without considering
the subset relationships between points-to sets of local vari-
ables that occur in different methods. This allows set-based
pre-analysis to be expressed as a local program transforma-
tion: every set-based pre-analysis optimization is a rewrite
pattern that, once triggered, performs a simplification of the
program used as input to the subsequent points-to analysis.
Such simplifications consist of eliminating instructions or
variables from the input program (together with renamings
of use-sites of eliminated variables). E.g., in all our exam-
ples, the instruction labeled “redundant” is removed. This
produces a reduced input program that condenses program
behavior before the real points-to analysis starts. The result
is tantamount to introducing a new intermediate language,
optimized for the subsequent value-based points-to analysis.
Different points-to analysis algorithms can then run on the
reduced program and will yield results equivalent to apply-
ing them on the original input program.

In contrast, it is not always possible to express the closest
comparable techniques in past literature [5, 8, 14, 16] as lo-
cal program transformations: if two points-to sets are equiv-
alent but the sets correspond to local variables at different
scopes (e.g., a formal argument in a callee function and an

2 More accurately: “the points-to sets for variables r and g, but we overload
the terminology throughout, when no confusion should arise.

actual in a caller), there is no local program transformation
to express the elimination of one variable and its replace-
ment by the other at every use site: each of the variables is
out of scope at the use-site of the other. Our application of
set-based reasoning only intra-procedurally means that the
rewrite approach is always possible. This yields important
modularity benefits:

1. When the program-under-analysis does not vary (but
multiple analyses need to be performed) the program
can be reduced once-and-for-all via set-based reasoning.
Then, all points-to analyses can be performed over the
reduced program.

2. Even when the program-under-analysis varies, much of
the analysis complexity is due to combining the pro-
gram with a large standard library. By using our purely-
intraprocedural technique, we can pre-process large li-
braries once-and-for-all, and subsequently analyze them
with any input program.

3. Our optimizations are easy to illustrate and understand,
since they are pattern-based program transformations.
The optimizations are also orthogonal to other complex
reasoning in a points-to analysis (e.g., past off-line tech-
niques do not work with online call-graph construction).

3. Set-Based Pre-Analysis and Points-To
Analysis Via Subset Constraints

We next give background on points-to analysis from an an-
gle that demonstrates the applicability of our set-based pre-
analysis idea. As outlined in the Introduction, set-based pre-
analysis is based on the observation that many points-to
analysis inferences can be performed at the set level and not
the value level. This insight is very general and applies to
essentially any analysis (although different transformations
may be valid for different kinds of analyses, as we discuss in
Section 4).

The generality of the idea of set-based pre-analysis can
be seen by first considering how different points-to anal-
yses can be expressed in a unified setting. One of the
most popular ways to express points-to analysis algorithms
[4, 6, 11, 15, 23, 24] is via subset constraints. Subset con-
straints effectively state which value set has to be a subset
of which other, with these value sets being sets of constants,
the points-to sets of local variables, the field-points-to sets
of object expressions, and more. Finding minimal sets that
satisfy all the subset constraints produces the output of the
points-to analysis.

Such analyses often leverage the Datalog programming
language for their implementation. Datalog directly encodes
recursive subset constraints. This means that the program
under analysis is first encoded as data tables that represent
all the program information. For instance, there is typically
an input table representing each kind of program instruction
in an intermediate language (e.g., tables Move, Alloc, Store,

etc.). Then, the analysis is performed via rules that encode
the subset constraints. For instance, the typical handling of
Alloc and Move instructions (i.e., direct assignment of a
newly allocated object to a variable and assignment between
local variables, respectively) is via the following rules:
VarPointsTo(var, heap) <- Alloc(var,heap).

VarPointsTo(to, heap) <- Move(to, from),
VarPointsTo(from, heap).

The first of these rules states that the set of data in the
Alloc table (which is an input table, whose rows encode
the corresponding program instructions) is a subset of the
VarPointsTo data for the entities (a variable and a heap ob-
ject, i.e., a unique identifier of an allocation site) participat-
ing in the Alloc instruction. The second rule states that the
points-to set for variable from is a subset of the points-to
set for variable to if the program contains a Move instruction
between from and to. Other rules can be used to introduce
more subset constraints and eventually implement arbitrarily
complex analyses. The computation performed by the anal-
ysis consists of successively enlarging the sets in order to
satisfy all the subset constraints.

An interesting observation is that the variability between
points-to analyses is usually not affecting the structure of the
main rules for handling program instructions. Virtually all
points-to analyses expressed in Datalog will have rules much
like the above for handling A1loc and Move instructions. For
instance, the GateKeeper analysis of Guarnieri and Livshits
[6] has very analogous rules:

PTSTO(v, h) <- Alloc(v, h).
PTSTO(v1l, h) <- PTSTO(v2, h), Move(vl, v2).

Our own context-sensitive analysis framework has rules
that just add “context” variables to the above. (The context
variables are used to vary the precision and performance of
the analysis, but the mechanism for doing so is not important
for our current discussion. A concise 9-rule model sufficient
to express a large variety of points-to analyses can be found
in Kastrinis et al. [10].)

VarPointsTo(var, ctx, heap, hctx) <-

Alloc(var,heap).

VarPointsTo(to, ctx, heap, hctx) <-

Move(to, from),

VarPointsTo(from, ctx, heap, htcx).

The common structure of the rules in all these different
analyses means that it is possible to make simplifications of
the input program in a way that these simplifications apply
to a multitude of analyses. Set-based pre-analysis is based
on the observation that some subset constraints are always
implied by others and can therefore be eliminated. In other
words, all set-based pre-analysis patterns that we are go-
ing to examine in this paper are instances of the implica-
tionS €T AT C U = § C U. This simple pattern can
be applied to the constraints induced by different rules of
existing points-to analyses, e.g., rules handling local assign-
ments, field loads and stores, static fields, etc. For illustra-

tion, consider one of our earlier examples of a high-level
program:

b =aq;

r = p;

r = q; // redundant

This example consists entirely of Move instructions at
the intermediate language level. To show that the third in-
struction is redundant, consider that its use inside a subset-
constraint-based points-to analysis is in a rule such as:

VarPointsTo(to, heap) <- Move(to, from),
VarPointsTo(from, heap).

For the third instruction, the rule is instantiated with to
equal to program variable “r” and from equal to program
variable “q”. Thus, the rule’s effect is to state that the points-
to set of variable q is a subset of the points-to set of variable
r—a constraint already inferrable by applying the same Dat-
alog rule to the first two instructions.

In summary, the idea of set-based pre-analysis is highly
general. Since virtually all points-to analysis algorithms can
be expressed via subset constraints, applying common set-
based reasoning on these constraints can determine that sev-
eral of them are redundant. A key element is that such rea-
soning can be applied to simplify the program alone, inde-
pendently of the analysis, under the expectation that all anal-
yses of the same general family treat program features via
similar rules.

4. Set-Based Pre-Analysis and Optimizations

We next present a collection of set-based pre-analysis in-
stances as well as a general discussion on how these trans-
formations are applied.

4.1 Set-Based Pre-Analysis Patterns

Our set-based pre-analysis instances are expressed as intra-
procedural program transformations. Although each trans-
formation may have specific pre-conditions of applicabil-
ity, all of the transformations share a general structure: they
consist of multiple program statements whose presence en-
ables removing one or more other (redundant) statements.
Therefore all transformations share their main applicability
pre-condition: the transformations are applicable to flow-
insensitive points-to analyses (for which the statements of a
procedure are considered to execute in any order) as long as
the enabling statements appear anywhere in the same proce-
dure.

(Some of our ideas can be adapted to apply to a flow-
sensitive setting, but, in that setting, points-to sets are kept
per-instruction, so set-based reasoning is likely to be super-
seded by normal updates of points-to sets per-statement. Our
implementation setting—the Doop analysis framework—
only contains flow-insensitive points-to analyses.)

The optimizations can apply up to fixpoint, since apply-
ing one of them may enable others. Several of the patterns

below do not often appear verbatim in practice but arise once
variables start getting merged, other instructions eliminated,
etc. We discuss this topic further in Section 4.2. Addition-
ally, application of transformations should be done in a way
that the enabling statements are not themselves eliminated
by application of two transformations at the same time—an
issue discussed in detail in Section 5.

Store statement elimination. Our first transformations
eliminate store statements, i.e., assignments to pointer-
indexed memory.

r=4q;
p.f =r;
p.-f = q; // redundant

Via standard subset-based reasoning, the third statement is
redundant if the first two are present. The same applies to
static store statements:

qa;

=r; // Cis a class

q; // redundant

N NH
H o H

Load statement elimination. The next two transforma-
tions eliminate load statements, i.e., reads from pointer-
indexed memory.
r=4q;
q =p.f;
r = p.f; // redundant
Again, any value flowing to r through the load from p. f is
redundant, since it also flows through the move from q (given
that g also loads p. f). The same applies to static loads:
r=gq;
q=C.f; // Cis a class
r = C.f; // redundant

Move statement elimination. The next patterns eliminate
move statements, i.e., copies between local variables. The
first is our earlier example:

b =4q;

r =Dp;

r = q; // redundant
However, the same flow of values can occur through assign-
ments to pointer-indexed memory:

p.f =gq;

r =p.f;

r = q; // redundant
And similarly for static fields:

C.f =q; // Cis a class

r = C.f;

r q; // redundant

Handling of array accesses. All of the earlier patterns also
apply to load and store statements involving arrays instead
of local objects. This is doubly interesting since points-to
analyses often have very approximate handling of arrays,

e.g., considering all array locations arr[i] to be the same
abstract location arr[*]—an approach often called array
insensitive. Thus, for instance, we can eliminate array loads:

r=4q;
q = arr[*];
r = arr[*]; // redundant

Similarly, we can use array loads to eliminate move state-
ments (and in general can adapt all earlier patterns to array
statements):

arr[*] = q;
r = arr[*];
r = q; // redundant

Method call elimination. An interesting observation is
that method call statements can also be eliminated using set-
based reasoning:

r=aq;
a=p.mQ;
r = p.m(); // redundant

The above is not limited to no-argument methods, but the
arguments need to be identical local variables for the trans-
formation to apply.’

As usual, analogous transformations apply to static meth-
ods:

r =4d;
g =CmQ; // Cis a class
r = C.mQ); // redundant

It is somewhat surprising that method calls can be elimi-
nated, as above. After all, the usual semantics of impera-
tive languages dictate that identical method calls cannot be
merged since they can have different effects on state. A flow-
insensitive points-to analysis, however, computes an over-
approximation of all executions of a program, assuming that
every reachable method is executed an unbounded number
of times. That is, upon encountering a method, the analysis
takes into account not just a single execution of the method
but the maximal effects that any number of executions might
have on the points-to information. Thus, points-to analyses
do not model state changes performed by a method in a way
that repeated equivalent actions make a difference.
Similarly, the above transformation is valid even when
the analysis adds context, of any usual kind. For instance, as
can be seen in models of various kinds of context-sensitivity
[10, 19], new contexts are created at method call sites and the
context remains the same throughout the method body. This
means that local variables of the same calling method have
the same context throughout the method body, i.e., hold the
same values as far as the analysis is concerned. Therefore,
two calls to a method m may be analyzed in different contexts
but if their arguments (and receiver object) are lexically iden-
tical then the two calls receive the same information from the

3 Since methods can cause exceptions to be thrown, in the case of precise
exception handling [3] an extra requirement is that no exception handler
starts or ends between the two equivalent method calls.

outside world. Therefore, the information computed for the
body of the called method, m, will be identical under both
contexts. Thus, analyzing the function twice has no effect
on its callers or on the heap model—the only difference is
the (undesirable) replication of identical information in the
analysis of the method itself.

Duplicate statement elimination. An “obvious” use of set-
based reasoning is to eliminate duplicate statements (e.g.,
two instances of “p = q;”, “q = p.£;” or “q = p.m(Q;"”).
For many kinds of points-to analyses, duplicate statements
are not even represented in the analysis input. (For our im-
plementation setting—the Doop framework—the only dupli-
cate statements represented in the input are method calls.
Thus, this transformation has been largely applied to the in-
put implicitly even before our work.)

Interestingly, program transformation patterns can allow
some variability when detecting duplicate statements. For
instance, consider:

q = p.mQ;

p.mQ); // redundant

The second call to p.m() is redundant even though its
form is not identical to the first call—the return value is ig-
nored. In practice, this detection pattern needs to be specified
separately, for most intermediate languages. Note also that
the first statement is not made redundant by the existence of
the second: it defines variable q, while the second does not.

Duplicate variable elimination. An important optimiza-
tion in set-based reasoning imitates the variable elimination
logic of past work that builds on the constraint graph ab-
straction [5, 8, 14, 16]. The constraint graph is a graph with
nodes denoting pointer variables and expressions, and edges
between them denoting value flow. The graph encodes all
known subset relations between points-to sets. For instance,
an assignment “p = q;” implies an edge from points-to set
g to points-to set p in the constraint graph, as well as an
edge from set q.f to set p. £, etc. Similarly, an assignment
“q = p.f;” implies an edge from set p. f to set q in the con-
straint graph. Similar edges are induced by other program
constructs (e.g., store statements) and the transitivity prop-
erty is applied. On the resulting graph, two local variables
are clones of each other whenever any of the following con-
ditions apply:*

e The variables belong in the same strongly-connected-

component of the constraint graph.
e The variables have identical in-flows. E.g.,
q = p.f;

r =p.f;
gq,r receive no other assignments

4 Note that this reasoning only applies to local variables. Field expressions
cannot be eliminated with such local examination. Recall that all our opti-
mizations are entirely intraprocedural and are expressed as local program
transformations.

or:

a=p.m0O;
r =p.mQ;
q,r receive no other assignments

The above are the most profitable special cases of the
general approach of Hardekopf and Lin [8] for identifying
equivalent flows.

e The variables have the same dominator in the constraint
graph: the values flowing to them are the same since they
are (only) those of the dominator node. This is Nasre’s
insight [14], which is also handled by the reasoning in
Hardekopf and Lin’s approach [§].

When clone variables are detected, one of them can be
eliminated. All def-sites of the eliminated variable are re-
moved from the program and all use-sites are renamed to
use the other clone variable.

4.2 How Transformations Are Applied

Set-based pre-analysis separates set-based (abstract) from
value-based (concrete) reasoning in points-to analysis. Ef-
fectively the approach normalizes programs into a normal
form suitable for quick points-to analysis execution. It is
important that this normalization is performed in an intra-
procedural setting, so that the results of the transformation
can be reused independently of other changes to the code.
For instance, large libraries can be transformed once and the
result of the transformation can be reused for any program
using the library.

The transformations we just saw can be applied up to fix-
point. The reason is that there is a synergy between the two
kinds of transformations: statement-elimination can enable
variable-elimination and vice-versa. For an example of the
former direction, consider (in the program fragment below,
together with its associated constraint subgraph) the rule that
two variables are equivalent when they have the same domi-
nator [14]:

p = new Object();

// or any other in-flow, e.g., calls
g = new Object(Q);

// or any other in-flow, e.g., calls
q = p;
r=aq;
r =p;

/

D\T/)q

Due to the external flow to p and q, there is no dom-
inance relationship among any of the three nodes in this
(sub)graph. Yet the assignment “r = p;” is redundant, as

established via set-based reasoning. Consequently, if we re-
move the p-to-r edge, the resulting constraint graph has q
as the dominator of r: any value flowing to r has to go
through q. Indeed, this is an instance where set-based pre-
analysis generalizes past approaches. The above example is
handled by a special algorithm (called the HU algorithm) in
Hardekopf and Lin’s approach [8]. The HU algorithm aims
precisely at exploiting subset relationships in the course of
determining the equivalence of other points-to sets. (Recall,
however, that Hardekopf and Lin’s approach, just like other
past constraint-graph-based approaches, only yields benefit
when it discovers equivalent variables to eliminate, whereas
our approach can also eliminate redundant constraint graph
edges/instructions regardless of whether the points-to sets
involved end up being equivalent or not.)

Examples of the converse direction are even more com-
mon: eliminating a variable can trigger any of the statement-
eliminating optimizations. For instance, the program may
contain statements:

r=4q,;
q = p.m@;
r = s.m(b);

If earlier steps establish that p and s are clones, and that a
and b are clones, then normalizing the use-sites of all clone
variables reveals that the last statement is redundant.

4.3 Illustration

To see the simplification that set-based pre-processing can
introduce, consider its application to an example method
from the JDK, java.util.TreeMap.rotateRight. Figure 1
shows the full body of the original method in the Jimple in-
termediate language of the Soot framework [21, 22]. Run-
ning our analysis determines that several of the local vari-
ables are redundant and the method body can be significantly
simplified. (r0 is cloning @this; rl is cloning @param®; r4
and r5 are cloning r3; r7, r8, rl®, and r1l are cloning r6.)
The result of the transformation can be seen in Figure 2. 3
As can be seen, the reduced form is much shorter than the
original and eliminates internal complexity. It also allows us
to illustrate some important points.

First, the reduced form of the bytecode is obtained under
the assumption of flow-insensitive points-to analysis and,
thus, is not guaranteed to be equivalent to the original, or
even legal (e.g., may violate conventions of the intermediate
language). For instance, the reduced program may be using
variables that are only assigned in different flows of con-
trol. Nevertheless, the simplified method body is a faithful
substitute of the original as far as flow-insensitive points-to
analysis is concerned. Even if we were to apply the trans-
formations with a flow-sensitive analysis in mind (e.g., only

3 This result was produced manually, since our implementation does not
affect the textual form of the intermediate language. However, the man-
ual mapping depicts the actual simplifications of the input program as per-
formed by our implementation.

apply transformations that eliminate duplicate actions), the
result would not be guaranteed equivalent. For instance, in
normal execution, reading the same field twice or calling the
same method twice is not the same as reading the field or
calling the method just once.

Also note that the reduction of the program may be af-
fecting externally visible elements. For most client analyses
this is not the case—e.g., analyses finding reachable methods
or computing a connectivity graph of heap objects are unaf-
fected by set-based pre-processing. Yet other analyses may
have a concept of internal elements, such as exact calling
instructions or temporary local variables. For instance, the
user of the analysis may request the points-to set of elim-
inated local variable r1, or the target methods of an elimi-
nated call-site. Computing this information is a mere matter
of post-processing and does not affect the inherent precision
or correctness of the analysis. That is, the analysis on the
reduced program is fully equivalent to that on the original,
yet the output information can be viewed as being in a con-
densed form. Similar no-loss condensed representations are
common in points-to analysis algorithms (e.g., for excep-
tion object merging [9]). It is straightforward to reproduce
the original output, if so desired by the client analysis, and
this can also be done lazily, upon request. For instance, in-
stead of querying the points-to set of variable ri1, a client
analysis will find the variable that replaced r1 and query its
points-to set. To simulate the full original points-to set for all
variables in the program, we only need to combine the con-
densed points-to information with the information of which
local variables were replaced by which others. As we discuss
in Section 6, this per-analysis post-processing has virtually
ZEero cost.

5. Implementation

Our implementation of set-based pre-analysis is in the con-
text of the Doop framework for Java points-to analysis by
Bravenboer et al. [4]. Doop expresses a large variety of flow-
insensitive points-to analyses declaratively, using the Data-
log language. Our set-based pre-analysis implementation ap-
plies transparently to all Doop analyses as a pre-processing
step over their normal input. Although this step could be im-
plemented in some other language, we chose to use Datalog
in our implementation for reasons of convenience and engi-
neering uniformity.

Specifically, set-based pre-analysis is a pre-computation
over all input tables of the regular points-to analysis. As
mentioned earlier, such tables represent all syntactic con-
structs, i.e., instruction types, of the intermediate language.
Since our set-based pre-analysis implementation is declara-
tive, it cannot alter the input tables in-place. Instead, the op-
timization is performed as a sequence of alternating phases.
First, a detection phase discovers all opportunities for opti-

private void rotateRight(java.util.TreeMap$Entry)
java.util.TreeMap r0;
java.util.TreeMap$Entry rl, r2, $r3, $r4, $r5, $r6, $r7, $r8, $r9, $ri0, $ril;

r® := @this: java.util.TreeMap;
rl := @param@: java.util.TreeMap$Entry;
if rl == null goto label4;

r2 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left>;
$r3 = r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left> = $r3;
$r4 = r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
if $r4 == null goto labelO®;

$r5 = r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
$r5.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = rl;

label®: $r6 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = $r6;
$r7 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
if $r7 != null goto labell;

r®.<java.util.TreeMap: java.util.TreeMap$Entry root> = r2;
goto label3;

labell: $r8 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
$r9 = $r8.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
if $r9 != rl goto label2;

$r10 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
$ri10.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = r2;
goto label3;
label2: $rll = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
$ril.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left> = r2;
label3: r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = rl;
rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = r2;
label4: return;

Figure 1. Original JDK method in Jimple form (manually reformatted for space).

private void rotateRight(java.util.TreeMap$Entry)
java.util.TreeMap$Entry r2, $r3, $r6, $r9;

if @param® == null goto label4;

r2 = @param@.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left>;
$r3 = r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
@param®.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left> = $r3;
if $r3 == null goto labelO;

$r3.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = @param0;
label®: $r6 = @param@.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;

r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = $r6;

if $r6 != null goto labell;

@this.<java.util.TreeMap: java.util.TreeMap$Entry root> = r2;
goto label3;

labell: $r9 = $r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
if $r9 != @param® goto label2;

$r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = r2;

goto label3;
label2: $r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left> = r2;
label3: r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = @param0;

@param®.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = r2;
label4: return;

Figure 2. Reduced JDK method. Labels remain and should help in matching with the corresponding regions of Figure 1.

mization over the entire program (as if) in parallel.® Then,
a transformation phase produces simplified new input tables
by computing the result of the optimizations over the origi-
nal tables. These two steps repeat until no more optimization
is profitable.

The above scheme introduces some subtleties. The first
concerns the detection phase: Discovering the potential for
all optimizations in parallel means that we have to manually
ensure to never optimize away an instruction that may enable
another optimization. This requires all of our declarative
rules to have disabling conditions. For instance, consider our
usual pattern for eliminating load instructions:

r=4q;

q=p.£;

r = p.f; // redundant
This pattern is implemented by the Datalog rule below (sim-
plified, with variables renamed for easy correspondence with
the example):
RedundantLoad(_r, _p, _f) <-

Load(_r, _p, _1f),

Load(_q, _p, _f),

Move(_r, _q),

-r != _q,

ITransitiveFlow(_r, _q).

The last two conditions of the rule ensure that logical vari-
ables _r and _q represent different program variables (which
is a necessary precondition in any setting) and that there is
no flow (i.e., no direct or indirect assignments) from _r to _g.
The latter condition is included only because of the declar-
ative evaluation of the rules, which evaluates them as-if-in-
parallel. Its result is to guard against removing one of the first
two lines of the pattern. Without it, the same pattern would
match twice in code such as:

zZ=Y;

y = z; // could be more complex flow
z = x.f; // redundant

y = x.f; // also redundant but not both

Matching the pattern twice would remove both load instruc-
tions (i.e., both of the last two lines) which is erroneous.
Some of our rules have numerous disabling conditions as
a result of similar reasoning—for instance, the rule to com-
pute redundant Move instructions has six extra conditions, to
avoid accidental cycles as well as overlap with other patterns
that would invalidate the rewrite.

A second subtlety concerns the transformation phase: Al-
though multiple optimizations may be legitimately enabled,
there may be overlap in their application. For a declarative
implementation, where the rules can be applied in any order,
we need to explicitly disambiguate what happens in case of
such overlap. For instance, consider the program statement
p.f = q;. Our rules distinguish the following cases of en-
abled transformations:

© Currently there is no real parallel computation, although this is entirely up
to the Datalog evaluation engine.

e The entire statement is redundant and, thus, eliminated.

e The statement is not redundant, but variable p alone is a
redundant copy of some other variable s. The above “use”
of variable p should be replaced by s.

e The statement is not redundant, but variable q alone is a
redundant copy of some other variable r (with a similar
transformation as before).

e The statement is not redundant, but both variables p and
q are redundant copies of variables s and r, respectively.
Thus, both variable uses should be replaced.

The above complications are typical of rule-based rewrite
systems and should also apply to other implementations that
employ pattern-based program transformation for set-based
pre-processing. Note that the correctness of the above trans-
formations (especially due to the potential of removing state-
ments that enable other transformations performed in par-
allel) is left to the implementor of the transformations. For
our implementation, we have followed a highly stylized pat-
tern that orders optimizations for every statement kind from
stronger to weaker, as in the example of the bullet points
above. Additionally, every optimization transformation in-
cludes extra conditions to ensure that its enabling statements
are not themselves eliminated. Of course, human error can
always creep in. In practice we found that it is quite easy
to debug our rewrite rules, since they produce semantically
equivalent input programs from the perspective of subse-
quent points-to analysis. Observing a single detailed met-
ric that remains invariant by our optimizations is typically
enough to detect even rare errors in our logic. (An excellent
such metric has been the context-sensitive “instance field
points-to” value, which sums together the sizes of points-
to sets of all heap objects. This value typically has 6 or
more significant digits and is very sensitive to any seman-
tic change in the input program.)

Our implementation of set-based analysis and transfor-
mation currently consists of approximately 150 Datalog
rules, some of which are fairly involved.” Recall that, in
addition to transformation patterns, these rules implement
algorithms for strongly-connected components, dominance,
etc., over the constraint-graph abstraction. This logic usually
takes well under a minute to apply to the programs of our
benchmark set together with the full JDK library. The run-
ning time can be significantly reduced further—e.g., we can
enable only the most profitable transformations for roughly
half the cost. Furthermore, the only inevitable time cost is
that of the detection phase, i.e., of identifying all the sites
where the optimization will take place. This typically takes
10secs or less. The rest of the time consists of program
transformation and is bloated due to low-level engineering
considerations. (E.g., on every transformation our declara-
tive engine incrementally adjusts the results of the analysis

7Our implementation can be found in http:/doop.program-analysis.org/
and mainly in files logic/transform.logic and logic/transform-delta.logic.

even though they will not be needed.) We did not try to im-
prove the speed of detection and transformation, at the cost
of complicating our implementation, because this speed is
largely irrelevant. As discussed earlier, our analysis cost is
one-off: the program is transformed once and for all, and
can be reused in its reduced form for any number of further
analyses or queries. Additionally, the vast majority of the
cost is not concerning the program but the library. The above
(sub-minute average) times include the set-based analysis
and transformation of the entire JDK 1.6 (not just its parts
reachable by the current program under analysis). Therefore,
even in a setting where one wants to re-analyze the program
regularly (e.g., because it is under current development) the
library can be analyzed and transformed only once, with the
resulting reduced library re-used for every program.

6. Experiments

We evaluated the impact of set-based pre-analysis on 7 rep-
resentative analyses from the Doop framework. The analy-
ses span a wide range of precision and performance, com-
prising a context-insensitive Andersen-style points-to anal-
ysis (insens), and context-sensitive variants both with and
without a context-sensitive heap abstraction (a.k.a. heap
cloning) for different kinds of context-sensitivity: call-site-
sensitive [17, 18] (Icall, Icall+H), object-sensitive [12, 13]
(lobj, 1obj+H, 20bj+H), and type-sensitive [19] 2type+H).
(Comparing the precision of these known algorithms is out-
side the scope of this work, but such measurements for our
exact setting can be found in past literature [10].)

We used two different intermediate representations (IRs)
in our evaluation. The first is the default form of the Jimple
intermediate language of the Soot framework [21, 22]. The
second is a Static Single Assignment (SSA) version of an
otherwise similar intermediate language, also supported by
the Soot framework. The reason for trying both intermediate
languages was to see whether the impact of set-based pre-
analysis would be significantly greater on a representation
that is profligate with local variables (SSA) vs. a representa-
tion that was designed merely as a convenient intermediate
language of a major compiler framework (Jimple).

Our evaluation setting uses the LogicBlox Datalog en-
gine, v.3.9.0, on a Xeon X5650 2.67GHz machine with only
one thread running at a time and 24GB of RAM (i.e., ample
for the analyses studied). We analyze the DaCapo bench-
mark programs under JDK 1.6.0_37. We use the same set-
tings as earlier published work [1, 19]: jython and hsqldb
are analyzed with reflection disabled and hsqldb has its en-
try point set manually in a special harness.

Our set-based pre-processing runs in an average of 49sec
(max: 96, min: 31) over all benchmarks and the standard
library in the Jimple representation, with an average of 47sec
(max: 93, min: 30) for the SSA representation. As discussed
in the previous section, this time is incurred only once per

program or library and is influenced heavily by low-level
engineering considerations that we did not try to optimize.

Tables 1-8 show the results of our experiments. Miss-
ing entries correspond to analyses that did not terminate in
90mins.

Running time. Tables 1 and 2 (for the Jimple and SSA IR,
respectively) present the running times of all analyses and
compute the speedup afforded by set-based optimization.
(All running time numbers given are medians of three runs.)

Set-based pre-analysis has a significant impact on the run-
ning time of almost every analysis, with its highest impact
on call-site-sensitive analyses. There is virtually no program
that does not consistently benefit from set-based optimiza-
tion and we see overall speedups that are as high as 110%,
with averages around 20%. Although some programs clearly
benefit more than others, the result is not particularly pro-
nounced: note how the maximum and minimum speedup en-
tries (in bold) are distributed over several columns and are
often not far from numbers for other benchmarks over the
same analysis.

The choice of intermediate representation does not affect
the effectiveness of our technique much, either. Although
the SSA form introduces more local variables, the differ-
ence in speedup is small and mostly within noise levels. This
shows that even a human-designed intermediate representa-
tion (Jimple) offers enough opportunities for set-based op-
timization. Recall that the elimination of variables and IR
statements by set-based optimization is not something that a
regular intermediate language could replicate: the optimiza-
tion is valid only for the purposes of points-to analysis, not
for the purposes of program execution.

Variables eliminated. Tables 3 and 4 (for the Jimple and
SSA IR, respectively) show the numbers of reachable local
variables (as computed by the points-to analysis itself) both
with and without set-based optimization. This is a useful
metric for seeing how much of the program (together with
reachable code in the JDK libraries) is distilled away when
applying set-based optimization. Importantly, this measure
is static: it counts eliminated variables in the program text.
As we can see, this does not correlate well with the speedup
numbers from the earlier tables. Indeed, the reduction per-
centage for local variables is remarkably steady over all
benchmarks, at roughly 30%. The number also does not vary
much over analyses, but this is quite expected: the only im-
pact the analysis has on the number of variables eliminated
is because of changes in reachable code. (More precise anal-
yses, e.g., 20bj+H, have fewer reachable variables than im-
precise ones, e.g., insens. Still, this variance hardly affects
the average reduction in reachable variables due to set-based
pre-analysis.)

On these tables we can see a little more clearly the effect
of IR choice. The SSA form has consistently higher variable
counts than the Jimple form. The reduction percentages are
also consistently (but very slightly) higher, but not nearly as

antlr bloat chart eclipse | hsqldb jython | luindex | lusearch pmd xalan AVG
| original 69.30 59.59 123.44 47.74 57.05 55.96 40.97 42.07 59.57 64.85
¢ | set-based 63.09 52.02 106.01 43.55 50.93 50.12 37.23 38.14 55.11 57.46
™ | speedup 9.84% 14.55% | 16.44% 9.62% | 12.01% | 11.65% | 10.04% | 10.30% | 8.09% | 12.86% | 11.54%
._ | original 166.26 37393 | 124059 | 117.66 | 21833 | 119.96 76.61 89.18 | 135.84 189.40
2 | set-based | 150.76 316.90 | 1192.19 | 107.30 178.24 | 109.18 70.35 83.05 | 124.11 171.10
speedup | 10.28% 17.99% 4.05% 9.65% | 22.49% 9.87% 8.89% 7.38% 9.45% | 10.69% | 11.07%
= original 810.71 1593.31 - | 55522 | 433592 | 83250 | 240.08 262.64 | 332.01 803.66
T | set-based | 638.28 1226.35 - | 479.37 | 3249.96 | 759.40 | 206.51 22829 | 28470 | 672.34
— | speedup | 27.01% 29.92% - | 15.82% | 33.41% | 9.62% | 16.25% | 15.04% | 16.61% | 19.53% | 20.35%
= original 217.53 5060.39 896.04 | 532.55 - - 131.01 183.31 | 167.71 | 4521.01
T | set-based | 183.43 3670.67 | 739.40 | 435.69 - - 109.46 159.54 | 140.53 | 414591
| speedup | 18.59% | 37.86% | 21.18% | 22.23% - - | 19.68% | 14.89% | 19.34% | 9.04% | 20.35%
T | original 108.13 142.85 21191 | 15245 194.73 | 731.41 75.22 76.29 | 114.48 168.16
§ set-based 94.45 118.09 179.94 | 125.17 155.92 | 621.14 66.16 66.19 99.20 142.26
& | speedup | 14.48% 20.96% | 17.76% | 21.79% | 24.89% | 17.75% | 13.69% | 15.25% | 15.40% | 18.20% | 18.01%
— | original 110.09 186.30 | 288.43 81.42 90.49 88.29 59.36 63.62 89.97 108.70
8 | set-based 86.52 120.17 | 231.98 65.71 70.25 74.33 50.65 54.27 75.29 89.07
speedup | 27.24% 55.03% | 24.33% | 23.90% | 28.81% | 18.78% | 17.19% | 17.22% | 19.49% | 22.03% | 25.40%
T | original 366.16 1351.58 | 957.15 | 47831 332.63 | 401.10 171.59 186.63 | 24595 | 470.74
= | set-based | 243.94 643.61 766.31 | 324.06 197.56 | 271.76 127.75 13549 | 181.33 391.31
= speedup | 50.10% | 109.99% | 24.90% | 47.59% | 68.36% | 47.59% | 34.31% | 37.74% | 35.63% | 20.29% | 47.65%

Table 1. Execution time (in seconds) for a variety of analyses on various benchmarks using the Jimple intermediate language.
Maximum and minimum speedups per row are shown in bold.

antlr bloat chart eclipse | hsqldb jython luindex | lusearch pmd xalan AVG
w | original 69.23 59.49 124.16 47.49 56.70 55.33 41.16 41.95 60.12 65.90
2 | set-based 63.84 52.53 106.31 43.30 50.44 50.77 38.00 38.66 55.04 58.65
| speedup 8.44% 13.24% | 16.79% 9.67% | 12.41% 8.98% | 8.31% 8.51% 9.22% | 12.36% | 10.79%
._ | original 166.39 358.83 | 1256.02 | 11834 | 223.60 119.45 76.27 89.28 | 134.19 190.18
2 | set-based 149.45 307.02 | 112330 | 105.04 182.26 108.37 69.91 81.92 | 123.84 171.61
speedup | 11.33% 16.87% | 11.81% | 12.66% | 22.68% | 10.22% 9.09% 898% | 835% | 10.82% | 12.28%
= original 815.78 1460.25 - | 62552 | 4349.26 | 843.57 245.65 261.08 | 340.82 | 793.59
T | set-based | 656.89 1194.86 - | 51553 | 3122.87 | 74894 | 209.86 225776 | 290.02 | 694.81
— | speedup | 24.18% 22.21% - | 21.33% | 39.27% | 12.63% | 17.05% | 15.64% | 17.51% | 14.21% | 20.44%
T original 223.09 | 4621.55 920.44 | 535.00 - - 131.41 139.95 | 168.02 | 4621.02
T | set-based 185.10 | 3479.07 | 685.19 | 436.68 - - 109.90 114.85 | 142.35 | 4256.24
| speedup | 20.52% 32.83% | 34.33% | 22.51% - - | 1957% | 21.85% | 18.03% 857% | 22.27%
T | original 108.17 138.99 | 22627 | 151.12 197.54 | 72693 76.37 76.76 | 115.65 172.52
§ set-based 95.33 116.01 182.78 | 125.31 156.04 | 605.48 66.64 66.78 | 100.29 144.48
& | speedup | 13.46% 19.80% | 23.79% | 20.59% | 26.59% | 20.05% | 14.60% | 14.94% | 1531% | 19.40% | 18.85%
— | original 108.97 186.63 281.24 81.88 90.54 88.24 59.68 64.30 90.39 110.65
8 | set-based 85.36 120.62 | 224.66 65.48 69.64 74.24 50.74 53.75 75.74 88.18
speedup | 27.65% 54.72% | 25.18% | 25.04% | 30.01% | 18.85% | 17.61% | 19.62% | 19.34% | 25.48% | 26.35%
T | original 360.12 1419.06 | 896.61 | 442.65 308.10 | 377.58 171.58 183.68 | 24442 | 461.27
= | set-based | 240.62 680.60 | 694.66 | 317.40 188.66 | 264.51 125.71 133.46 | 180.70 | 344.56
= | speedup | 49.66% | 108.50% | 29.07% | 39.46% | 63.30% | 42.74% | 36.48% | 37.62% | 35.26% | 33.87% | 47.59%

Table 2. Execution time (in seconds) for a variety of analyses on various benchmarks using an SSA version of the intermediate

language. Maximum and minimum speedups per row are shown in bold.

much as the difference in absolute variable counts between
Jimple and SSA. This shows more vividly that the speedup
of set-based optimization is not due to eliminating variables
that would be redundant in the IR anyway.

Instructions eliminated. Tables 5 and 6 (for the Jimple and
SSA IR, respectively) show different instruction types and
the impact of set-based pre-processing on them. (The in-

struction types are renamed to be mostly self-explanatory.)
As expected, local assignments (Move instructions) are dras-
tically reduced: close to 90% of them for the SSA IR and
about 97% for the Jimple IR are eliminated! Nevertheless,
this does not impact performance significantly in our setting:
Move instructions are handled very efficiently in the Doop
implementation. Other kinds of instructions that are reduced

antlr bloat chart eclipse | hsqldb jython | luindex | lusearch pmd xalan AVG
2 original 87,906 | 91,859 | 138,286 | 83,269 88,809 | 76,164 | 66,649 71,330 | 77,653 87,983
2 | set-based 63,050 | 64,377 97,760 | 59,149 | 61,214 | 52982 | 47,173 50,063 | 54,228 | 61,308
™ | reduction | 28.28% | 29.92% | 29.31% | 28.97% | 31.07% | 30.44% | 29.22% | 29.81% | 30.17% | 30.32% | 29.75%
._ | original 86,409 | 90,302 | 135,458 | 81,228 87,891 | 175,383 | 65,032 69,716 | 76,101 86,403
2 | set-based 62,019 | 63,318 95,893 | 57,751 60,580 | 52,438 | 46,047 48,937 | 53,166 | 60,224
reduction | 28.23% | 29.88% | 29.21% | 28.90% | 31.07% | 30.44% | 29.19% | 29.81% | 30.14% | 30.30% | 29.71%
= original 86,154 | 90,012 - | 80,613 87,076 | 74,738 | 64,777 69,306 | 75,666 86,042
Z | set-based 61,826 | 63,106 - | 57,331 59,970 | 51,949 | 45,854 48,631 | 52,816 | 59,965
— | reduction | 28.24% | 29.89% - | 28.88% | 31.13% | 30.49% | 29.21% | 29.83% | 30.20% | 30.31% | 29.80%
T original 84,605 | 88,387 | 108,722 | 78,545 - - | 63,203 67,689 | 73,886 83,879
Z | set-based 60,699 | 61,941 78,004 | 55,833 - - | 44,706 47,450 | 51,509 | 58,332
& | reduction | 28.26% | 29.92% | 28.25% | 28.92% - -1 2927% | 29.90% | 30.29% | 30.46% | 29.41%
T original 84,805 | 88,725 | 114,663 | 78,872 85,672 | 72,354 | 63,403 67,889 | 74,128 84,175
“é set-based 60,853 | 62,172 81,913 | 56,073 58,972 | 50,140 | 44,860 47,604 | 51,701 58,553
& | reduction | 28.24% | 29.93% | 28.56% | 28.91% | 31.17% | 30.70% | 29.25% | 29.88% | 30.25% | 30.44% | 29.73%
= original 86,684 | 90,567 | 135,361 | 81,372 88,181 | 75,637 | 65,427 70,111 | 76,396 86,678
8 | set-based 62,204 | 63,497 95,852 | 57,846 | 60,779 | 52,608 | 46,327 49,217 | 53,363 60,410
reduction | 28.24% | 29.89% | 29.88% | 2891% | 31.07% | 30.45% | 29.19% | 29.80% | 30.15% | 30.31% | 29.79%
= original 86,684 | 90,567 | 135,230 | 81,372 88,181 | 75,637 | 65,427 70,111 | 76,396 86,678
% set-based 62,204 | 63,497 95,748 | 57,846 | 60,779 | 52,608 | 46,327 49,217 | 53,363 60,410
— | reduction | 28.24% | 29.89% | 29.20% | 2891% | 31.07% | 30.45% | 29.19% | 29.80% | 30.15% | 30.31% | 29.72%

Table 3. Number of reachable (local) variables for the Jimple intermediate language representation. Maximum and minimum
reduction percentages per row are shown in bold.

antlr bloat chart eclipse | hsqldb jython | luindex | lusearch pmd xalan AVG
2 original 91,642 | 95,196 | 144,580 | 86,577 92,942 | 79,450 | 69,513 74,513 | 80,615 92,463
g | set-based 65,407 | 66,558 | 101,850 | 61,196 | 63,698 | 54,995 | 48,973 52,060 | 56,114 | 64,203
™ | reduction | 28.63% | 30.08% | 29.55% | 29.32% | 31.46% | 30.78% | 29.55% | 30.13% | 30.39% | 30.56% | 30.05%
._ | original 90,029 | 93,523 | 141,628 | 84,780 | 92,035 | 78,710 | 67,764 72,771 | 78,947 | 90,775
2 | set-based 64,315 | 65,438 99,889 | 59,982 | 63,072 | 54,484 | 47,771 50,859 | 54,991 63,064
reduction | 28.56% | 30.03% | 29.47% | 29.25% | 31.47% | 30.78% | 29.50% | 30.11% | 30.34% | 30.53% | 30.04%
= original 89,774 | 93,233 - | 84,145 91,210 | 78,048 | 67,509 72,361 | 78,503 90,408
Z | set-based 64,122 | 65,226 - | 59,545 62,454 | 53,983 | 47,578 50,553 | 54,633 62,800
— | reduction | 28.57% | 30.04% - | 29.24% | 31.53% | 30.83% | 29.52% | 30.14% | 30.41% | 30.54% | 30.09%
= original 88,201 | 91,588 | 113,387 | 82,038 - - | 650911 70,718 | 76,680 | 88,196
Z | set-based 62,978 | 64,048 80,997 | 58,020 - - | 46,413 49,353 | 53,291 61,135
& | reduction | 28.60% | 30.07% | 28.57% | 29.28% - - | 29.58% | 30.21% | 30.50% | 30.68% | 29.69%
=z original 88,401 | 91,928 | 119,598 | 82,392 89,782 | 75,631 | 66,111 70,918 | 76,927 88,496
§ set-based 63,132 | 64,281 85,079 | 58,283 61,438 | 52,149 | 46,567 49,507 | 53,488 | 61,358
& | reduction | 28.58% | 30.07% | 28.86% | 29.26% | 31.57% | 31.05% | 29.56% | 30.19% | 30.47% | 30.67% | 30.03%
= original 90,264 | 93,748 | 141,415 | 84,851 92,283 | 78,921 | 68,135 73,142 | 79,202 | 91,012
8 | set-based 64,470 | 65,587 99,791 | 60,022 | 63,240 | 54,621 | 48,036 51,124 | 55,158 | 63,221
reduction | 28.58% | 30.04% | 29.43% | 29.26% | 31.47% | 30.79% | 29.50% | 30.10% | 30.36% | 30.54% | 30.07%
= original 90,264 | 93,748 | 141,251 | 84,851 92,283 | 78,921 | 68,135 73,142 | 79,202 | 91,012
% set-based 64,470 | 65,587 99,665 | 60,022 | 63,240 | 54,621 | 48,036 51,124 | 55,158 | 63,221
— | reduction | 28.58% | 30.04% | 29.44% | 29.26% | 31.47% | 30.79% | 29.50% | 30.10% | 30.36% | 30.53% | 30.07%

Table 4. Number of reachable (local) variables for an SSA version of the intermediate language. Maximum and minimum
reduction percentages per row are shown in bold.

in significant numbers include both Load instructions (Load-
Array, LoadField, LoadSField—the latter for static field
loads) and Call instructions (VirtMethCall, StatMethCall).
Load instructions are reduced by more than 40% and the
very common virtual method calls by roughly 10%. These
two numbers show quite well the source of time savings
from our approach, at least in the Doop setting.

Context-sensitive facts eliminated. Tables 7 and 8 (for the
Jimple and SSA IR, respectively) show the effect of set-
based optimization on perhaps the most important internal
complexity metric of a points-to analysis: the cumulative
size of context-sensitive points-to sets. This is a metric that
correlates very well with the memory requirements of the
analysis and has the advantage of being impervious to plat-

antlr bloat chart eclipse hsqldb jython luindex | lusearch pmd xalan
original 97342 50499 | 112656 49593 | 105074 | 116649 49373 49373 | 111388 | 105636
Move removed 94300 49012 | 109104 48099 | 101775 | 113265 47930 47930 | 107967 | 102208
reduction | 96.87% | 97.05% | 96.84% | 96.98% | 96.86% | 97.09% | 97.07% | 97.07% | 96.92% | 96.75%
original 76662 42708 79794 39199 82965 86623 36849 36849 82812 75835
Return removed 5290 3103 5655 2194 5276 5087 1925 1925 5747 4850
reduction 6.90% 7.26% 7.08% 5.59% 6.35% 5.87% 5.22% 5.22% 6.93% 6.39%
original 11908 6159 13849 5381 12653 14108 5060 5060 13715 12545
Cast removed 17 10 23 9 17 17 12 12 23 27
reduction | 0.14% 0.16% 0.16% 0.16% 0.13% 0.12% 0.23% 0.23% 0.16% 0.21%
original 4249 2861 4882 3009 5372 5104 2383 2383 4643 4575
LoadArray removed 1775 1379 2067 1309 2221 2144 978 978 1979 1887
reduction | 41.77% | 48.19% | 42.33% | 43.50% | 41.34% | 42.00% | 41.04% | 41.04% | 42.62% | 41.24%
original 56357 26562 61493 25780 61839 62033 26202 26202 62342 57407
LoadField removed 26190 11297 27184 10767 28558 28027 11058 11058 29630 26088
reduction | 46.47% | 42.53% | 44.20% | 41.76% | 46.18% | 45.18% | 42.20% | 42.20% | 47.52% | 45.44%
original 17509 8758 21450 8159 19064 20810 8399 8399 20002 18243
LoadSField removed 6239 3694 7411 3058 7037 6988 3388 3388 7765 6581
reduction | 35.63% | 42.17% | 34.55% | 37.48% | 3691% | 33.58% | 40.33% | 40.33% | 38.82% | 36.07%
original 11648 3714 13778 3528 13470 12818 3568 3568 13180 13111
StoreArray removed 217 90 226 104 288 261 95 95 258 230
reduction 1.86% 2.42% 1.64% 2.94% 2.13% 2.03% 2.66% 2.66% 1.95% | 1.75%
original 13581 7126 15737 7048 14679 15191 7260 7260 15587 14364
StoreField removed 90 44 98 41 106 109 49 49 155 96
reduction | 0.66% 0.61% 0.62% 0.58% 0.72% 0.71% 0.67% 0.67% 0.99 % 0.66%
original 4674 1825 5574 1943 4927 5727 2025 2025 5091 4820
StoreSField removed 3 1 3 1 4 3 1 1 3 3
reduction | 0.06% 0.05% 0.05% 0.05% 0.08% 0.05% 0.04% 0.04% 0.05% 0.06%
original 136362 71755 | 147917 64302 | 144532 | 144718 61360 61360 | 144805 | 134451
VirtMethCall | removed 14447 7670 15394 6005 12406 12380 5725 5725 13149 11858
reduction | 10.59% | 10.68% | 10.40% 9.33% 8.58% 8.55% 9.33% 9.33% 9.08% 8.81%
original 26680 14421 30266 15188 30237 32616 14738 14738 29736 28070
StatMethCall removed 3645 1818 4341 1705 4070 4294 1712 1712 4638 3756
reduction | 13.66% | 12.60% | 14.34% | 11.22% | 13.46% | 13.16% | 11.61% | 11.61% | 15.59% | 13.38%
original 52727 29750 59778 29039 56784 60228 29411 29411 60426 54618
SpecMethCall | removed 1262 795 1478 807 1424 1764 1164 1164 2698 1312
reduction | 2.39% 2.67% 2.47% 2.77% 2.50% 2.92% 3.95% 3.95% 4.46 % 2.40%
original 599547 | 313278 | 664975 | 298922 | 649383 | 677861 | 292799 | 292799 | 661095 | 615111
Total removed | 153475 78913 | 172984 74099 | 163182 | 174339 74037 74037 | 174012 | 158896
reduction | 25.59% | 25.18% | 26.01% | 24.78% | 2512% | 25.711% | 25.28% | 25.28% | 26.32% | 25.83%

Table 5. Number of instructions (per instruction type) for the Jimple intermediate language representation. Maximum and

minimum reduction percentages per row are shown in bold.

form and implementation fluctuations: an optimization that
speeds up execution could do so by taking advantage of
the specifics of the environment—e.g., peculiarities of our
Datalog execution engine. Improvement in context-sensitive
points-to set sizes, however, is a change that transfers well
to completely different implementation settings.®

As seen on the tables, set-based optimization has signif-
icant impact on the sizes of context-sensitive points-to sets.
More than 30% of points-to facts on average never need to
be inferred in the optimized version of the input. This dif-
ference affects the complexity of the analysis itself but not
its outcome: the final, context-insensitive points-to sets for

81t is telling that analysis implementations that use binary decision dia-
grams (BDDs) try hard to minimize this metric in order to achieve peak
performance [2].

the same variable or object field will be identical, since our
transformation is semantics-preserving relative to the points-
to analysis.

Post-processing. Set-based pre-analysis leaves the output
of points-to analysis in a condensed form, as far as certain
further analyses are concerned. This is the case for client
analyses that have knowledge of program internals, such as
temporary variables or call-sites, which may have been op-
timized away. As mentioned in Section 4.3, this information
can be retrieved via post-processing. Such post-processing
is typically specific to the client analysis: the analysis will
post-process the information it cares about to add back miss-
ing elements. To enable post-processing, our implementa-
tion offers maps from eliminated variables and call-sites to

antlr bloat chart eclipse | hsqldb jython luindex | lusearch pmd xalan
original 117905 59909 | 135342 59797 | 128252 | 141059 59108 59108 | 134639 | 128690
Move removed 104245 53586 | 120005 53170 | 112849 | 124026 52772 52772 | 118791 | 113154
reduction | 88.41% | 89.44% | 88.66% | 88.91% | 87.99% | 87.92% | 89.28% | 89.28% | 88.22% | 87.92%
original 76662 42708 79794 39199 82965 86623 36849 36849 82812 75835
Return removed 5415 3103 5768 2209 5414 5216 1939 1939 5875 4977
reduction 7.06% 7.26% 7.22% 5.63% 6.52% 6.02% 5.26% 5.26% 7.09% 6.56%
original 4261 2867 4894 3017 5384 5125 2389 2389 4655 4587
LoadArray removed 1813 1410 2108 1329 2283 2193 997 997 2018 1932
reduction | 42.54% | 49.18% | 43.07% | 44.05% | 42.40% | 42.79% | 41.73% | 41.73% | 43.35% | 42.11%
original 56377 26575 61513 25794 61870 62057 26215 26215 62412 57428
LoadField removed 26415 11403 27403 10879 28809 28275 11178 11178 29938 26312
reduction | 46.85% | 42.90% | 44.54% | 42.17% | 46.56% | 45.56% | 42.63% | 42.63% | 47.96% | 45.81%
original 17526 8760 21480 8161 19081 20832 8401 8401 20022 18262
LoadSField removed 6411 3770 7811 3144 7390 7991 3504 3504 8286 6909
reduction | 36.57% | 43.03% | 36.36% | 38.52% | 38.72% | 38.35% | 41.70% | 41.70% | 41.38% | 37.83%
original 11650 3715 13781 3528 13472 12824 3568 3568 13183 13113
StoreArray removed 212 89 221 103 283 257 94 94 252 224
reduction 1.81% 2.39% 1.60% 2.91% 2.10% 2.00% 2.63% 2.63% 1.91% 1.70%
original 13588 7130 15744 7052 14688 15198 7266 7266 15599 14371
StoreField removed 94 47 102 43 110 113 54 54 159 100
reduction 0.69% 0.65% 0.64% 0.60% 0.74% 0.74% 0.74% 0.74% 1.01% 0.69%
original 4674 1825 5574 1945 4927 5727 2025 2025 5095 4822
StoreSField removed 3 1 3 2 4 3 1 1 3 3
reduction 0.06% 0.05% 0.05% 0.10% 0.08% 0.05% 0.04 % 0.04 % 0.05% 0.06%
original 136362 71755 | 147917 64302 | 144532 | 144718 61360 61360 | 144805 | 134451
VirtMethCall | removed 14400 7584 15289 5937 12302 12313 5656 5656 13094 11786
reduction | 10.56% | 10.56% | 10.33% 9.23% | 8.51% 8.50% 9.21% 9.21% 9.04% 8.76%
original 52727 29750 59778 29039 56784 60228 29411 29411 60426 54618
SpecMethCall | removed 1269 795 1483 807 1437 1772 1169 1169 2694 1317
reduction | 2.40% 2.67% 2.48% 2.77% 2.53% 2.94% 3.97% 3.97% 4.45% 2.41%
original 26680 14421 30266 15188 30237 32616 14738 14738 29736 28070
StatMethCall removed 3657 1806 4359 1693 4098 4311 1701 1701 4649 3773
reduction | 13.70% | 12.52% | 14.40% | 11.14% | 13.55% | 13.21% | 11.54% | 11.54% | 15.63% | 13.44%
original 620181 | 322721 | 687747 | 309164 | 672651 | 702366 | 302566 | 302566 | 684479 | 638250
Total removed 163934 83594 | 184552 79316 | 174979 | 186470 79065 79065 | 185759 | 170487
reduction | 26.43% | 2590% | 26.83% | 25.65% | 26.01% | 26.54% | 26.13% | 26.13% | 27.13% | 26.711%

Table 6. Number of instructions (per instruction type) for an SSA version of intermediate language representation. Maximum

and minimum reduction percentages per row are shown in bold.

equivalent ones. For instance, it is easy to post-process the
tables that depict our final points-to information for every
program variable, by augmenting the existing logic with an
extra case:

InsensVarPointsTo(var, heap) <-
VarPointsTo(var2, _, heap, _),
DupCopies(var, var2).

The DupCopies table, above, stores the fact that var is
replaced by the equivalent variable var2. The rule causes
the final output of the analysis, table InsensVarPointsTo, to
also integrate facts for eliminated variables, thus replicating
exactly the analysis results without set-based pre-analysis.

Such post-processing incurs virtually zero cost.
For example, for a 20bj+H analysis, the above post-

processing adds roughly lsec to the query reporting the
InsensVarPointsTo results.’

The reason that post-processing is virtually cost-free is
dual. First, post-processing only adjusts information in the
final output table, and not in all other tables involved in in-
termediate computations. Second, post-processing can avoid
changing the context-sensitive facts computed by an analy-
sis and instead only affect the final context-insensitive facts,
as in the above example query.

Summary. In all, we see that set-based reasoning has a
significant impact on points-to analysis, and that this applies

9 Although in theory the output of a points-to analysis is the points-to
information for local variables, most of the time points-to analysis is not
performed with the purpose of producing results for all local variables.
Instead, points-to analysis may be required in order to compute reachable
methods, points-to information for heap objects, object type connectivity
graphs, etc. Thus, post-processing is relatively rarely required in practice.

antlr bloat chart eclipse | hsqldb jython | luindex | lusearch pmd xalan AVG
2 original 10,988 9,819 15,340 6,275 5,398 4,706 4,792 5,073 5,544 6,553
2 set-based 10,038 8,412 13,503 5,628 4,739 4,139 4,382 4,614 5,024 5,832
" | reduction 8.65% | 14.33% | 11.98% | 10.31% | 12.21% | 12.05% 8.56 % 9.05% 9.38% 11% | 10.75%
— original 14,301 21,927 62,502 9,353 13,955 8,671 5,435 6,218 7,987 15,449
§ set-based 10,003 14,462 48,332 6,718 9,249 6,177 3,978 4,560 5,807 11,573
reduction | 30.05% | 34.04% | 22.67% | 28.17% | 33.72% | 28.76% | 26.81% | 26.66% | 27.29% | 25.09% | 28.33%
E original 82,899 81,797 - 58,271 | 193,882 | 101,621 25,707 26,885 30,558 97,004
z set-based 56,858 57,255 - | 41,433 | 126,778 69,461 18,359 19,194 | 21,754 72,472
— | reduction | 31.41% 30% - | 2890% | 34.61% | 31.65% | 28.58% | 28.61% | 28.81% | 25.29% | 29.76%
E original 19,917 | 153,469 67,608 | 44,638 - - 11,143 13,182 13,202 | 166,641
z set-based 13,642 99,222 48,102 | 30,823 - - 7,487 9,176 9,001 | 120,744
| reduction | 31.51% | 35.35% | 28.85% | 30.95% - - | 32.81% | 30.39% | 31.82% | 27.54% | 31.15%
E original 5,354 11,446 13,319 13,552 13,660 52,015 4,108 4,204 4,550 10,205
§ set-based 3,846 7,510 9,328 9,290 8,586 34,514 2,783 2,858 3,075 6,912
& | reduction | 28.17% | 34.39% | 29.96% | 31.45% | 37.14% | 33.65% | 32.25% | 32.02% | 32.42% | 32.27% | 32.37%
= original 16,093 32,946 49,649 12,264 9,601 10,430 7,839 8,763 11,369 14,499
§ set-based 10,337 18,111 34,245 8,251 6,238 6,988 5,380 6,002 7,812 10,129
reduction | 35.77% | 45.03% | 31.03% | 32.72% | 35.03% 33% | 31.37% | 31.51% | 31.29% | 30.14% | 33.69%
E original 54,844 | 150,516 | 120,865 61,524 39,783 50,633 26,107 28,525 35,945 59,872
% set-based 29,697 73,972 78,952 | 38,998 24,348 31,251 16,937 18,200 | 23,372 38,553
— | reduction | 45.85% | 50.84% | 34.68% | 36.61% | 38.80% | 38.28% | 35.12% | 36.20% | 34.98% | 35.61% | 38.70%
Table 7. Number of context-sensitive VarPointsTo entries (measured in thousands) for the Jimple representation. Maximum
and minimum reduction percentages per row are shown in bold.
antlr bloat chart eclipse | hsqldb jython | luindex | lusearch pmd xalan AVG
2 original 11,032 9,750 15,209 6,226 5,402 4,674 4,756 5,033 5,493 6,523
"é set-based 10,028 8,323 13,328 5,560 4,707 4,088 4,335 4,564 4,962 5,771
™ | reduction 9.1% | 14.64% | 12.37% | 10.70% | 12.87% | 12.54% 8.85% 9.32% 9.67% | 11.53% | 11.16%
- original 15,319 22,299 63,017 9,649 15,328 8,875 5,630 6,367 8,202 16,155
’§ set-based 10,583 14,650 48,453 6,848 9,880 6,266 4,082 4,624 5,908 11,951
reduction | 30.92% | 34.30% | 23.11% | 29.03% | 35.54% | 29.40% | 27.50% | 27.38% | 27.97% | 26.02% | 29.12%
E original 89,220 84,823 - 61,463 | 219,442 | 103,896 | 27,138 28,032 | 32,259 | 106,986
z set-based 60,233 58,887 - | 42,807 | 138,527 70,326 19,040 19,647 | 22,527 78,634
— | reduction | 32.49% | 30.58% -1 30.35% | 36.87% | 32.31% | 29.84% | 29.91% | 30.17% | 26.50% 31%
E original 21,435 | 149,871 73,953 | 48,425 - - 11,702 12,480 13,907 | 182,049
z set-based 14,521 98,137 51,984 | 32919 - - 7,829 8,380 9,472 | 130,912
| reduction | 32.26% | 34.52% | 29.71% | 32.02% - - | 33.10% | 32.85% | 31.89% | 28.09% | 31.80%
E original 5,607 11,170 13,942 14,556 14,737 54,314 4318 4,410 4,773 10,826
§ set-based 3,998 7,332 9,676 9,858 9,139 35,787 2,913 2,978 3,213 7,272
& | reduction | 28.70% | 34.36% | 30.60% | 32.28% | 37.99% | 34.11% | 32.54% | 32.47% | 32.68% | 32.83% | 32.86%
= original 16,256 33,020 48,119 12,373 9,743 10,427 7,840 8,724 11,364 14,642
§ set-based 10,294 18,007 33,174 8,223 6,187 6,913 5,317 5,908 7,730 10,097
reduction | 36.68% | 45.47% | 31.06% | 33.54% | 36.50% | 33.70% | 32.18% | 32.28% | 31.98% | 31.04% | 34.44%
E original 55,508 | 150,685 | 118,214 | 62,299 40,667 50,873 26,151 28,526 36,075 61,156
% set-based 29,599 75,764 77,077 38,886 24,213 30,952 16,742 17,975 23,185 38,846
— | reduction | 46.68% | 49.72% | 34.80% | 37.58% | 40.46% | 39.16% | 35.98% | 36.99% | 35.73% | 36.48% | 39.36%

Table 8. Number of context-sensitive VarPointsTo entries (measured in thousands) for the SSA representation. Maximum and
minimum reduction percentages per row are shown in bold.

transparently to a very wide variety of analyses, without any
need to change the analysis at all. For practical usability
it is also important to recall that this impact is modular:
a library (or other invariant code) can be optimized once
and the results reused in conjunction with any other client
program, and for different points-to analyses.

7. Conclusions

In 2000, Rountev and Chandra wrote, regarding their off-line
optimization technique [16]:

While we have concentrated on reducing the cost of
Andersen’s analysis, we conjecture that such precom-
putation can be helpful in other points-to analyses as

well.

Although subsequent work advanced the area of off-line
optimization of points-to analysis, it has not achieved this
conjectured generality and independence from the analysis
algorithm. In the work we presented here, we fulfill this
promise by expressing the optimization as a pre-processing
step that is largely orthogonal to the subsequent points-to
analysis. We applied our approach to 7 different points-
to analysis algorithms for demonstration purposes, and it
transparently applies to any other points-to analysis in the
Doop framework. There is virtually no other comparable op-
timization mechanism of such wide applicability to different
points-to analyses in the literature—algorithmic improve-
ments in this area are usually analysis-specific.

Furthermore, the intraprocedural nature of our approach
means that it can be applied once-and-for-all to libraries and
have the results be reused, and that it works well with points-
to analysis algorithms employing on-the-fly call-graph con-
struction (in languages with dynamic dispatch). Finally, our
approach is also more general than past techniques for off-
line optimization, because it allows removing individual re-
dundant program statements instead of just collapsing vari-
ables. We believe that the generality and orthogonality of our
set-based pre-analysis will render it a valuable weapon in the
arsenal of the static analysis programmer for years to come.

Acknowledgments

We gratefully acknowledge funding by the European Union
under a Marie Curie International Reintegration Grant and
a European Research Council Starting/Consolidator grant;
and by the Greek Secretariat for Research and Technology
under an Excellence (Aristeia) award.

References

[1] K. Ali and O. Lhotdk. Application-only call graph construc-
tion. In J. Noble, editor, European Conf. on Object-Oriented
Programming (ECOOP), volume 7313 of Lecture Notes in
Computer Science, pages 688—712. Springer Berlin Heidel-
berg, 2012.

[2] M. Berndl, O. Lhotak, F. Qian, L. J. Hendren, and N. Umanee.
Points-to analysis using BDDs. In Conf. on Programming
Language Design and Implementation (PLDI), pages 103—
114. ACM, 2003.

[3] M. Bravenboer and Y. Smaragdakis. Exception analysis and
points-to analysis: Better together. In L. Dillon, editor, Inz.
Symp. on Software testing and analysis (ISSTA), New York,
NY, USA, July 2009.

[4] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Conf. on Ob-
Jject Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), New York, NY, USA, 2009. ACM.

[5] M. Fahndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online
cycle elimination in inclusion constraint graphs. In Conf. on

Programming Language Design and Implementation (PLDI),
pages 85-96, New York, NY, USA, 1998. ACM.

[6] S. Guarnieri and B. Livshits. GateKeeper: mostly static en-
forcement of security and reliability policies for Javascript
code. In Proceedings of the 18th USENIX Security Sympo-
sium, SSYM’09, pages 151-168, Berkeley, CA, USA, 2009.
USENIX Association.

[7] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In

Conf. on Programming Language Design and Implementation
(PLDI), pages 290-299, New York, NY, USA, 2007. ACM.

[8] B. Hardekopf and C. Lin. Exploiting pointer and location
equivalence to optimize pointer analysis. In In International
Static Analysis Symposium (SAS), pages 265-280, 2007.

[9] G. Kastrinis and Y. Smaragdakis. Efficient and effective han-
dling of exceptions in Java points-to analysis. In Int. Conf. on
Compiler Construction (CC), Mar. 2013.

[10] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Conf. on Programming Language
Design and Implementation (PLDI). ACM, June 2013.

[11] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis
as database queries. In PODS ’05: Proc. of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 1-12, New York, NY, USA, 2005.
ACM.

[12] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In Int. Symp. on Software testing and analysis (ISSTA),
pages 1-11, New York, NY, USA, 2002. ACM.

[13] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to analysis for Java. ACM Trans.
Softw. Eng. Methodol., 14(1):1-41, 2005.

[14] R. Nasre. Exploiting the structure of the constraint graph
for efficient points-to analysis. In Int. Symp. on Memory
Management (ISMM), pages 121-132, New York, NY, USA,
2012. ACM.

[15] T. Reps. Demand interprocedural program analysis using
logic databases. In R. Ramakrishnan, editor, Applications of
Logic Databases, pages 163—196. Kluwer Academic Publish-
ers, 1994.

[16] A. Rountev and S. Chandra. Off-line variable substitution
for scaling points-to analysis. In Conf. on Programming
Language Design and Implementation (PLDI), pages 47-56,
New York, NY, USA, 2000. ACM.

[17] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In S. S. Muchnick and N. D. Jones, editors,
Program Flow Analysis, pages 189-233, Englewood Cliffs,
NJ, 1981. Prentice-Hall, Inc.

[18] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, May 1991.

[19] Y. Smaragdakis, M. Bravenboer, and O. Lhotdk. Pick your
contexts well: Understanding object-sensitivity (the making
of a precise and scalable pointer analysis). In Symp. on
Principles of Programming Languages (POPL), pages 17-30.
ACM Press, Jan. 2011.

[20] Z. Su, M. Fihndrich, and A. Aiken. Projection merging: re-
ducing redundancies in inclusion constraint graphs. In Symp.

on Principles of Programming Languages (POPL), pages 81—
95, New York, NY, USA, 2000. ACM.

[21] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Int. Conf. on Compiler
Construction (CC), pages 18-34, 2000.

[22] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon,
and P. Co. Soot - a Java optimization framework. In Proceed-
ings of CASCON 1999, pages 125-135, 1999.

[23] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
Datalog with binary decision diagrams for program analysis.
In K. Yi, editor, APLAS, volume 3780 of Lecture Notes in
Computer Science, pages 97-118. Springer, 2005.

[24] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Conf. on Programming Language Design and Implementation
(PLDI), pages 131-144, New York, NY, USA, 2004. ACM.

