
Combining Static and Dynamic Reasoning for
Bug Detection

Yannis Smaragdakis1 and Christoph Csallner2

1 Department of Computer Science
University of Oregon, Eugene, OR 97403-1202, USA

yannis@cs.uoregon.edu
2 College of Computing

Georgia Institute of Technology, Atlanta, GA 30332, USA
csallner@gatech.edu

Abstract. Many static and dynamic analyses have been developed to
improve program quality. Several of them are well known and widely
used in practice. It is not entirely clear, however, how to put these anal-
yses together to achieve their combined benefits. This paper reports on
our experiences with building a sequence of increasingly more powerful
combinations of static and dynamic analyses for bug finding in the tools
JCrasher, Check ’n’ Crash, and DSD-Crasher. We contrast the power
and accuracy of the tools using the same example program as input to
all three.
At the same time, the paper discusses the philosophy behind all three
tools. Specifically, we argue that trying to detect program errors (rather
than to certify programs for correctness) is well integrated in the devel-
opment process and a promising approach for both static and dynamic
analyses. The emphasis on finding program errors influences many as-
pects of analysis tools, including the criteria used to evaluate them and
the vocabulary of discourse.

1 Introduction

Programming is hard. As an intellectual task, it attempts to approximate real-
world entities and conditions as abstract concepts. Since computers are unfor-
giving interpreters of our specifications, and since in software we can build up
complexity with no physical boundaries, it is easy to end up with artifacts that
are very hard to comprehend and reason about. Even moderate size programs
routinely surpass in detail and rigor the most complex laws, constitutions, and
agreements in the “real world”. Not only can individual program modules be
complex, but the interactions among modules can be hardly known. Most pro-
grammers work with only a partial understanding of the parts of the program
that their own code interacts with. Faced with this complexity, programmers
need all the help they can get. In industrial practice, testing has become signif-
icantly more intense and structured in the past decade. Additionally, numerous
static analyses attempt to automatically certify properties of a program, or de-
tect errors in it.



In the past few years, we have introduced three program analysis tools for
finding program defects (bugs) in Java applications. JCrasher [3] is a simple,
mostly dynamic analysis that generates JUnit test cases. Despite its simplicity it
can find bugs that would require complex static analysis efforts. Check ’n’ Crash
[4] uses JCrasher as a post-processing step to the powerful static analysis tool
ESC/Java. As a result, Check ’n’ Crash is more precise than ESC/Java alone
and generates better targeted test cases than JCrasher alone. DSD-Crasher [5]
adds a reverse engineering step to Check ’n’ Crash to rediscover the program’s
intended behavior. This enables DSD-Crasher to suppress false positives with
respect to the program’s informal specification. This property is more useful for
bug-finding than for proving correctness, as we argue later.

In this paper, we report on our experience with these tools and present their
comparative merits through a simple example. At the same time, we discuss
in detail our philosophy in building them. All three tools are explicitly geared
towards finding program errors and not towards certifying program correctness.
Viewed differently, program analyses (regardless of the artificial static/dynamic
distinction) can never accurately classify with full confidence all programs as
either correct or incorrect. Our claim is that analyses that choose to be confident
in their incorrectness classification (sound for incorrectness) are gaining ground
over analyses that choose to be confident in their correctness classification (sound
for correctness). We discuss this point next in more detail.

2 Bug Finding Musings

There are several dichotomies in program analysis. Clearly, analyses are often
classified as static or dynamic. Additionally, analyses are often classified as sound
or complete, or as over- and under-approximate. We next present some thoughts
on these distinctions as well as the terminology they introduce.

2.1 Static and Dynamic Analysis

At first glance it may seem simple to classify an analysis as static or dynamic.
The definition in the popular Wikipedia archive claims that:

Static code analysis is the analysis of computer software that is per-
formed without actually executing programs built from that software
(analysis performed on executing programs is known as dynamic analy-
sis).

This definition is not quite satisfying, however. Program execution only dif-
fers from program reasoning at the level of accuracy. This distinction is fairly
artificial. First, there are languages where reasoning and execution are often
thought of in the same terms (e.g., static analyses of Prolog programs often in-
clude steps such as “execute the program in a universe that only includes these
values”). Second, even in imperative languages, it is often hard to distinguish be-
tween a virtual machine that executes the program and tools that reason about



it at some level of abstraction (e.g., model checking tools, or symbolic execution
analyses). Finally, it is hard to classify analyses that execute a program with
known inputs. Known inputs are by definition “static”, in standard terminology,
and these analyses give information about the program without executing it un-
der “real” conditions. Yet at the same time, since the program is executed, it is
tempting to call such analyses “dynamic”.

We believe that there is a continuum of analyses and the static vs. dynamic
classification is not always easy to make. Our working definition is as follows:

An analysis is “dynamic” if it emphasizes control-flow accuracy over
data-flow richness/generality, and “static” if it emphasizes data-flow
richness/generality over control-flow accuracy.

There is always a trade-off between these trends. The undecidability of most
useful program properties entails that one cannot make statements about in-
finitely many inputs without sacrificing some control-flow accuracy.

Although the definition is approximate, we believe that it serves a useful
purpose. It reflects the intuitive understanding of the two kinds of analyses,
while emphasizing that the distinction is arbitrary. A more useful way to classify
analyses is in terms of what they claim not how they maintain the information
that leads to their claims.

2.2 Soundness for Incorrectness

Analyses can be classified with respect to the set of properties they can establish
with confidence. In mathematical logic, reasoning systems are often classified as
sound and complete. A sound system is one that proves only true sentences,
whereas a complete system proves all true sentences. In other words, an analysis
is sound iff provable(p) ⇒ true(p) and complete iff true(p) ⇒ provable(p).
Writing the definitions in terms of what the analysis claims, we can say:

Definition 1 (Sound). claimtrue(p) ⇒ true(p).

Definition 2 (Complete). true(p) ⇒ claimtrue(p).

When we analyze programs we use these terms in a qualified way. For in-
stance, a type system (the quintessential “sound” static analysis) only proves
correctness with respect to certain errors.

In our work, we like to view program analyses as a way to prove programs
incorrect—i.e., to find bugs, as opposed to certifying the absence of bugs. If
we escape from the view of program analysis as a “proof of correctness” and
we also allow the concept of a “proof of incorrectness”, our terminology can
be adjusted. Useful program analyses give an answer for all programs (even if
the analysis does not terminate, the programmer needs to interpret the non-
termination-within-time-bounds in some way). In this setting, an analysis is
sound for showing program correctness iff it is complete for showing program
incorrectness. Similarly, an analysis is sound for showing program incorrectness
iff it is complete for showing program correctness.

These properties are easily seen from the definitions. We have:



Lemma 1. Complete for program correctness ≡ Sound for program incorrect-
ness.

Proof. Complete for program correctness
≡ correct(p) ⇒ claimcor(p)
≡ ¬incorrect(p) ⇒ ¬claimincor(p)
≡ claimincor(p) ⇒ incorrect(p)
≡ Sound for program incorrectness

Lemma 2. Complete for program incorrectness ≡ Sound for program correct-
ness.

Proof. Complete for program incorrectness
≡ incorrect(p) ⇒ claimincor(p)
≡ ¬correct(p) ⇒ ¬claimcor(p)
≡ claimcor(p) ⇒ correct(p)
≡ Sound for program correctness

In the above, we considered the complementary use of the analysis, such that
it claims incorrectness whenever the original analysis would not claim correct-
ness. Note that the notion of “claim” is external to the analysis. An analysis
either passes or does not pass programs, and “claim” is a matter of interpreta-
tion. Nevertheless, the point is that the same base analysis can be used to either
soundly show correctness or completely show incorrectness, depending on how
the claim is interpreted.

The interesting outcome of the above reasoning is that we can abolish the
notion of “completeness” from our vocabulary. We believe that this is a useful
thing to do for program analysis. Even experts are often hard pressed to name
examples of “complete” analyses and the term rarely appears in the program
analysis literature (in contrast to mathematical logic). Instead, we can equiva-
lently refer to analyses that are “sound for correctness” and analyses that are
“sound for incorrectness”. An analysis does not have to be either, but it certainly
cannot be both for interesting correctness properties.

Other researchers have settled on different conventions for classifying analy-
ses, but we think our terminology is preferable. For instance, Jackson and Rinard
call a static analysis “sound” when it is sound for correctness, yet call a dynamic
analysis “sound” when it is sound for incorrectness [12]. This is problematic,
since, as we argued, static and dynamic analyses form a continuum. Further-
more, the terminology implicitly assumes that static analyses always attempt
to prove correctness. Yet, there are static analyses whose purpose is to detect
defects (e.g., FindBugs by Hovemeyer and Pugh [11]). Another pair of terms
used often are “over-” and “under-approximate”. These also require qualifica-
tion (e.g., “over-approximate for incorrectness” means the analysis errs on the
safe side, i.e., is sound for correctness) and are often confusing.



2.3 Why Prove a Program Incorrect?

Ensuring that a program is correct is the Holy Grail of program construction.
Therefore analyses that are sound for correctness have been popular, even if
limited. For instance, a static type system guarantees the absence of certain kinds
of bugs, such as attempting to perform an operation not defined for our data.
Nevertheless, for all interesting properties, soundness for correctness implies that
the analysis has to be pessimistic and reject perfectly valid programs. For some
kinds of analyses this cost is acceptable. For others, it is not—for instance, no
mainstream programming language includes sound static checking to ensure the
lack of division-by-zero errors, exactly because of the expected high rejection
rate of correct programs.

Instead, it is perfectly valid to try to be sound for incorrectness. That is,
we may want to show that a program fails with full confidence. This is fairly
expected for dynamic analysis tools, but it is worth noting that even static
analyses have recently adopted this model. For instance, Lindahl and Sagonas’s
success typings [14] are an analogue of type systems but with the opposite trade-
offs. Whereas a type system is sound for correctness and, hence, pessimistic, a
success typing is sound for incorrectness and, thus, optimistic. If a success typing
cannot detect a type clash, the program might work and is permitted. If the
system does report a problem, then the problem is guaranteed to be real. This is
a good approach for languages with a tradition of dynamic typing, where users
will likely complain if a static type system limits expressiveness in the name of
preventing unsafety.

Yet the most important motivation for analyses that are sound for incor-
rectness springs from the way analyses are used in practice. For the author of a
piece of code, a sound-for-correctness analysis may make sense: if the analysis is
too conservative, then the programmer probably knows how to rewrite the code
to expose its correctness to the analysis. Beyond this stage of the development
process, however, conservativeness stops being an asset and becomes a liability.
A tester cannot distinguish between a false warning and a true bug. Reporting a
non-bug to the programmer is highly counter-productive if it happens with any
regularity. Given the ever-increasing separation of the roles of programmer and
tester in industrial practice, high confidence in detecting errors is paramount.

This need can also be seen in the experience of authors of program analyses
and other researchers. Several modern static analysis tools [10, 8, 11] attempt
to find program defects. In their assessment of the applicability of ESC/Java,
Flanagan et al. write [10]:

“[T]he tool has not reached the desired level of cost effectiveness. In
particular, users complain about an annotation burden that is perceived
to be heavy, and about excessive warnings about non-bugs, particularly
on unannotated or partially-annotated programs.”

The same conclusion is supported by the findings of other researchers. Notably,
Rutar et al. [19] examine ESC/Java2, among other analysis tools, and conclude



that it can produce many spurious warnings when used without context infor-
mation (method annotations). For five testees with a total of some 170 thousand
non commented source statements, ESC warns of a possible null dereference
over nine thousand times. Rutar et al., thus, conclude that “there are too many
warnings to be easily useful by themselves.”

To summarize, it is most promising to use analyses that are sound for cor-
rectness at an early stage of development (e.g., static type system). Nevertheless,
for analyses performed off-line, possibly by third parties, it is more important to
be trying to find errors with high confidence or even certainty. This is the goal of
our analysis tools. We attempt to increase the soundness of existing analyses by
combining them in a way that reduces the false error reports. Just like analyses
that are sound for correctness, we cannot claim full correctness, yet we can claim
that our tools are sound for incorrectness with respect to specific kinds of errors.
Such soundness-for-incorrectness topics are analyzed in the next section.

3 Soundness of Automatic Bug Finding Tools

In practice, there are two levels of soundness for automatic bug finding tools. The
lower level is being sound with respect to the execution semantics. This means
that a bug report corresponds to a possible execution of a program module,
although the input that caused this execution may not be one that would arise
in normal program runs. We call this language-level soundness because it can
be decided by checking the language specification alone. Many bug finding tools
concern themselves only with this soundness level and several of them do not
achieve it. A stronger form of soundness consists of also being sound with respect
to the intended usage of the program. We call this user-level soundness, as it
means that a bug report will be relevant to a real user of the program. This is
an important distinction because developers have to prioritize their energy on
the cases that matter most to their users. From their perspective, a language-
level sound but user-level unsound bug report may be as annoying as one that
is unsound at the language level.

We next examine these concepts in the context of the ESC/Java tool. Analy-
sis with ESC/Java is an important step for our tools, and we can contrast them
well by looking at what need they fill over the base ESC/Java bug finding ability.

3.1 Background: ESC/Java

The Extended Static Checker for Java (ESC/Java) [10] is a compile-time pro-
gram checker that detects potential invariant violations. ESC/Java compiles the
Java source code under test to a set of predicate logic formulae [10]. ESC/Java
checks each method m in isolation, expressing as logic formulae the properties of
the class to which the method belongs, as well as Java semantics. Each method
call or invocation of a primitive Java operation in m’s body is translated to a
check of the called entity’s precondition followed by assuming the entity’s post-
condition. ESC/Java recognizes invariants stated in the Java Modeling Language



(JML) [13]. (We consider the ESC/Java2 system [2]—an evolved version of the
original ESC/Java, which supports JML specifications and recent versions of the
Java language.) In addition to the explicitly stated invariants, ESC/Java knows
the implicit pre- and postconditions of primitive Java operations—for example,
array access, pointer dereference, class cast, or division. Violating these implicit
preconditions means accessing an array out-of-bounds, dereferencing null point-
ers, mis-casting an object, dividing by zero, etc. ESC/Java uses the Simplify
theorem prover [7] to derive error conditions for a method. We use ESC/Java
to derive abstract conditions under which the execution of a method under test
may terminate abnormally. Abnormal termination means that the method would
throw a runtime exception because it violated the precondition of a primitive
Java operation. In many cases this will lead to a program crash as few Java
programs catch and recover from unexpected runtime exceptions.

Like many other static analysis based bug finding systems, ESC/Java is
language-level unsound (and therefore also user-level unsound): it can produce
spurious error reports because of inaccurate modeling of the Java semantics.
ESC/Java is also unsound for correctness: it may miss some errors—for exam-
ple, because ESC/Java ignores all iterations of a loop beyond a fixed limit.

3.2 Language-Level Soundness: Program Execution Semantics

Language-level soundness is the lower bar for automatic analysis tools. An anal-
ysis that is unsound with respect to execution semantics may flag execution
paths that can never occur, under any inputs or circumstances. ESC/Java uses
such an analysis. In the absence of pre-conditions and post-conditions describing
the assumptions and effects of called methods, ESC/Java analyzes each method
in isolation without taking the semantics of other methods into account. For
instance, in the following example, ESC/Java will report potential errors for
get0() < 0 and get0() > 0, although neither of these conditions can be true.

public int get0() {return 0;}

public int meth() {

int[] a = new int[1];

return a[get0()];

}

In Section 4.1 we describe how our tool Check ’n’ Crash eliminates language-
level unsoundness from ESC/Java warnings by compiling them to test cases. This
enables us to confirm ESC/Java warnings by concrete program execution and
suppress warnings we could not confirm. Check ’n’ Crash could never generate
a test case that confirms the above warning about method meth and would
therefore never report such an language-level unsound case to the user.

3.3 User-Level Soundness: Informal Specifications

A user-level sound analysis has to satisfy not only language semantics but also
user-level specifications. Thus, user-level soundness is generally impossible to



achieve for automated tools since user-level specifications are mostly informal.
Common forms of user-level specifications are code comments, emails, or web
pages describing the program. Often these informal specifications only exist in
the developers’ minds. It is clear that user-level soundness implies language-level
soundness, since the users care only about bugs that can occur in real program
executions. So the user-level sound bug reports are a subset of the language-level
sound bug reports.

ESC/Java may produce spurious error reports that do not correspond to ac-
tual program usage. For instance, a method forPositiveInt(int i) under test
may be throwing an exception if passed a negative number as an argument. Even
if ESC/Java manages to produce a language-level sound warning about this ex-
ception it cannot tell if this case will ever occur in practice. A negative number
may never be passed as input to the method in the course of execution of the
program, under any user input and circumstances. That is, an implicit precondi-
tion that the programmer has been careful to respect makes the language-level
sound warning unsound at the user-level.

In Section 4.2 we describe how our tool DSD-Crasher tries to eliminate user-
level unsoundness from ESC/Java warnings by inferring the preconditions of
intended program behavior from actual program executions. This allows us to
exclude cases that are not of interest to the user. In the above example we might
be able to infer a precondition of i > 0 for method forPositiveInt(int i),
which would allow ESC/Java to suppress the user-level unsound warning.

4 Turning ESC/Java into a Sound Tool for Automatic
Bug Finding

Our two tools attempt to address the two levels of unsoundness exhibited by
many static analysis tools like ESC/Java. Check ’n’ Crash is a static-dynamic
(SD) tool, which post-processes ESC/Java’s output with a dynamic step. DSD-
Crasher is a dynamic-static-dynamic (DSD) tool that adds a dynamic step at
the beginning, feeding the results of this first dynamic step to the static-dynamic
Check ’n’ Crash.

4.1 Check ’n’ Crash: Making ESC/Java Language-Level Sound

Check ’n’ Crash [4] addresses the problem of ESC/Java language-level unsound-
ness. Figure 1 illustrates the key idea. Check ’n’ Crash takes error conditions that
ESC/Java infers from the testee, derives variable assignments that satisfy the
error condition (using a constraint solver), and compiles them into concrete test
cases that are executed with our JCrasher testing tool [3], to determine whether
an error truly exists. Compared to ESC/Java alone, Check ’n’ Crash’s combi-
nation of ESC/Java with JCrasher eliminates language-level unsound warnings
and improves the ease of comprehension of error reports through concrete Java
counterexamples.
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Fig. 1. Check ’n’ Crash uses ESC/Java to statically check the testee for potential
bugs. It then compiles ESC/Java’s bug warnings to concrete test cases to eliminate
those warnings that are unsound at the language level.

Check ’n’ Crash takes as inputs the names of the Java files under test. It
invokes ESC/Java, which derives error conditions. Check ’n’ Crash takes each
error condition as a constraint system over a method m’s parameters, the object
state on which m is executed, and other state of the environment. Check ’n’ Crash
extends ESC/Java by parsing and solving this constraint system. A solution is
a set of variable assignments that satisfy the constraint system. Reference [4]
discusses in detail how we process constraints over integers, arrays, and refer-
ence types in general. Once the variable assignments that cause the error are
computed, Check ’n’ Crash uses JCrasher to compile some of these assignments
to JUnit [1] test cases. The test cases are then executed under JUnit. If the
execution does not cause an exception, then the variable assignment was a false
positive: no error actually exists. If the execution does result in the error pre-
dicted by ESC/Java, an error report is generated by Check ’n’ Crash.

4.2 DSD-Crasher: Improving ESC/Java’s User-Level Soundness

DSD-Crasher [5] attempts to address the user-level unsoundness of ESC/Java
and Check ’n’ Crash. This requires recognizing “normal” program inputs. Such
informal specifications cannot generally be derived, therefore our approach is
necessarily heuristic. DSD-Crasher employs the Daikon tool [9] to infer likely
program invariants from an existing test suite. The results of Daikon are ex-
ported as JML annotations [13] that are used to guide Check ’n’ Crash. Figure
2 illustrates the processing steps of the tool.

Daikon [9] tracks a testee’s variables during execution and generalizes their
observed behavior to invariants—preconditions, postconditions, and class invari-
ants. Daikon instruments a testee, executes it (for example, on an existing test
suite or during production use), and analyzes the produced execution traces. At
each method entry and exit, Daikon instantiates some three dozen invariant tem-
plates, including unary, binary, and ternary relations over scalars, and relations
over arrays (relations include linear equations, orderings, implication, and dis-
junction) [9, 17]. For each invariant template, Daikon tries several combinations
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Fig. 2. DSD-Crasher adds a dynamic analysis step at the front to infer the in-
tended program behavior from existing test cases. It feeds inferred invariants to
Check ’n’ Crash by annotating the testee. This enables DSD-Crasher to suppress bug
warnings that are unsound at the user level.

of method parameters, method results, and object state. For example, it might
propose that some method m never returns null. It later ignores those invariants
that are refuted by an execution trace—for example, it might process a situation
where m returned null and it will therefore ignore the above invariant. So Daikon
summarizes the behavior observed in the execution traces as invariants and gen-
eralizes it by proposing that the invariants might hold in all other executions
as well. Daikon can annotate the testee’s source code with the inferred invari-
ants as JML preconditions, postconditions, and class invariants. Daikon-inferred
invariants are not trivially amenable to automatic processing, requiring some
filtering and manipulation (e.g., for internal consistency according to the JML
behavioral subtyping rules, see [6]).

In DSD-Crasher we chose to ignore Daikon-inferred invariants as require-
ments and only use them as assumptions. That is, we deliberately avoid searching
for cases in which the method under test violates some Daikon-inferred precon-
dition of another method it calls. (This would be against the spirit of the tool,
as it would increase its user-level unsoundness, by producing extra error reports
for violations of preconditions that were only heuristically derived.) Instead, we
use Daikon-inferred invariants as assumptions. This restricts the number of legal
program executions.

5 A Small Case Study

We next discuss in detail a small case study and present examples that illustrate
the capabilities of each of our tools. Our test subject is Groovy, an open source
scripting language that compiles to Java bytecode.



5.1 Setting

Table 1. Groovy testees.

Total Analyzed

Top-level classes 171 105
Top-level interfaces 11 8
Non-commented source statements (NCSS) 11k 5k
Public non-abstract methods and constructors 1240 757
Other methods and constructors 441 195

We used the Groovy 1.0 beta 1 version. Table 1 gives an overview of Groovy’s
main application classes and the subset used in our experiments. Its main appli-
cation sources contain some eleven thousand non-commented source statements
(NCSS) in 182 top-level classes and interfaces. We excluded any testees that led
to processing problems in our tools. These were mainly low-level Groovy AST
classes. The biggest processing problem was the Daikon component of DSD-
Crasher running out of heap space. (We were using Daikon version 4.1.6, which
is not the latest version.) The resulting set of testees consisted of 113 top-level
types with a total of some five thousand NCSS. These declare a total of 952
methods and constructors, of which our testing tools analyze 757. (We analyze
all public non-abstract methods declared by the testees as well as public con-
structors declared by non-abstract testees.) We used 603 of the unit test cases
that came with the tested Groovy version. (The source code of the application
and the unit tests are available from http://groovy.codehaus.org/ .) All experi-
ments were conducted on a 2 GHz AMD Athlon 64 X2 dual core 3800+ with 4
GB of RAM, of which 1.5 GB were available for each experiment.

We believe that Groovy is a very representative test application for our kind
of analysis: it is a medium-size, third party application. Importantly, its test suite
was developed completely independently of our evaluation by the application
developers, for regression testing and not for the purpose of yielding good Daikon
invariants.

5.2 Baseline: JCrasher

We include JCrasher in the experiment in order to provide a baseline with a
dynamic tool. This serves to highlight the advantages of sophisticated static
analyses. JCrasher picks its test cases at random, without analyzing the bodies
of the methods under test. It examines the type information of a set of Java
classes and constructs code fragments that will create instances of different types
to test the behavior of public methods under random data. For instance, to test
a method, JCrasher will attempt to create sample objects of the receiver type
and of each of the argument types. JCrasher begins with a set of types for which



it knows how to create instances—e.g., primitive types or types with public no-
argument constructors. This set is expanded by finding constructors and methods
that accept as arguments only types that JCrasher knows how to create, and
the process continues until the space is exhaustively explored up to a certain
invocation depth. Once the size of the space is known, test cases are selected at
random, up to a user-defined number.

JCrasher attempts to detect bugs by causing the program under test to
“crash”, i.e., to throw an undeclared runtime exception indicating an illegal class
cast, division by zero, or an illegal array expression. The output of JCrasher is a
set of test cases for JUnit (a popular Java unit testing tool) [1]. We only include
those JCrasher reports where a method under test throws such an exception
directly (by performing an illegal Java language operation such as an illegal
class cast).

Table 2 shows the total runtime, which includes the steps of compiling the
testee classes (three seconds), generating test cases (about 20 seconds), com-
piling these test cases (about 40 seconds), and running them with our JUnit
extensions (about 30 seconds). We let JCrasher generate test cases that ran-
domly combine methods and constructors up to a depth of two. We also limited
JCrasher to generate 100 thousand test cases per run. JCrasher picked these
test cases from some 7 ∗ 108 available cases. (This is not an unusually large
number: on the entire Groovy testee, JCrasher has 4 ∗ 1012 test cases to pick
from.) In three out of five runs JCrasher got lucky and reported an array index
out of bounds exception in the last statement of the following parser look-ahead
method org.codehaus.groovy.syntax.lexer.AbstractCharStream.la(int)
when passed -1.

public char la(int k) throws IOException {

if (k > buf.length)

throw new LookAheadExhaustionException(k);

int pos = this.cur + k - 1;

pos %= buf.length;

if (pos == this.limit) {

this.buf[pos] = nextChar();

++this.limit;

this.limit %= buf.length;

}

return this.buf[pos];

}

Clearly this report is language-level sound (like all JCrasher reports), as we
observed an actual runtime exception. On the other hand it is likely that this
report is not user-level sound since look-ahead functions are usually meant to be
called with a non-negative value.

5.3 Check ’n’ Crash

For this and the DSD-Crasher experiment we used ESC/Java2 version 2.08a, set
the Simplify timeout to one minute, limited ESC/Java to generate ten warnings



Table 2. Experience with running different automatic bug finding tools on Groovy.
ESC/Java warnings may be language-level unsound. Each report generated by
JCrasher, Check ’n’ Crash, and DSD-Crasher is backed by an actual test case exe-
cution and therefore guaranteed language-level sound.

Runtime ESC/Java Generated Reports confirmed
[min:s] warnings test cases by test cases

JCrasher 1:40 n/a 100,000 0.6
Check ’n’ Crash 2:17 51 439 7.0
DSD-Crasher 10:31 47 434 4.0

per method under test, and configured ESC/Java to only search for potential
runtime exceptions in public methods and constructors, stemming from ille-
gal class cast, array creation and access, and division by zero. Table 2 shows
that ESC/Java produced 51 reports. By manual inspection we classified 14 as
language-level unsound and 32 as language-level sound (we hand-wrote eight test
cases to convince ourselves of non-trivial sound cases.) We could not classify the
remaining five warnings within three minutes each due to their complex control
flow. The latter cases are the most frustrating to inspect since several minutes
of investigation might only prove that the bug finding tool produced a spurious
report. Of the 32 language-level sound warnings Check ’n’ Crash could confirm
seven. The remaining 24 warnings would require to generate more sophisticated
test cases than currently implemented by Check ’n’ Crash, supporting method
call sequences and generating custom sub-classes that produce bug inducing be-
havior not found in existing sub-classes.

To our surprise ESC/Java did not produce a warning that would correspond
to the runtime exception discovered by JCrasher. Instead it warned about a
potential division by zero in the earlier statement pos %= buf.length. This
warning is language-level unsound, though, since buf.length is never zero. buf
is a private field, all constructors set it to an array of length five, and there are no
other assignments to this field. This case is representative of the language-level
unsound ESC/Java warnings we observed: a few methods access a private field
or local variable and all of these accesses maintain a simple invariant. ESC/Java
misses the invariant since it analyzes each method in isolation. When comment-
ing out this line, ESC/Java’s analysis reaches the final statement of the method
and generates a warning corresponding to JCrasher’s finding and Check ’n’ Crash
confirms this warning as language-level sound.

5.4 DSD-Crasher

For the 603 Groovy test cases Daikon gathers some 600 MB of execution traces,
which it distills to 3.6 MB of compressed invariants. Of the total runtime, Daikon
took 88 seconds to monitor the existing test suite, 204 seconds to infer invariants
from the execution traces, and 130 seconds to annotate the testee sources with



the derived invariants. The Check ’n’ Crash component of DSD-Crasher used
the remaining time.

In our working example, Daikon derived several preconditions and class
invariants, including k >= 1 and this.cur >= 0, for the look-ahead method
described above. This supports our initial estimate that JCrasher and
Check ’n’ Crash reported a user-level unsound warning about passing a neg-
ative value to this method. The remainder of this example requires a modified
version of Daikon since the method under test implements an interface method.
Daikon can produce a contradictory invariant in this case—see [6] for a detailed
discussion of dealing correctly with JML behavioral subtyping. For this example
we manually added a precondition of false to the interface method declaration.
When we again comment out the line pos %= buf.length; (but re-using the
previously derived invariants, including k >= 1 and this.cur >= 0) ESC/Java
reaches the offending statement but uses the derived precondition to rule out
the case. Thus, ESC/Java no longer produces the user-level unsound warning
and DSD-Crasher does not produce a corresponding report.

6 Related Work

There is clearly an enormous amount of work in the general areas of test case
generation and program analysis. We discuss representative recent work below.

There are important surveys that concur with our estimate that an important
problem is not just reporting potential errors, but minimizing false positives
so that inspection by humans is feasible. Rutar et al. [19] evaluate five tools
for finding bugs in Java programs, including ESC/Java 2, FindBugs [11], and
JLint. The number of reports differs widely between the tools. For example,
ESC reported over 500 times more possible null dereferences than FindBugs, 20
times more than JLint, and six times more array bounds violations than JLint.
Overall, Rutar et al. conclude: “The main difficulty in using the tools is simply
the quantity of output.”

AutoTest by Meyer et al. is a closely related automatic bug finding tool [16].
It targets the Eiffel programming language, which supports invariants at the
language level in the form of contracts [15]. AutoTest generates random test
cases like JCrasher, but uses more sophisticated test selection heuristics and
makes sure that generated test cases satisfy given testee invariants. It can also
use the given invariants as its test oracle. Our tools do not assume existing
invariants since, unlike Eiffel programmers, Java programmers usually do not
annotate their code with formal specifications.

The commercial tool Jtest [18] has an automatic white-box testing mode
that generates test cases. Jtest generates chains of values, constructors, and
methods in an effort to cause runtime exceptions, just like our approach. The
maximal supported depth of chaining seems to be three, though. Since there is
little technical documentation, it is not clear to us how Jtest deals with issues of
representing and managing the parameter-space, classifying exceptions as errors
or invalid tests, etc. Jtest does, however, seem to have a test planning approach,



employing static analysis to identify what kinds of test inputs are likely to cause
problems.

Xie and Notkin [20] present an iterative process for augmenting an existing
test suite with complementary test cases. They use Daikon to infer a specification
of the testee when executed on a given test suite. Each iteration consists of a
static and a dynamic analysis, using Jtest and Daikon. In the static phase, Jtest
generates more test cases, based on the existing specification. In the dynamic
phase, Daikon analyzes the execution of these additional test cases to select those
which violate the existing specification—this represents previously uncovered
behavior. For the following round the extended specification is used. Thus, the
Xie and Notkin approach is also a DSD hybrid, but Jtest’s static analysis is
rather limited (and certainly provided as a black box, allowing no meaningful
interaction with the rest of the tool). Therefore this approach is more useful
for a less directed augmentation of an existing test suite aiming at high testee
coverage—as opposed to our more directed search for fault-revealing test cases.

7 Conclusions

We discussed our thoughts on combinations of static and dynamic reasoning for
bug detection, and presented our experience with our tools, JCrasher, Check ’n’
Crash, and DSD-Crasher. We argued that static and dynamic analyses form a
continuum and that a ”sound for correctness”/”sound for incorrectness” termi-
nology is more illuminating than other conventions in the area. We believe that
tools that are sound for incorrectness (i.e., complete for correctness) will gain
ground in the future, in the entire range of static and dynamic analyses.

Our DSD-Crasher, Check ’n’ Crash, and JCrasher implementations are avail-
able in source and binary form at http://code.google.com/p/check-n-crash/
and http://code.google.com/p/jcrasher/
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