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The complexity of software has driven both researchers and practitioners to

design methodologies that decompose problems into intellectually manage

pieces and that assemble partial products into complete software artifacts. M

larity in design, however, rarely translates into modularity at the implementa

level. Hence, an important problem is to provide implementation (i.e., progr

ming language) support for expressing modular designs concisely.

This dissertation shows that software can be conveniently modular

using large-scale object-oriented software components. Such large-scale co

nents encapsulate multiple classes but can themselves be viewed as classes,

support the object-oriented mechanisms of encapsulation and inheritance.

conceptual approach has several concrete applications. First, existing lang

mechanisms, like a pattern of inheritance, class nesting, and parameterizatio

be used to simulate large-scale components calledmixin layers. Mixin layers are
v
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ideal for implementing certain forms of object-oriented designs and result in s

pler and more concise implementations than those possible with previous me

ologies. Second, we propose new language constructs to provide better supp

component-based programming. These constructs express components c

(i.e., without unwanted interactions with other language mechanisms) and ad

the issue of component type-checking.
vi
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Chapter 1

Introduction

1.1  Overview and Contribution

Large software artifacts are arguably among the most complex products of hu

intellect. The complexity of software has driven both researchers and practitio

toward design methodologies that decompose problems into intellectually man

able pieces and that assemble partial products into complete software artifacts

principle of separating logically distinct (and largely independent) facets of

application is behind many good software design practices. A key objectiv

designing reusable software modules is to encapsulate within each module

gle, orthogonal aspect of application design. Many design methods in the ob

oriented world build on this principle of design modularity (e.g., design patte

[GHJV94] and collaboration-based designs [RAB+92]). The central issue is to pro-

vide implementation (i.e., programming language) support for expressing mod

designs concisely.

This dissertation shows a way to modularize software statically (i.e.

compile-time) using large-scale object-oriented components. Our large-scale

ponents encapsulate multiple classes and can therefore be viewed as being

gous to conventionalmodules, such as those found in languages like Ada [ISO9

and ML [MTH90]. At the same time, however, these modules can be viewed
1
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classes, as they support the object-oriented mechanisms of encapsulatio

inheritance. Additionally, our components offer a great degree of flexibi

because they are generic with respect to the components from which they in

This conceptual approach has several concrete applications. Existing lang

mechanisms, like class nesting, can be used to simulate large-scale compo

resulting in more concise implementations than were possible with previous m

odologies. Additionally, we propose new language constructs to provide b

support (for instance, typing) for component-based programming.

More specifically, the main contributions of this dissertation are as follow

• We introduce a better way of implementing object-orientedcollaboration-

based(or role-based) designs. Such designs decompose an object-orien

application into a set of classes and a set of collaborations. Each applic

class encapsulates severalroles, where each role embodies a separate asp

of the class’s behavior. Acollaborationis a cooperating suite of roles. Previ

ous methods for implementing collaboration-based designs includeapplica-

tion frameworks[JF88] and the technique of VanHilst and Notkin [VN96a-

Van97]. Our approach involves large-scale components calledmixin layers.

We show that mixin layers preserve the advantages of the VanHilst and

kin implementation method over application frameworks (i.e., maint

design structure, facilitate reuse, and avoid unnecessary dynamic bind

At the same time, mixin layers correct the scalability problems of the V

Hilst and Notkin technique yielding simpler code and shorter compositio

As a further practical validation, we used mixin layers as the primary imp

mentation technique in a medium-size project (the JTS tool suite for im

menting domain-specific languages). Our experience shows that

mechanism is versatile and can handle components of substantial size.
2
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It is worth noting that, although mixin layers have a strictly defined for

they can be expressed using a variety of programming language constr

These include C++ parameterized nested classes, CLOS mixins and re

tion, and Java nested mixins (Java mixins have been proposed as an e

sion to the language—e.g., in [AFM97, FKF98]).

• We show that two significant software construction methodologies, the G

Voca model and object-oriented collaboration-based designs, are clo

related. In particular, the GenVoca model has been used to design

develop software for a variety of domains (e.g., [Bat88, BBG+88, OP92,

CS93]. In the past, its principles have not been expressed in object-orie

terms. This work shows how GenVoca components can be implemente

mixin layers. Additionally, we discuss how some common GenVoca c

cepts and mechanisms (for instance, GenVocarealmsand the validation of a

composition of components) can be integrated in the mixin layers fra

work.

• We address the problem of providing type-system support for large-s

components. We show that a type system needs to support two new pr

ties (termeddeep subtypingand deep interface conformance) in order to

express constraints for mixin layer parameters. These ideas have also

other interesting applications in type systems. Wadler, Odersky and

author [WOS98] have used deep subtyping to demonstrate that param

types can elegantly emulatevirtual types(a well-known typing mechanism in

the object-oriented world, introduced by the Beta programming langua

The emulation employs multiple-class components that are essentially a

pler version of mixin layers.

The intellectual challenge in our work was to identify the principles, co

cepts, and, eventually, constructs that will allow developing orthogonal aspects
3
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software application in isolation and later composing them consistently. The

structs presented in this dissertation rise to the challenge. They represent a

advancement over previous techniques and succeed in expressing indepe

application aspects as separate components by employing a scalable app

based firmly on object-oriented principles and techniques.

1.2  Outline

Subsequent chapters explore the problem of modularizing software, explain

proposed solution, and contrast it to other work in the research literature.

In Chapter 2 we describe the collaboration-based design methodology

discuss how such designs can be best implemented. We use an example d

consisting of a few graph algorithms, all based on depth-first traversals of an u

rected graph. Ideally, each of the algorithms, as well as the underlying model

undirected graph) and traversal strategy (depth-first), should be expressible as

vidual components that would yield the complete application once composed.

C++ technique proposed by VanHilst and Notkin [VN96a-c] attempts to do exa

that but suffers from high complexity of parameterizations. We introduce an a

native in the form of mixin layers. Mixin layers are large-scale components

can be used to directly implement collaboration-based designs. Mixin la

improve upon the VanHilst and Notkin technique by offering more concise

scalable implementations.

In Chapter 3 we discuss several issues related to the correctness of a

position of components. First we show how we can use propositional prope

that are propagated in a mixin layer composition using inheritance. This solutio

straightforward but not entirely satisfactory as it cannot produce informative e

messages due to lack of language support. Then we explore the possibility of
4
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ing type-system support for mixin layers. We discuss what the type of a laye

and propose an extension to the Java language that supports types for classe

taining nested classes. Finally, we explore another interesting type system i

Using a fixpoint construction (similar to a common technique used to express

mal object-oriented semantics), we can propagate type information from a m

layer to the layer above it in a composition (its superclass from an inherita

standpoint). Using this technique in conjunction with nested classes of a form

ilar to mixin layers, we show how parametric types can emulate virtual types

well-known object-oriented type mechanism.

Chapter 4 demonstrates the scalability of the mixin layers approach.

implemented mixin layers as an extension to the Java language and used th

the main implementation technique in constructing JTS: a set of pre-comp

compiler tools for adding syntax extensions to programming languages. A

result, the structure of the system is very simple and a large number of fea

combinations can be implemented as different compositions of large layers.

In Chapter 5 we position our approach relative to other research work.

discuss the GenVoca model of software construction, which forms a general

ware engineering framework that encompasses our research. Additionally, we

cuss realizations of components in a dynamic setting (i.e., components that c

put together at application run-time). Finally, we describe other research wor

the area of automated software construction and software modularization. Th

cussion is mostly from a programming language standpoint but we also o

insights into related software engineering applications.

In Chapter 6 we review the central results of our work, summarize the

mary contributions of our research, and discuss a few areas of future researc
5
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Chapter 2

Collaboration-Based Designs and Mixins

A relatively recent development in the software arena is the advance ofobject-ori-

ented (OO)design and implementation techniques. A large variety of progra

ming languages, design methodologies, and programming tools are base

object-oriented principles. The goals of object-orientation are remarkably sim

to the goals of this dissertation. In particular, object technologies attempt to o

nize software in a way that makes it easier to understand, reuse, and evolve. M

larity is addressed by splitting a program into encapsulated entities (objec

classes), which can be reused in complex configurations. Unfortunately, ob

(i.e., collections of data and operations on those data) are rarely ideal for pla

the role of modules. The reason is that objects are not self-sufficient but often

complex interactions with other objects. Thus, a unit of modularity (i.e., a prog

piece that can be defined in isolation) is not a single object but a collection of in

related objects. Standard object-oriented language mechanisms, like inheri

and polymorphism, are not sufficient to express such modules in a flexible wa

Nevertheless, object-orientation forms a natural starting point for

research, given the similarities with its philosophy and the engineering maturit

OO programming methods (e.g., programming languages like C++, Java, S

talk, and CLOS). Additionally, object-orienteddesigntechniques (e.g., design pat

terns [GHJV94], and collaboration-based designs [RAB+92]) can be used to
6
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express modular large-scale components. Such design components contain

ple objects and capture their interactions. The challenge is to translate objec

ented designs (i.e., artifacts that exist usually only on paper) into impleme

programsthat preserve the elegant structure of the design. This chapter shows how

it can be done using novel combinations of mechanisms that can already be f

in object-oriented programming languages. The greatest value of expressing

ponents in this manner is that they become smoothly integrated both at the

guage level and at the conceptual level, with the fundamental mechanism

inheritance playing the main role.

The chapter is organized as follows: Section 2.1 offers a short introduc

to object-orientation and defines some basic terms. Section 2.2 discusses o

oriented collaboration-based designs. Collaboration-based designs are mo

decompositions of an application. Mapping them into an implementation that

serves the structure of the design is sufficient for obtaining the kind of modula

we seek. To do so, we need to introduce some object-oriented constructs, c

mixin classesandmixin layers. These are discussed in detail in Section 2.3. Mix

layers are one of the main contributions of this dissertation, and we claim that

are ideal for implementing collaboration-based designs. We show how this im

mentation can be effected and how mixin layers compare to other techniqu

Section 2.4.

2.1  Brief Introduction to Object-Orientation

This dissertation assumes that the reader is familiar with object-oriented princ

and constructs. Hence, the purpose of this section is not to provide a compre

sive introduction to object-oriented programming, but to briefly lay out some f
7
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damental concepts and terms. For a more thorough treatment of object-orient

the reader should consult the references given throughout this chapter.

Even though no exact definition of object-orientation exists, the main i

can easily be described in informal terms. If all programming is viewed as the

inition of operations on data, traditional programming languages (e.g., Pasca

Lisp, etc.) promote afunctional program organization: operations (also calle

functions, or procedures) are the central entities and have clearly defined boun

(input parameters and return values). If an operation applies to more than one

of data, the functionality for all cases is collected under a single heading—

specification of the operation. In contrast, object-oriented programming con

trates on collections of data that can be considered as representing a single

Such collections are calledobjectsand form the fundamental building blocks o

object-oriented programs. In object-oriented programming, the functionality o

single operation is distributed in the objects to which the operation is applica

(The distributed elements of an operation pertaining to a single object are c

the object’smethods.) In this way, an object is an isolated entity with a clear inte

face to the outside world. The fundamental goal ofdata hidingis achieved by mak-

ing the object’s implementation invisible and having other parts of the prog

rely only on the object’s interface. This ability to hide the internals of an objec

commonly known by the nameencapsulation.

With objects playing the central role in object-oriented design and imp

mentation, several high-level relationships on objects can be defined. The

important ones, which are often considered essential elements of object-orie

languages, areinheritance and polymorphism. Inheritance provides a way of

obtaining new objects by incrementally refining existing ones. Polymorphism

the other hand, is the mechanism used to select the appropriate operation

object in the presence of inheritance-induced refinements. Another important
8
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cept in object-oriented programming is that of aclass. Most widely used object-

oriented programming languages (e.g., Java [GJS96], C++ [Str97], CL

[KRB91]) are class-based. That is, new objects are created by instantiatin

classes—patterns that describe the object’s data and operations. Thus, in

based object systems, methods are associated with classes and not with o

directly. Consequently, all objects belonging in the same class support an iden

set of methods. Since classes are the only way to create new objects, inherita

only applicable to classes and not objects in class-based languages.

2.2  Collaboration-Based Designs1

Collaboration-basedor role-baseddesigns are the topic of several pieces of wo

in the object-oriented research community [BC89, HHG90, Hol92, RAB+92,

VN96a]. These concepts probably originated with Reenskaug, et al. [RAB+92] but

have been used in various forms, often without being named and documented

will not offer an extensive introduction to object-oriented design techniques, as

work examines software development from a programming languages standp

A good introduction to collaboration-based design can be found in the present

of the OORAM approach [RAB+92]. A detailed treatment of collaboration-base

designs, together with a discussion of how to derive them from use-case scen

[Rum94] can be found in VanHilst’s Ph.D. dissertation [Van97].

2.2.1  Collaborations and Roles

In an object-oriented design, objects are encapsulated entities but are rarely

sufficient. Although an object is fully responsible for maintaining the data it enc

1. Parts of this section and Section 2.4.3 are taken from reference [SB98a] (© 1998 IEEE).
9
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sulates, it needs to cooperate with other objects to complete a task. An intere

way to encode object interdependencies is through collaborations. Acollaboration

is a set of objects and a protocol (i.e., a set of allowed behaviors) that determ

how these objects interact. The part of an object enforcing the protocol that a

laboration prescribes is called the object’srole in the collaboration. Objects of an

application generally participate in multiple collaborations simultaneously a

thus, may encode several distinct roles. Each collaboration, in turn, is a colle

of roles, and represents relationships across the corresponding objects. Esse

a role isolates the part of an object that is relevant to a collaboration from the

of the object. Different objects can participate in a collaboration, as long as

support the required roles.

In collaboration-based design, we try to express an application as a com

sition of largely independently-definable collaborations.Viewed in terms of design

modularity, collaboration-based design acknowledges that a unit of functiona

(module) is neither a whole object nor a part of it, but can cross-cut several dif

ent objects. If a collaboration is reasonably independent of other collaboratio

(i.e., a good approximation of an ideal module) the benefits are great. First, the

laboration can be reused in a variety of circumstances where the same functio

is needed, by just mapping its roles to the right objects. Second, any changes

encapsulated functionality will only affect the collaboration and will not propag

throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented des

from the perspective of a single concern. For instance, a collaboration can be

to express a producer-consumer relationship between two communicating ob

Clearly, this collaboration prescribes roles for (at least) two objects and there

well-defined “protocol” for their interactions. Interestingly enough, the same c

laboration could be instantiated more than once in a single object-oriented de
10
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with the same objects playing different roles in every instantiation. In the exam

of the producer-consumer collaboration, a single object could be both a prod

(from the perspective of one collaboration) and a consumer (from the perspe

of another).

Figure 2.1 depicts the overlay of objects and collaborations in an (abstr

example design. The figure contains three different objects (OA, OB, OC), each

supporting multiple roles. ObjectOB, for example, encapsulates four distinct role

B1, B2, B3, andB4. Four different collaborations (c1, c2, c3, c4) capture distinct

aspects of the application’s functionality. To do this, collaborations have to

scribe certain roles for objects. For example, collaborationc2contains two distinct

roles,A2 andB2, which are assumed by distinct objects (namelyOA andOB). An

object does not need to play a role in every collaboration—for instance,c2 does

not affect objectOC.

It should be noted that the designs we will examine arestatic: the roles

played by an object are uniquely determined by its class. For instance, in Fi

Figure 2.1: Example collaboration decomposition. Ovals represent
collaborations, rectangles represent objects, their intersections represent ro
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2.1, all three objects must belong in different classes (since they all support d

ent sets of roles). In essence, we use the design as a guide to the implementa

an application—not to describe different phases in its dynamic behavior. We

discuss dynamic layered designs in more detail in Chapter 5.

2.2.2  An Example Collaboration-Based Design

As a running example that will help us illustrate important points of our disc

sion, we will consider the graph traversal application that was examined initi

by Holland [Hol92] and subsequently by VanHilst and Notkin [VN96a]. Doing

affords not only a historical perspective on the development of role-based des

but also a perspective on the contribution of this work. The application defi

three different operations (algorithms) on an undirected graph, all based on d

first traversal:Vertex Numberingnumbers all nodes in the graph in depth-fir

order, Cycle Checkingexamines whether the graph is cyclic, andConnected

Regionsclassifies graph nodes into connected graph regions. The application

has three distinct classes:Graph, Vertex, and Workspace. The Graph class

describes a container of nodes with the usual graph properties. Each node

instance of theVertexclass. Finally, theWorkspaceclass includes the application

part that is specific to each graph operation. For theVertex Numberingoperation,

for instance, aWorkspaceobject holds the value of the last number assigned t

vertex as well as the methods to update this number.

Recall that in decomposing an application into collaborations, we nee

capture distinct aspects as separate collaborations. A decomposition of this k

relatively straightforward and results in five distinct collaborations.

One collaboration (Undirected Graph, above) expresses properties of a

undirected graph. This is clearly an independent aspect of the application—

problem could very well be defined for directed graphs, for trees, etc.
12
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Another collaboration (Depth First Traversal, above) encodes the specific

of depth-first traversals and provides a clean interface for extending traver

That is, at appropriate moments during a traversal (the first time a node is vis

when an edge is followed, and when a subtree rooted at a node is completely

cessed) control is transferred to specialization methods that can obtain inform

from the traversal collaboration and supply information to it. For instance, c

sider theVertex Numberingoperation as a simple refinement of a depth-first tr

versal. This can be effected by specializing the action performed the first tim

node is visited during the traversal. The action will assign a number to the n

and increase the count of visited nodes.

Using this approach, each of the three graph operations can be seen

refinement of a depth-first traversal and each can be expressed by a single co

ration. Figure 2.2 is reproduced from [VN96a] and presents the collaborations

Figure 2.2: Collaboration decomposition of the example application domain:
depth-first traversal of an undirected graph is specialized to yield three differ
graph operations. Ovals represent collaborations, rectangles represent clas
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classes of our example application. The intersection of a class and a collabor

in Figure 2.2 represents the role prescribed for that class by the collaboratio

role encodes the part of an object that is specific to a collaboration. For insta

the role of aGraphobject in the “Undirected Graph” collaboration supports stor-

ing and retrieving a set of vertices. The role of the same object in the “Depth First

Traversal” collaboration implements a part of the actual depth-first traversal al

rithm. (In particular, it contains a method that initially marks all vertices of a gra

not-visitedand then calls the method for depth-first traversal on each graph ve

object).

Note that the design of Figure 2.2 doesnot define any particular composi-

tion of collaborations in an application. It is really just a decomposition o

restricted software domain into its fundamental collaborations. Actual applicat

may not need all three graph operations. Additionally, a single application m

need more than one operation applied to the same graph. The latter is ac

plished by having multiple copies of the “Depth First Traversal” collaboration in

the same design (each traversal will require its own private variables and trav

methods). We will later see examples where composing instances of the colla

tions of Figure 2.2 will yield an actual application design.

The goal of a collaboration-based design is to encapsulate within a coll

ration all dependencies between classes. In this way, collaborations thems

have no outside dependencies and can be reused in a variety of circumstance

“Undirected Graph” collaboration, for instance, encodes all the properties of

undirected graph (pertaining to theGraphandVertexclasses, as well as the inter

actions between objects of the two). Thus, it can be reused in any application

deals with undirected graphs. Ideally, we should also be able to easily replace

collaboration with another that exports the same interface. For instance, it w
14
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be straightforward to replace the “Undirected Graph” collaboration with one rep-

resenting a directed graph.

Of course, simple interface conformance will not guarantee composi

correctness—the application writer must ensure that the algorithms used

example, the depth-first traversal) are still applicable after the change. The

rithms presented by Holland [Hol92] for this example are, in fact, general eno

to be applicable to a directed graph. If, however, a more efficient, specialized

undirected-graphs algorithm was used (as is, for instance, possible for theCycle

Checkingoperation) the change would yield incorrect results. Chapter 3 discu

in detail the issue of ensuring that components are actually interchangeable.

2.3  Mixin Classes and Mixin Layers

To implement collaboration-based designs directly we build on an existing ob

oriented construct called amixin. Mixins are similar to classes but with som

added flexibility, as described in the following sections. Unfortunately, mix

alone are not sufficient to express large-scale components—they suffer from

being able to describe a single class at a time and not a collection of cooper

classes. To address this, we introducemixin-layers: a scaled-up form of mixins that

can contain multiple smaller mixins.

2.3.1  Introduction to Mixins

The termmixin class(or just “mixin”) has been overloaded to mean several sp

cific programming techniques and a general mechanism that they all approxim

Mixins were originally explored in the context of the Lisp language with obje

systems like Flavors [Moo86] and CLOS [KRB91]. In that context, mixins a

classes that allow their superclass to be determined bylinearization of multiple
15
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inheritance. In C++, the term has been used to describe classes in a particular

tiple) inheritance arrangement: as superclasses of a single class that them

have a commonvirtual base class(see [Str97], p.402). Both of these mechanism

are approximations of a general concept described by Bracha and Cook [BC

and here we will use “mixin” in this general sense.

The main idea implemented by mixins is quite simple: in object-orien

languages, a superclass can be defined without specifying its subclasses

property is not, however, symmetric: when a subclass is defined, it must ha

specific superclass. Mixins (also commonly known asabstract subclasses[BC90])

represent a mechanism for specifying classes that will eventually inherit fro

superclass. This superclass, however, is not specified at the site of the mixin’s

nition. Thus a single mixin can be instantiated with different superclasses yiel

widely varying classes. This property of mixins makes them appropriate for de

ing uniform incremental extensions for a multitude of classes. When the mixi

instantiated with one of these classes as a superclass, it produces a class

mented with the additional behavior.

Mixins can be easily implemented using parameterized inheritance. In

case, a mixin is a parameterized class with the parameter becoming its super

Using C++ syntax we can write a mixin as:

template <class Super> class Mixin  : public Super {
... /* mixin body */

} ;

Mixins are flexible and can be applied in many circumstances with

modification. To give an example, consider a mixin implementingoperation count-

ing for a graph. Operation counting means keeping track of how many nodes

edges have been visited during the execution of a graph algorithm. (This sim
16
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example is one of the non-algorithmic refinements to algorithm functionality d

cussed in [WeiWeb]). The mixin could have the form:2

template <class Graph> class Counting : public Graph {
int nodes_visited, edges_visited;

public:
Counting() : Graph() {

nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

// example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {

cout << “The algorithm visited ” << nodes_visited <<
“ nodes and traversed ” << edges_visited <<
“ edges” << endl;

}
... // other methods using this information may exist

} ;

By expressing operation counting as a mixin we ensure that it is applic

to many classes that have the same interface (i.e., many different kinds of gra

(Clearly, the implicit assumption is that classes, likeDgraph andUgraph , have

been designed so that they export similar interfaces. By standardizing ce

2. We use C++ syntax for most of the examples of this chapter, in the belief that concrete s
will clarify, rather than obscure, our ideas. To facilitate readers with limited C++ expertise,
avoid several cryptic idioms or shorthands (for instance, constructor initializer lists are repl
by assignments, we do not use thestruct keyword to declare classes, etc.). A convention fo
lowed in our code fragments is that class declarations and their syntactic delimiters are
lighted. This will enhance readability in later sections, where classes can be nested.
17
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aspects of the design, like the method interfaces for different kinds of graphs

gain the ability to create mixin classes that can be reused in different occasi

We can have, for instance, two different compositions:

Counting < Ugraph > counted_ugraph;

and

Counting < Dgraph > counted_dgraph;

for undirected and directed graphs. (We omit parameters to the graph classe

simplicity.) Classes produced by the two above compositions have the extra c

bilities provided by theCounting mixin. Note that the behavior of the compos

tion is exactly what one would expect: any methods not affecting the coun

process are exported (inherited from the graph classes). The methods that do

to increase the counts are “wrapped” in the mixin.

2.3.2  Mixin Layers

To implement entire collaborations as implementation components we need t

mixins that encapsulate other mixins. We call the encapsulated mixin classesinner

mixins, and the mixin that encapsulates them theouter mixin. Inner mixins can be

inherited, just like any member variables or methods of a class. An outer mix

called amixin layerwhenthe parameter (superclass) of the outer mixin encaps

lates all parameters (superclasses) of inner mixins.3 This is illustrated in Figure

2.3. ThisMixinLayer is a mixin that refines (through inheritance)SuperMix-

inLayer . SuperMixinLayer encapsulates three classes:FirstClass , Sec-

ondClass , and ThirdClass . ThisMixinLayer also encapsulates three inne

classes that are themselves mixins. Two of them refine the corresponding cl

of SuperMixinLayer , while the third is an entirely new class.

3. Inner mixins can actually themselves be mixin layers.
18
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Note that inheritance works at two different levels in a mixin layer. Fir

the layer can inherit inner mixins from the layer above it (for instance,Third-

Class in Figure 2.3). Second, the inner mixins inherit member variables, me

ods, or other classes from their superclass.

2.3.3  Mixin Layers in Various OO Languages

The mixin layer concept is quite general and is not tied to any particular langu

idiom. Many flavors of the concept, however, can be expressed via specific

gramming language idioms: as stand-alone language constructs, as a combi

of C++ nested classes and parameterized inheritance, as a combination of C

class-metaobjects and mixins, etc. We study these different realizations next

introduction of technical detail is necessary at this point as it will help us dem

strate concretely, in Section 2.4, the advantages of mixin layers for implemen

collaboration-based designs.

C++. We would like to support mixin layers in C++ using the same langua

mechanisms as those used for mixin classes. To do this, we can standardiz

names used for inner classes implementations (make them the same for all la

SuperMixinLayer

ThisMixinLayer

FirstClass SecondClass ThirdClass
innerouter

FirstClass SecondClass

classesclasses

Legend

inheritance
among inner
classes

inheritance
among outer
classes

Figure 2.3: Mixin layers schematically.

FourthClassThirdClass
(inherited)
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This yields an elegant form of mixin layers that can be expressed using com

C++ features. For instance, using C++ parameterized inheritance and n

classes, we can express a mixin layer (see again Figure 2.3) as:

template <class LayerSuper>
class LayerThis  : public LayerSuper {
public:

class  FirstInner  : public LayerSuper::FirstInner {  ... } ;
class  SecondInner : public LayerSuper::SecondInner {  ... } ;
class  ThirdInner  : public LayerSuper::ThirdInner {  ... } ;
...

} ; (2.1)

The code fragment (2.1) represents the form of mixin layers that we will

in the examples of this chapter. Note that specifying a parameter for the outermo

mixin automatically determines the parameters of all inner mixins. Compos

mixin layers to form concrete classes is now as simple as composing mixin cla

If we have four mixin layers (Layer1 , Layer2 , Layer3 , Layer4 ), we can com-

pose them as:

Layer4 < Layer3 < Layer2 < Layer 1 > > >

where “<...> ” is the C++ operator for template instantiation. The above comp

sition creates two different class hierarchies: one for the layers themselves an

for the inner classes. Note thatLayer1 has to be a concrete class (i.e., not a mix

class). Alternatively we can have a class with empty inner classes that will be

as the root of all compositions. (A third alternative is to use afixpointconstruction

and instantiate the topmost layer with the result of the entire composition! T

pattern has several desirable properties but to avoid complicating our discus

we discuss it separately in Chapter 3.)

In code fragment (2.1) we mapped the main elements of the mixin la

definition to specific implementation techniques. We used nested classes to im

ment class encapsulation. We also used parameterized inheritance to imple
20
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mixins.The mixin layer definition is completely independent of these impleme

tion choices. There are very different ways of encoding the same design in o

languages.

CLOS (and other reflective languages).The Common Lisp Object System

(CLOS) [KRB91] is a high-level object-oriented language with very power

reflective capabilities, through the well-known CLOSmeta-object protocol.

Reflective mechanisms allow programs to modify fundamental aspects of the

tem under which they are operating. Here we are interested in the case of ob

oriented programming languages and reflection provided by meta-object proto

Meta-object protocols allow the policies of an object system to be changed, af

ing what happens when an object is created, when methods are dispatched, w

class inherits from other classes, etc. A common capability in OO reflective

tems is that of handling classes asfirst-classentities (i.e., classes can be assign

to variables and checked for identity). Even the most fundamental forms of re

tion, like simpleintrospectionprotocols (for instance, Java Reflection [Jav97a

allow manipulating classes as first-class entities.

We can encode mixin layers in CLOS (and many other reflective syste

by simulating their main elements using reflection (classes as first-class enti

The main elements of mixin layers are class encapsulation (classes conta

other classes) and mixins. Since CLOS has native mixin support, we only nee

implement class encapsulation by defining a class with member methods

return CLOS class-metaobjects (in essence, other classes). Unlike our C++ e

ple, no lexical nesting of any kind is necessary. This combines nicely with

method-based character of CLOS mixins and the reflective capabilities of the

guage. The reader should keep in mind, however, that the semantics of every

nation of mixin layers depends on the semantics of the host language. Thus, C
21
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mixin layers are not semantically equivalent to C++ mixin layers (for instan

there is no default class data hiding: class members are by default accessible

other code in CLOS). Nevertheless, the two versions of mixin layers are just di

ent flavors of the same idea.

The main mixin layer template, analogous to code fragment (2.1), is w

ten in CLOS as:

(defclass first-dummy() (...))
; Definition of 1st inner mixin

(defclass second-dummy () (...))
; Definition of 2nd inner mixin

(defclass third-dummy () (...))
; Definition of 3rd inner mixin

...
(defclass layer-this () ())

; Encapsulate classes as methods. Each method returns a
; linked list of class-metaobjects (one per inner mixin)
(defmethod first-inner ((self layer-this))

(cons (find-class ‘first-dummy) (call-next-method)))

(defmethod second-inner ((self layer-this))
(cons (find-class ‘second-dummy) (call-next-method)))

(defmethod third-inner ((self layer-this))
(cons (find-class ‘third-dummy) (call-next-method)))

(2.2)

Note that, just like in the C++ example, the root of the outer inheritan

hierarchy must be concrete (i.e., not parameterized). In the above, this mean

its methods defining inner classes should not usecall-next-method . Composi-

tion of mixin layers is a simple matter of using CLOS multiple inheritance (sa

as with regular mixins). For instance, if we have mixin layersfirst-layer ,

second-layer , third-layer , their composition is defined as:
22
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(defclass composition
(first-layer second-layer third-layer) (...))

(setq composite-obj (make-instance ‘composition))

In (2.2), methods defining inner classes (likefirst-inner , second-

inner , etc.) return a list of all inner mixins. Constructing the inner classes is t

a simple matter of creating classes programmatically using this list. This is a s

dard CLOS technique (e.g., see functionfind-programmatic-class in

[KRB91], p.68). For instance, creating the first of the inner classes could

expressed as:

(setq first-inner-class (find-programmatic-class
(first-inner composite-obj)))

The above idiom should be taken as a proof-of-concept, rather than an

mal implementation of mixin layers in CLOS. The powerful syntactic extens

(macros) capabilities of Common Lisp can be used to add syntactic sugar to

mechanism.

The ideas used to express mixin layers in CLOS are also applicable to o

reflective languages. For instance, although we have not experimented wit

Smalltalk language, we expect that mixin layers are expressible in Small

Smalltalk has been a traditional test bed for mixins, both for researchers (

[BG96, Mez97, SCD+93]) and for practitioners [Mon96]. Like CLOS, the lan

guage has powerful reflective capabilities. These can be used to emulate enc

lated classes by methods that return classes. We believe that this technique c

used in conjunction with existing mixin mechanisms to implement mixin layers

should be noted that a straightforward (but awkward) way to implement mixin

Smalltalk is asclass-functors; that is, mixins can be functions that take a supe

class as a parameter and return a new subclass.
23
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Java. The Java language is an obvious next candidate for mixin layers. Java

no support for mixins and it is unlikely that the core language will include mix

in the near future. As will be described in Chapter 4, we have implemented

own language extensions to Java that capture mixins and mixin layers explicitl

this effort we used our JTS set of tools [BLS98] for creating pre-compilers

domain-specific languages. The system supports mixins and mixin layers thr

parameterized inheritance and class nesting, in much the same way as in C4

Additionally, the fundamental building blocks of the JTS system itself we

expressed as mixin layers, resulting in an elegant bootstrapped implementati

Adding mixins to Java is also the topic of other active research [AFM

FKF98]. The work of [FKF98] presented a semantics for mixins in Java. Thi

particularly interesting from a theoretical standpoint as it addresses issues of m

integration in a type-safe framework. As we saw, mixins can be expressed in

using parameterized inheritance. There have been several recent proposals fo

ing parameterization/genericity to Java [AFM97, OW97, BOSW98, MBL9

Tho97], but only the first [AFM97] supports parameterized inheritance and, he

can express mixin layers.

It is interesting to examine the technical issues involved in supporting m

ins in Java genericity mechanisms. Three of these mechanisms [OW97, BOS

Tho97] are based on ahomogeneousmodel of transformation: the same code

used for different instantiations of generics. This is not applicable in the cas

parameterized inheritance—different instantiations of mixins are not subclass

the same class (see [AFM97] for more details). Additionally, there may be con

tual difficulties in adding parameterized inheritance capabilities: The gener

4. The Java 1.1 additions to the language [Jav97b] support nested classes and interfaces (a
both “nested” classes as in C++ andmemberclasses—where nesting has access control implic
tions). Nested classes can be inherited just like any other members of a class.
24
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approach of [Tho97] is based on virtual types. Parameterized inheritance ca

approximated with virtual types by employingvirtual superclasses[MM89], but

this is not part of the design of [Tho97].

The approaches of Myers et al. [MBL97] and Agesen et al. [AFM97] a

conceptually similar from a language design standpoint. Even though param

ized implementations do not directly correspond to types in the language (in

terminology of [CW85] they correspond totype operators), parameters can be

explicitly constrained. This approach, combined with aheterogeneousmodel of

transformation (i.e., one where different instantiations of generics yield sepa

entities) is easily amenable to adding parameterized inheritance capabilitie

was demonstrated in [AFM97].

2.4  Implementing Collaboration-Based Designs

Armed with our knowledge of powerful object-oriented programming langua

constructs we can now attempt to express collaboration-based designs direc

the implementation level. We will show how our mixin layers technique can

used to perform the task and examine how it compares to two previous approa

One is the straightforward implementation technique of application framewo

[JF88] using just objects and inheritance. The other is the technique of VanH

and Notkin that employs C++ mixins to express individual roles.

2.4.1  Using Mixin Layers

Mixin layers are ideally suited for implementing collaboration-based designs

single mixin layer can capture an entire collaboration. The roles played by di

ent objects are then expressed as nested classes inside the mixin layer. The g

pattern is:
25
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template <class CollabSuper>
class CollabThis  : public CollabSuper {
public:

class FirstRole : public CollabSuper::FirstRole {  ... } ;
class SecondRole  : public CollabSuper::SecondRole {  ... } ;
class ThirdRole : public CollabSuper::ThirdRole {  ... } ;
... // more roles

} ; (2.3)

Again, mixin layers are composed by instantiating a layer with anothe

its parameter. This produces two classes that are linked as a parent-child pair

inheritance hierarchy. For four mixin layers,Collab1 , Collab2 , Collab3 ,

FinalCollab of the above form, we can define a classT that expresses the fina

product of the composition as:

typedef Collab1 < Collab2 < Collab3 < FinalCollab > > > T ;

or (alternatively):

class T :
public Collab1 < Collab2 < Collab3 < FinalCollab > > >

{  /* empty body */ } ;

For now we will consider the two forms to be equivalent. Their differenc

are an artifact of C++ policies and are not important for the discussion of this

tion (they will be examined together with other C++ specific issues in Chapter

The individual classes that the original design describes are mem

(nested classes) of the above components. Thus,T::FirstRole defines the appli-

cation classFirstRole , etc. Note that classes that do not participate in a cert

collaboration can be inherited from collaborations above (we will subsequently

the term “collaboration” for the mixin layer representing a collaboration when

confusion can result). Thus, classT::FirstRole will be defined even if
26
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Collab1 (the bottom-most mixin layer in the inheritance hierarchy) prescribes

role for it.

Example.For a concrete example, consider the graph traversal application of

tion 2.2.2. Each collaboration will be represented using a mixin layer.Vertex Num-

bering, for example, prescribes roles for objects of two different classes:Vertex

andWorkspace. Its implementation has the form:

template <class NextCollab> class NUMBER: public NextCollab
{
public:

class Workspace  : public NextCollab::Workspace {
... // Workspace role methods
} ;

class Vertex  : public NextCollab::Vertex {
... // Vertex role methods
} ;

} ; (2.4)

Note how the actual application classes are nested inside the mixin la

For instance, the roles for theVertexandWorkspaceclasses of Figure 2.1 corre

spond toNUMBER::Vertex andNUMBER::Workspace , respectively. Since roles

are encapsulated, there is no possibility of name conflict. Moreover, we rely on

standardization of role names. In this example the namesWorkspace , Vertex ,

andGraph are used for roles in all collaborations. Note how this is used in co

fragment (2.4): Any class generated by this template defines roles that inherit

classesWorkspace  andVertex  in its superclass (NextCollab ).

Other collaborations of our Section 2.2.2 design are similarly represe

as mixin layers. Thus, we have aDFT and aUGRAPHcomponent that capture the

Depth-First Traversaland Undirected Graphcollaborations respectively. For

instance, methods in theVertex class of theDFT mixin layer includevisit-
27



ir

s

ro-

y

of

ulti-

tion

like
DepthFirst and isVisited (with implementations as suggested by the

names). Similarly, methods in theVertex class ofUGRAPHincludeaddNeigh-

bor , firstNeighbor , andnextNeighbor , essentially implementing a graph a

an adjacency list.

To implement default work methods for the depth-first traversal, we int

duced an extra mixin layer, calledDEFAULTW. TheDEFAULTWmixin layer provides

the methods for theGraph and Vertex classes that can be overridden by an

graph algorithm (e.g.,Vertex Numbering) used in a composition.

template <class NextCollab> class DEFAULTW : public
NextCollab
{
public:

class Vertex  : public NextCollab::Vertex {
protected:

bool workIsDone( NextCollab::Workspace* ) {return 0;}
void preWork( NextCollab::Workspace* ) {}
void postWork( NextCollab::Workspace* ) {}
void edgeWork( Vertex*, NextCollab::Workspace* ) {}

} ;

class Graph  : public NextCollab::Graph {
protected:

void regionWork( Vertex*, NextCollab::Workspace* ) {}
void initWork( NextCollab::Workspace* ) {}
bool finishWork( NextCollab::Workspace* ) {return 0;}

} ;
} ;

The introduction ofDEFAULTW(as a component separate fromDFT) is an

implementation detail, borrowed from the VanHilst and Notkin implementation

this example [VN96a]. Its purpose is to avoid dynamic binding and enable m

ple algorithms to be composed as separate refinements of more than oneDFTcom-

ponent. (In Chapter 3 we will discuss how more powerful parameteriza

mechanisms than C++ templates can eliminate the need for components
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DEFAULTWby allowing fixpoint constructs to propagate more complete type inf

mation upwards in the inheritance hierarchy.)

Consider now a simple collection of collaborations—for instance, o

describing the vertex numbering graph operation. The resulting applicatio

obtained from the composition of Figure 2.4(a). We will soon explain what t

composition means but first let us see how the different classes are related

final implementation classes are members of the product of the composition,Num-

berC (e.g.,NumberC::Graph is the concrete graph class). Figure 2.4 shows t

mixin layers and their member classes, which represent roles, as they are ac

composed. Each component inherits from the one above it. That is,DFT inherits

role-members fromNUMBER, which inherits fromDEFAULTW, which inherits from

UGRAPH. At the same time,DFT::Graph inherits methods and variables from

NUMBER::Graph , which inherits fromDEFAULTW::Graph , which inherits from

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;

Figure 2.4(a) : A composition implementing the vertex numbering operation

UGRAPH

DFT

NUMBER

Classes of participating objects

Graph Vertex Workspace

DEFAULTW

Figure 2.4(b) : Mixin-layers (ovals) and role-members (rectangles inside ovals)
the composition. Every component inherits from the one above it. Shaded ro

members are those contained in the collaboration, unshaded are inherited. Ar
show inheritance relationships drawn from subclass to superclass.
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UGRAPH::Graph . This double level of inheritance is what makes the mixin-lay

approach so powerful. Note, for instance, that, even thoughNUMBERdoes not spec-

ify a Graph member, it inherits one fromDEFAULTW. The simplicity that this

design affords will be made apparent in the following sections, when we com

it with alternatives.

The interpretation of the composition in Figure 2.4 is straightforwa

Every component is implemented in terms of the ones above it. For instance

DFT component is implemented in terms of methods supplied byNUMBER,

DEFAULTW, andUGRAPH. An actual code fragment from thevisitDepthFirst

method implementation inDFT::Vertex  is the following:

for ( v = (Vertex*)firstNeighbor();
v != NULL;
v = (Vertex*)nextNeighbor() )

{ edgeWork(v, workspace);
v->visitDepthFirst(workspace); } (2.5)

The firstNeighbor , nextNeighbor , andedgeWork methods are not

implemented by theDFT component. Instead they are inherited from compone

above it in the composition.firstNeighbor and nextNeighbor are imple-

mented in theUGRAPHcomponent (as they encode the iteration over nodes o

graph).edgeWork is a traversal refinement and (in this case) is implemented

theNUMBER component.

We can now more easily see how mixin layers are in fact both reusable

interchangeable. TheDFTcomponent of Figure 2.4 is oblivious to theimplementa-

tionsof methods in components above it. Instead,DFTonly knows theinterfaceof

the methods it expects from its parent. Thus, the code of (2.5) represents a ske

expressed in terms of abstract operationsfirstNeighbor , nextNeighbor , and

edgeWork . Changing the implementation of these operations merely requires
30
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swapping of mixin layers. For instance, we can create an application (CycleC )

that checks for cycles in a graph by replacing theNUMBERcomponent withCYCLE:

typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC;

The results of compositions (CycleC above andNumberC in Figure 2.4(a))

can be used by a client program as follows: First, an instance of the nestedGraph

class (NumberC::Graph or CycleC::Graph ) needs to be created. Then,Ver-

tex objects are added and connected in the graph (theGraph role in mixin-layer

UGRAPHdefines methodsaddVertex andaddEdge for this purpose). After the

creation of the graph is complete, calling methoddepthFirst on it will execute

the appropriate graph algorithm.

Note that no direct editing of the component is necessary and multiple c

ies of the same component can co-exist in the same composition. For instanc

could combine two graph algorithms by using two instances of theDFTmixin layer

(in the same inheritance hierarchy), refined to perform a different operation e

time:

class NumberC :
public DFT < NUMBER < DEFAULTW < UGRAPH > > >  {} ;

class CycleC :
public DFT < CYCLE < NumberC > > {} ; (2.6)

As another example, the design may change to accommodate a diffe

underlying model. For instance, operations could now be performed on dire

graphs. The corresponding update (DGRAPHreplacesUGRAPH) to the composition

is straightforward (assuming that the algorithms are still valid for directed gra

as is the case with Holland’s original implementation of this example [Hol92])

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;
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Again, note that the interchangeability property is a result of the indep

dence of collaborations. A singleUGRAPHcollaboration completely incorporates

all parts of an application that relate to maintaining an undirected graph (altho

these parts span several different classes). The collaboration communicates

the rest of the application through a well-defined and usually narrow interface

For this and other similar examples, the reusability and interchangeab

of mixin layers helps solve the classicallibrary scalability problem[BSST93,

Big94]: there aren features and often more thann! valid combinations (because

composition order matters and feature replication is possible [BO92]). Hard-c

ing all different combinations leads to library implementations that do not sc

the addition of a single feature doubles the size of the library. Instead, we w

like to have a collection of building blocks and compose them appropriately

derive the desired combination. In this way, the size of the library grows linearl

the number of features it can express (instead of exponentially, or super-expo

tially).

Multiple Collaborations in a Single Design.An interesting question is whethe

mixin layers can be used to express collaboration-based designs where a

collaboration is instantiated more than once with the same class playing diffe

roles in each instantiation. The answer is positive, and the desired result ca

effected usingadaptor mixin layers. Adaptor layers add no implementation b

adapt a class so that it can play a pre-defined role. That is, adaptor layers co

classes with empty bodies that are used to “redirect” the inheritance chain so

predefined classes can play the required roles.

Consider the case of a producer-consumer collaboration, which was br

discussed in Section 2.2.1. Our example is from the domain of compilers. A pa

in a compiler can be viewed as a consumer of tokens produced by a lexical
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lyzer. At the same time, however, a parser is a producer of abstract syntax

(consumed, for instance, by an optimizer). We can reuse the same produce

sumer collaboration to express both of these relationships. The reason for wa

to provide a reusable implementation of the producer-consumer functionali

that this functionality could be quite complex. For instance, the buffer for p

duced-consumed items may be guarded by a semaphore, multiple consumers

exist, etc. The mixin layer implementing this collaboration takesItem as a param-

eter, describing the type of elements produced or consumed:

template <class NextCollab, class Item>
class PRODCONS : public NextCollab
{
public:

class Producer  : public NextCollab::Producer {
void produce(Item item) { ... }
// The functionality of producing Items is defined here

... // other Producer role methods
} ;

class Consumer  : public NextCollab::Consumer {
Item consume() { ... }
// The functionality of consuming Items is defined here

... // other Consumer role methods
} ;

} ;

Now we can use two simple adaptors to make a single class (Parser ) be

both a producer and a consumer (in two different collaborations). The first ada

(PRODADAPT) expresses the facts that a producer is also going to be a cons

(the actual consumer functionality is to be added later) and that theOptimizer

class inherits the existing consumer functionality. This adaptor is shown below

template <class NextCollab> class PRODADAPT :
public NextCollab

{
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public:
class Consumer  : public NextCollab::Producer { } ;
class Optimizer  : public NextCollab::Consumer { } ;
class Producer { } ;

} ;

The second adaptor (CONSADAPT) is similar:

template <class NextCollab> class CONSADAPT :
public NextCollab

{
public:

class Parser  : public NextCollab::Consumer { } ;
class Lexer  : public NextCollab::Producer { } ;

} ;

Now a single composition can contain two copies of thePRODCONSmixin

layer, appropriately adapted. For instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >

CompilerApp ; (2.7)

In the above, theCOMPILERmixin layer is assumed to contain the func

tionality of a compiler that defines three classes,Lexer , Parser , and Opti-

mizer . These classes use the functionality supplied by the producer-consu

mixin layer. For instance, there may be aparse method inCOMPILER::Parser

that repeatedly calls theconsume andproduce methods. To better illustrate the

role of adaptors, we present in Figure 2.5 the desired inheritance hierarchy fo

example, as well as the way that adaptors are used to enable emulating this h

chy using only predefined mixin layers. Note that each of the layers participa

in composition (2.7), above, appears as a rectangle in Figure 2.5(b).
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2.4.2  Comparison to Application Frameworks

In object-oriented programming, anabstractclass is one that cannot be instant

ated (i.e., cannot be used to create objects) but is only used to capture the com

Tree ProducerTree Consumer

Token
Consumer

Token
Producer

Parser Optimizer Lexer

Producer Optimizer

Lexer Parser Optimizer

Tree ProducerTree Consumer

Consumer

Token ProducerToken Consumer

Lexer Parser

Figure 2.5(b) : By using adaptor layers (dotted rectangles), one can emulate
inheritance hierarchy of Figure 2.5(a), using only pre-defined mixin layers (s
rectangles). Since a single mixin layer (PRODCONS) is instantiated twice, adaptors

help determine which class will play which role every time.

PRODCONS

PRODADAP

PRODCONS

CONSADAP

COMPILER

Figure 2.5(a) : The desired inheritance hierarchy has a Parser inheriting
functionality both from a consumer class (a Parser is a consumer of tokens) a

producer class (a Parser is a producer of trees).
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alities of other classes. These classes inherit the common interface

functionality of the abstract class. Anobject-oriented application framework(or

just framework) consists of a suite of interrelated abstract classes that embodie

abstract design for software in a family of related systems [JF88]. Each m

component of the system is represented by an abstract class. These classes

dynamically bound methods (virtual in C++), so that the framework user ca

add functionality by creating subclasses and supplying definitions for the appr

ate methods. Thus, frameworks have the advantage of allowing reuse at a gra

ity larger than a single abstract class. But frameworks have the disadvantage

users may have to manually specify system-specific functionality.

In a white-box framework, users specify system-specific functionality b

addingmethodsto the framework’s classes. Each method must adhere to theinter-

nal conventions of the classes. Thus, using white-box frameworks is diffic

because it requires knowledge of their implementation details. In ablack-box

framework, the system-specific functionality is provided by a set of classes. Th

classes need adhere only to the properexternal interface. Thus, using black-box

frameworks is easier, because it does not require knowledge of their implem

tion details. Using black-box frameworks is further simplified when they includ

library of pre-written functionality that can be used as-is with the framework.

Frameworks can be used to implement collaboration-based designs, bu

amount of flexibility and modularity they can afford is far from optimal. The re

son is that frameworks allow the reuse of abstract classes but have no way of

ifying collections of concrete classes that can be used at will (i.e., either inclu

or not and in any order) to build an application. Intuitively, frameworks allow re

ing the skeleton of an implementation but not the individual pieces that are bui

top of the skeleton. This can be seen through a simple combinatorics argum

Consider a set of four features,A, B, C, andD that can be combined arbitrarily to
36



fea-

(i.e.,

hier-

f its

our

me-

ed

st unit

tions

orks

is

ta-

d in

re-

, it is

in

s are
yield complete applications. For simplicity, assume that featureA will always be

first, and that no feature repetition is allowed. Then a framework may encode

ture combinationAB, thus allowing the user to program combinationsABCDand

ABDC. Nevertheless, these combinations will have to be coded separately

they cannot use any common code other than their common prefix,AB). The rea-

son is that each instantiation of the framework creates a separate inheritance

archy and reusing a combination is possible only if one can inherit from one o

(intermediate or final) classes. That is, only common prefixes are reusable. In

four-feature example, combinations that have no common prefix with the fra

work (for instance,ACD) simply cannot take advantage of it and have to be cod

separately. This amounts to exponential redundancy for complex domains.

In the general case, assume a simple cost model that assigns one co

to each re-implementation of a feature. If feature order matters but no repeti

are possible, the cost of implementing all possible combinations using framew

is equal to the number of combinations (each combination of lengthk differs by

one feature from its prefix of lengthk-1). Thus, forn features, the total cost for

implementing all combinations using frameworks is . (This number

derived by considering the sum of the feature combinations of lengthk, for eachk

from 0 ton.) In contrast, the cost of using mixin layers for the same implemen

tion is equal ton—each component is implemented once and can be combine

arbitrarily many ways. With mixin layers, even compositions with no common p

fixes share component implementations.

Even though our combinatorics argument represents an extreme case

reflective of the inflexibility of frameworks. Optional features are quite common

practice and frameworks cannot accommodate them, unless all combination

n!
n k–( )!

------------------
k 0=

n

∑
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explicitly coded by the user. This is true even for domains where feature comp

tion order does not matter or features have a specific order in which they mu

used.

Another disadvantage of using frameworks to implement collaborati

based designs comes from the use of dynamically bound methods in framew

Even though the dynamic dispatch cost is sometimes negligible or can be

mized away, often it can impose a run-time overhead, especially for fine-gra

classes and methods. With mixin layers, this overhead is avoided, as there is

need for dynamic dispatch. The reason is that mixin layers can be ordered

composition so that most of the method calls are to their parent layers.

This reveals a general and important difference between mixin-based

gramming and standard object-oriented programming.When a code fragment in a

conventional OO class needs to be generic, it is implemented in terms of dyn

cally bound methods. These methods are later (re-)defined in a subclass o

original class, thus refining it for specific purposes. With mixin classes, the si

tion is different. A method in a mixin class can define generic functionality by c

ing methods in the class’s (yet undefined)superclass. That is, generic calls for

mixins can be both up-calls and down-calls in the inheritance hierarchy. Gen

up-calls are specialized statically, when the mixin class’s superclass is set. Ge

down-calls provide the standard OO run-time binding capabilities. In this w

mixin classes can be used with greater freedom regarding their position i

inheritance hierarchy. Refinement of existing functionality is not just a top-do

process but involves composing mixins arbitrarily, often with many differe

orders being meaningful.

Example.We can illustrate the above points with our usual graph algorithm exa

ple of Section 2.2.2. The original implementation of this application [Hol92] us
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a black-box application framework on which the three graph algorithms w

implemented. The framework consists of the implementations of theGraph , Ver-

tex , andWorkspace classes for theUndirected GraphandDepth First Traversal

collaborations. The classes implementing the depth-first traversal have me

like preWork , postWork , edgeWork , etc.,which are declared to be dynamically

bound(virtual in C++). In this way, any classes inheriting from the framewo

classes can refine the traversal functionality by redefining the operation to be

formed the first time a node is visited, when an edge is traversed, etc.

VanHilst and Notkin discussed the framework implementation of th

example in detail [VN96a]. Our presentation here merely adapts their observa

to our above discussion of using frameworks to implement collaboration-ba

designs. A first observation is that, in the framework implementation, the b

classes are fixed and changing them requires hand-editing (usually copying

editing, which results in redundant code). For instance, consider applying the s

algorithms to a directed, as opposed to an undirected graph. If both combina

need to be used in the same application, code replication is necessary. The r

is that the classes implementing the graph algorithms (e.g.,Vertex Numbering)

must have a fixed superclass. Hence, two different sets of classes must be

duced, both implementing the same graph algorithm functionality but having

ferent superclasses.

A second important observation pertains to our earlier discussion

optional features in an application. In particular, a framework implementation d

not allow more than one refinement to co-exist in the same inheritance hiera

Thus, unlike the mixin layer version of code fragment (2.6) in Section 2.4.1,

cannot have a single graph that implements both theVertex Numberingand the

Cycle Checkingoperations. The reason is that the dynamic binding of method

the classes implementing the depth-first traversal causes the most refined v
39
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of a method to be executed on every invocation. Thus, multiple refinements ca

co-exist in the same inheritance hierarchy since the bottom-most one in the inh

ance chain always supersedes any others. In contrast, the flexibility of mixin la

allows us to break the depth-first traversal interface in two (theDEFAULTWand the

DFT component, discussed earlier) so thatDFT calls the refined methodsin its

superclass(i.e., without needing dynamic binding). In this way, multiple copies

theDFTcomponent can co-exist and be refined separately. At the same time,

ating dynamic binding results into a more efficient implementation—dynamic

patch incurs higher overhead than calling methods of known classes (alth

sometimes it can be optimized by an aggressive compiler).

2.4.3  Comparison to the VanHilst and Notkin Method

The VanHilst and Notkin approach [VN96a-c, Van97] is another technique that

be used to map collaboration-based designs into programs. The method em

C++ mixin classes, which offer the same flexibility advantages over a framew

implementation as the mixin layers approach. Nevertheless, the components

sented by VanHilst and Notkin are small-scale, resulting in complicated speci

tions of their interdependencies.

VanHilst and Notkin use mixin classes in C++ to represent roles. More s

cifically, each individual role is mapped to a different mixin and is also parame

ized by any other classes that interact with the given role in its collaboration.

an example, consider roleB4 in Figure 2.6 (which replicates Figure 2.1 for eas

reference). This role participates in a collaboration together with two other ro

A4 andC4. Hence, it needs to be aware of the classes playing the two roles (so

for instance, it can call appropriate methods). With the VanHilst and Notkin te
40
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nique, the role implementation would be a mixin, also parameterized by the

extra classes:

template <class RoleSuper, class OA, class OC>
class B4 : public RoleSuper {

... /* role implementation, using OA, OC */
} ; (2.8)

Consider that the actual values for parametersOA, OCwould themselves be

the result of template instantiations, and their parameters also, and so on (u

depth equal to the number of collaborations). This makes the VanHilst and No

method complicated even for relatively small examples. In the case of a comp

tion of n collaborations, each withm roles, the VanHilst and Notkin method ca

yield a parameterization expression of length . Additionally, the programm

has to explicitly keep track of the mapping between roles and classes, as w

the collaborations in which a class participates. For instance, the mixin for roleA4

in Figure 2.1 has to be parameterized with the mixin for roleA2—the programmer

cannot ignore the fact that collaborationc3 does not specify a role for objectOA.

Figure 2.6: Example collaboration decomposition. Ovals represent
collaborations, rectangles represent objects, their intersections represent ro

Object Classes

Role A1

C
ol

la
bo

ra
tio

ns
 (

La
ye

rs
) Collaboration

c1

Collaboration
c2

Collaboration
c3

Collaboration
c4

Object OA Object OB Object OC

Role B1

Role A2 Role B2

Role B3 Role C3

Role C4Role A4

Role C1

Role B4

mn
41



iso-

hese

t

main-

the

ility

in

their

exter-

same

them

sable

using

rom

ple-

t by

se it

ore

ge of

over
From a software evolution standpoint, local design changes cannot easily be

lated, since collaborations are not explicitly represented as components. T

limitations make the approachunscalable: various metrics of programmer effor

(e.g., length of composition expressions, parameter bindings that need to be

tained, etc.) grow exponentially in the number of features supported. (This is

same notion of scalability as in our earlier discussion of the library scalab

problem.)

Conceptually, the scalability problems of the VanHilst and Notk

approach are due to the small granularity of the entities they represent. In

methodology, each mixin class represents a role. Roles, however, have many

nal dependencies (for instance, they often depend on many other roles in the

collaboration). To avoid hard-coding such dependencies, we have to express

as extra parameters to the mixin class, as in code fragment (2.8). Actual reu

components need to have few external dependencies, as made possible by

mixin layers to model collaborations.

Example.Our above discussion can be best illustrated with a simple example f

our graph algorithms application of Section 2.2.2. Consider a composition im

menting both theCycle Checkingand theVertex Numberingoperation on the same

graph. We select which of the two is to be performed on a certain graph objec

qualifying method names directly, e.g.,g->NumberC::Graph::Traverse() .

(An alternative would be to cast an object pointer to the appropriate type and u

to call the depth-first traversal method.) Recall that the ability to compose m

than one refinement (or multiple copies of the same refinement) is an advanta

the mixin-based approach (both ours and the VanHilst and Notkin method)

frameworks implementations.
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The components (mixins) used by VanHilst and Notkin for this exam

are similar to the inner classes in our mixin layers, with extra parameters need

express their dependencies to other roles in the same collaboration. This co

cates the source code needed to compose components, making the VanHil

Notkin composition code much longer than the corresponding mixin layers so

code.5 Our specification is shown in Figure 2.7(a) (reproducing code fragm

(2.6)). A compact representation of a VanHilst and Notkin specification is sho

5. The object code is, as expected, of almost identical size.

class NumberC: public DFT <NUMBER <DEFAULTW <UGRAPH> > > {} ;
class CycleC  : public DFT < CYCLE < NumberC > > {} ;

Figure 2.7(a) : Our mixin layer implementation of a multiple-collaboration
composition. The individual classes are members ofNumberC, CycleC  (e.g.,

NumberC::Vertex , CycleC::Graph , etc.).

class Empty {} ;
class WS         : public WorkspaceNumber {} ;
class WS2        : public WorkspaceCycle {} ;
class VGraph      : public VertexAdj<Empty> {} ;
class VWork      : public VertexDefaultWork<WS,VGraph> {} ;
class VNumber    : public VertexNumber<WS,VWork> {} ;
class V          : public VertexDFT<WS,VNumber> {} ;
class VWork2     : public VertexDefaultWork<WS2,V> {} ;
class VCycle      : public VertexCycle<WS2,VWork2> {} ;
class V2         : public VertexDFT<WS2,VCycle> {} ;
class GGraph     : public GraphUndirected<V2> {} ;
class GWork      : public GraphDefaultWork<V,WS,GGraph> {} ;
class Graph       : public GraphDFT<V,WS,GWork> {} ;
class GWork2     : public GraphDefaultWork<V2,WS2,Graph> {} ;
class GCycle      : public GraphCycle<WS2,GWork2> {} ;
class Graph2      : public GraphDFT<V2,WS2,GCycle> {} ;

Figure 2.7(b) : Same implementation using the VanHilst/Notkin approach.V
corresponds to ourNumberC::Vertex , Graph  to NumberC::Graph , WS to

NumberC::Workspace , etc.
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in Figure 2.7(b). (A more readable version of the same code included in [VN9

is even lengthier).

Figure 2.7(b) makes apparent the complications of the VanHilst/Not

approach. Each mixin representing a role can have an arbitrary number of par

ters and can instantiate a parameter of other mixins. In this way, parameteriz

expressions of exponential (to the number of collaborations) length can resul

alleviate this problem, the programmer has to introduce explicitly intermed

types that encode common sub-expressions. For instance,V is an intermediate type

in Figure 2.7(b). Its only purpose is to avoid introducing the sub-expressionVer-

texDFT<WS,VNumber> three different times (whereverV is used). Of course,

VNumber itself is also just a shorthand forVertexNumber<WS,VWork> . VWork,

in turn, stands forVertexDefaultWork<WS,VGraph> , and so on.6 Additional

complications arise when specifying a composition: users must know the num

and position of each parameter of a role-component. Both of the above req

ments significantly complicate the implementation and make it error-prone.

Using mixin layers, the exponential blowup of parameterization expr

sions is avoided. Every mixin layer only has a single parameter (the layer abov

By parameterizing a mixin layerA by B, A becomes implicitly parameterized by

all the roles ofB. Furthermore, ifB does not contain a role for an object thatA

expects, it will inherit one from above it. This is the benefit of expressing the c

laborations themselves as classes: they can extend their interface using inheri

Another practical advantage of the mixin layer approach is that it enco

ages consistent naming for roles. No name conflicts are possible among diff

6. Some compilers (e.g., MS VC++, g++) internally expand template expressions, even thoug
user has explicitly introduced intermediate types. This caused page-long error messag
incorrect compositions when we experimented with the VanHilst and Notkin method, rende
debugging impossible.
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mixin layers, since role representations are encapsulated in the outer class. H

instead of explicitly giving unique names to role-members, we have stand

names and only distinguish instances by their enclosing mixin layer. In this w

VertexDFT , GraphDFT, and VertexNumber become DFT::Vertex ,

DFT::Graph  andNUMBER::Vertex , respectively.

In [VN96a], VanHilst and Notkin questioned the scalability of the

method. One of their concerns was that the composition of large numbers of

“can be confusing even in small examples...” The observations above (leng

parameterization expressions, number of components, consistent naming)

that the mixin layer approach addresses this problem and does scale gracefu
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Chapter 3

Programming Language Issues

As we showed in the previous chapter, mixin layers are capable of expressing

gant, modularized software components. These components exist at the lan

level and their composition is performed statically, i.e., at language transla

(compilation) time. Several programming language issues arise in connection

mixin layers and their compositions. Most of these issues pertain to the inte

tions of mixin layers with type systems. Type information can be used to de

errors in a composition of mixin layers. At the same time, layers are defined in

lation and the problem of propagating type information between layers is e

cially interesting.

This chapter is an amalgam of several such topics related to mixin lay

Section 3.1 examines the general problem of verifying the correctness of a

composition. We present an approach based on propositional properties tha

propagated using inheritance and can be checked by other layers. Proposi

properties can be disguised as classes so that standard language mechanism

class inheritance and access control) can be used to validate the properties.

Section 3.2 discusses type system support for mixin layers. We propos

extension to a type mechanism based on explicit types (Java interfaces) so

constraints on mixin layers can be expressed.
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Section 3.3 examines the problem of propagating type information ac

mixin layers. The proposed solution is similar to the one offered by Wadler, O

sky, and this author [WOS98] in a different context. We discuss how this solu

applies to unconstrained parameterization mechanisms (e.g, C++) as well as

strained parameterization mechanisms (e.g., the Java generics propos

[AFM97]).

Finally, Section 3.4 describes the interaction of C++ mixins with vario

idiosyncrasies of the language. This information is important from a pract

standpoint and offers the opportunity to discuss some C++-specific issues pe

ing to parameterization and inheritance.

3.1  Verifying Composition Correctness

Given a set of mixin layers, not all compositions of layers in the set may be me

ingful. Often layers need to be used in a specific order, or cannot be used more

once. Other times a layer expects some core functionality from the layers abo

thus requiring that at least a layer with the desired functionality be present. Th

true of the layers we encountered in the previous chapter. For instance, in

example graph application,DFTalways has to precedeDEFAULTWin the composi-

tion read from left to right (i.e.,DEFAULTWhas to occur higher thanDFT in the

inheritance hierarchy). In case this constraint is not satisfied, a compile-time

will occur (or worse, under C++ the error may occur in some contexts but not

ers, as we explain in Section 3.4). The reason is thatDFT attempts to call methods

that only theDEFAULTWlayer defines. In other words, the compiler can tell that t

composition is invalid because of an interface mismatch: the interface exporte

the superclass of theDFT layer does not support some expected methods.
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The issue of explicitly specifying the expected interface of a layer para

ter is an important one, both for verifying a composition, and for enabling sepa

compilation of layers. Interfaces for mixin layers are independently interesting

will be discussed separately in Section 3.2. In general, however, compositions

fail for reasons other than interface mismatch. In this section we will address

general problem of detecting when component compositions are invalid. Often

ers are perfectly compatible from an interface standpoint (i.e., they contain

expected methods and variables) but their composition does not produce co

results. Incorrect compositions will either fail with a run-time error or not perfo

as expected. The designer of mixin layers is probably aware of which comp

tions are actually meaningful and which are not. We would like to develop te

niques for enabling the expression of this information so that compilers

validate compositions automatically. This is the purpose of the method discu

in Section 3.1.2, but first we will introduce a set of example layers from

domain of data structures to help illustrate the problem.

3.1.1  An Example Application

Our example data structure design was used in both the P2 lightweight DB

generator [BT97, Tho98], and in the DiSTiL generator for data structures [SB

In this example we add functionality to a data structure by assigning more role

the classes that participate in the design. There are two such classes: anodeclass,

of which all data nodes are instances, and acontainerclass, which has one instanc

per data structure. A third class for data structure cursors (iterators) is gene

needed but to keep the example simple we will equate cursors with pointe

node objects. This model for data structure construction is, in fact, quite gen

Composite data structures, run-time bound checks, garbage collection, a loc

transaction manager, etc., can all be specified as new roles for the node and
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tainer classes (see [BT97]). This can be achieved using mixin layers, as we

show with extensions to a binary tree data structure.

Our target data structure consists of four different collaborations:bintree,

alloc, timestamp, andsizeof. Bintree captures the functionality of a binary tree

Alloc captures the functionality of memory allocation.Timestampis responsible

for maintaining timestamps for data structure and element updates.Sizeofsimply

keeps track of the data structure size. The design is simple and we will not con

ourselves with its schematic representation (in the form of Figure 2.1) or the

we obtained it. We remind the reader that a good reference on how to obtain

laboration-based designs from use-case scenarios [Rum94] is VanHilst’s Ph.D

sertation [Van97].

A mixin layer implementing a binary tree collaboration has the form:1

template <class Super> class  BINTREE  : public Super {
public:

class  Node  : public Super::Node {
Node* parent_link,

left_link, right_link ; // Node data members
public:

... // Node interface
} ;

class  Container  : public Super::Container {
Node* header; // Container data members

public:
void insert ( EleType el ) { ... }

// Definition of EleType inherited
void erase ( Node* node ) { ... }
bool find ( EleType* el ) { ... }

1. We will present simplified code fragments, ignoring implementation details that are not dire
relevant to our discussion. We will highlight class definitions for readability and use ellip
(... ) for omitted code.
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... // Other methods
} ;

} ;

Note that theContainer class is aware of theNode class (e.g., it declares

a member variable of typeNode* ). The two classes must be designed together a

hence, it makes sense to encapsulate both in a single unit.

Now consider the implementation of thetimestampcollaboration: the data

structure maintains the time of its last update, as well as the creation and up

time of each node. The set of exported operations on the data structure ca

enriched (e.g., by defining an operation that returns the data structure update

as well as a variant offind : find_newer ). This enrichment can be viewed as

collaboration prescribing roles for both theNode and theContainer class. Its

implementation using mixin layers has the form:

template <class Super> class  TIMESTAMP : public Super {
public:

class  Node  : public Super::Node {
time_t creation_time, update_time; // Node data members

public:
bool more_recent (time_t t) { ... }
... // Other time-related methods

} ;

class  Container  : public Super::Container {
time_t update_time; // Container data members

public:
bool find_newer ( EleType* el, time_t t ) { ... }
void insert ( EleType el ) { ... }
... // Other time-related methods

} ;
} ;

Recall that not all collaborations need to specify roles for all classes

design. Thesizeofcollaboration, for instance, only needs to maintain a counter

elements associated with a container and only prescribes a role for theContainer
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class. It can be implemented as a mixin layer that is a trivial wrapper aroun

mixin class:

template <class Super> class  SIZEOF  : public Super {
public:

class Container  : public Super::Container {
int count; // Container data members

public:
Container() : Super::Container() {

count = 0; } // Constructor
void insert ( EleType el ) {

Super::Container::insert(el); count++; }
void erase ( Node* node ) {

Super::Container::erase(el); count--; }
int size () { return count; }

} ;
} ;

Again, classes generated by instantiating theSIZEOF mixin layer do have a

Node nested class—this class is inherited from mixin layers aboveSIZEOF in the

inheritance chain.

To put everything together we need a concrete (i.e., non-mixin) class t

the root of our inheritance hierarchy. This could be a “dummy” class, contain

only empty roles. In most applications, however, it is easy to identify a collabo

tion, which has to be the basis upon all other functionality is built. In this particu

example, thealloc collaboration serves this purpose.Alloc is responsible for the

actual memory allocation for the data structure. Note that the implementatio

this collaboration (as well as any of the other mixin layers) can have parame

other than the one we used to designate the superclass. These extra paramet

be used to specify polymorphic behavior. In our example, it makes sense to pa

eterize the layer representingalloc by the type of the elements stored in the da

structure. Then we have:
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template <class Element> class ALLOC {
public:

class Node {
Element element; // The actual stored data

public:
... // Any methods pertaining to stored data

} ;

class Container {
protected:

typedef Element EleType;
// The actual type of stored data

void* node_alloc();
... // Other allocation methods

} ;
} ;

With our layers defined, we form data structures by composing layers

binary tree storing integers and maintaining time information and size is defi

as:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC < int > > > >
Tree1; (3.1)

The Node andContainer classes are accessible2 asTree1::Node and

Tree1::Container . An outline of the composition of (3.1) is shown in Figur

3.1. We have annotated the design with some of the inherited member vari

and methods. Note how both theSIZEOF and theTIMESTAMPmixin layers depend

on layers above them to insert and erase elements from the data structure. W

return to this later.

2. There is no reason why theNode class should be user accessible. What really needs to be
accessible is an iterator class, which for this example is the same as a pointer to aNode object.
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3.1.2  Verifying Consistency with Propositional Properties

The most important issue arising in mixin layer composition is ensuring comp

tion correctness. Some mixin layers depend on the existence or the right ord

of others. Many problems can be detected immediately. As shown in Figure

the BINTREE layer calls the allocator directly for every element insertion (i.e.,

does not propagate theinsert and erase operations). Omitting theBINTREE

layer in (3.1) should cause a compilation error: operations likeinsert that are

propagated bySIZEOF andTIMESTAMP will be undefined.3

3. In fact, such mistakes may not actually cause a compilation error, even for statically typed
guages. In C++, for instance, ifinsert is never called in user code, no error will be signalle
even thoughSIZEOF::Container has an explicit call to the insert method of its superclass a
no such method is defined. This has to do with the treatment of methods in paramete
classes as function templates, as we will discuss in Section 3.4. In essence, theinsert method
for SIZEOF::Container is never compiled since it is not needed, thus the error is never d
covered.

alloc

bintree

time
stamp

sizeof

Node Class Container Class

...

...

...
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update
_time
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Figure 3.1: A composite data structure. The intersections of rectangles and ov
represent the roles played by each class in each collaboration.

insert erase

insert erase

insert erase

node_
alloc

node_
dealloc

Parent
method
call

Inherited
variable

Legend
53



e

only

t

t are

yers

bi-

the

ms.

al

ierar-

-

s of

ix-

t

ce of

ncies

al
Other problems, however, are more subtle. Consider reordering theBIN-

TREE andSIZEOF layers in a composition:

typedef BINTREE < SIZEOF < ALLOC < int > > > Tree3;

This will cause theinsert and erase methods ofSIZEOF to be shad-

owed (overridden) by those ofBINTREE. Hence, the implementation is wrong: th

count of elements in the data structure will never be updated (since this is

done in theinsert and erase methods ofSIZEOF and these methods are no

called byBINTREE). Thesize operation will be visible, however, and will always

return 0, although the data structure may not be empty.

In general, mixin layers may have subtle semantic dependencies tha

not reflected in their interfaces. In large libraries there may be a variety of la

supporting identical interfaces but implementing different semantics. Many com

nations of layers could be illegal but there may not be a way to detect this from

interfaces alone.

This problem has been studied before in the context of layered syste

Thedesign rule checkingapproach of [BG97] offers a solution using proposition

properties and requirements that are propagated both up and down a layer h

chy. Thenested mixin-methodsof [SCD+93] resulted in a powerful constraint sys

tem. Nesting of mixins was used as a way to restrict their scope. A mixin clas

[SCD+93] can define other mixins that can be composed with it, inherit some m

ins when composed, and cancel inherited mixins. Thefeature-orientedprogram-

ming approach of [Pre97] uses theassumes keyword to express the property tha

the correctness of one feature (layered component) assumes the existen

another.

Interestingly enough there is a simple way to express basic depende

within the mixin layers framework. Every mixin layer can export proposition
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properties describing its behavior (essentially encoding semantic knowledge

interface). Recall that when mixin layers are composed, they are linked in an in

itance chain. Properties are propagated in the same direction as inherited me

and variables: from superclasses to subclasses. Layers can explicitly make

ited properties unavailable to their subclasses. Finally, a layer can check (req

whether it has inherited a property or not. A composition is correct if none of th

requirements fail. This technique is similar to theassumes functionality of

[Pre97] and the design rule checking of [BG97]. Consider the example of Sec

3.1.1. There are four requirements that we need to express:

• A BINTREE mixin layer cannot have aSIZEOF layer as an ancestor in its

inheritance chain (because otherwise theinsert method ofSIZEOF will be

shadowed).

• A BINTREE mixin layer cannot have aTIMESTAMPlayer as an ancestor

(same reason as above).

• A SIZEOF mixin layer needs to ensure that some sort of a data structur

present in the composition. In our example the only data structure is a bi

tree but we can easily imagine the same mixin layer being composed

instance, with a doubly linked list layer.

• A TIMESTAMPmixin layer also needs to ensure that a data structure

present.

These can be specified as requirements on the existence of three prop

(inherited from ancestors in the inheritance chain):

• No SIZEOF layer is present (call this propertyP_NoSizeof ).

• No TIMESTAMP layer is present (call this propertyP_NoTimestamp ).

• A data structure layer is present (call this propertyP_DataStructure ).

An approximate implementation of this scheme is straightforward.

properties can be expressed as empty classes encapsulated in a mixin layer. P
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ties are inherited but can be negated by using access control (that is, “hiding

class members—e.g., by making them “private” members in C++). If the class

resenting the property is made visible to subclasses (either by declaration o

inheritance without “hiding”), then the property is asserted. Otherwise the prop

is negated. The requirement that a certain property be satisfied is then enforc

declaring an instance of this class. (This technique is really an approximatio

the desired functionality: We “hijack” the nested class mechanism and use

express propositional properties. As we will see, this method has some lim

tions.)

In our example,BINTREE exports propertyP_DataStructure and

requires propertiesP_NoSizeof  andP_NoTimestamp .

template <class Super> class BINTREE : public Super {
protected:

class P_DataStructure { } ;
// Assert this property for subclasses

private:
P_NoSizeof dummy1;
P_NoTimestamp dummy2;

// Require P_NoSizeof and P_NoTimestamp from ancestors
public:

... // nested mixins (same as before)
} ;

The other three mixin layers are modified accordingly:

template <class Super> class SIZEOF : public Super {
private:

class P_NoSizeof { } ; // Negate property for subclasses
P_DataStructure dummy1; // Require P_DataStructure

public:
... // nested mixins (same as before)

} ;

template <class Super> class TIMESTAMP : public Super {
private:
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class P_NoTimestamp { } ; // Negate property for subclasses
P_DataStructure dummy1; // Require P_DataStructure

public:
... // nested mixins (same as before)

} ;

template <class EleType> class ALLOC {
protected:

class P_NoSizeof { } ; // Assert property for subclasses
class P_NoTimestamp { } ;// Assert property for subclasses

public:
... // nested classes (same as before)

} ;

Note how the constraint is enforced: theALLOCmixin layer asserts proper-

ties P_NoSizeof and P_NoTimestamp . The BINTREE layer requires that they

not be negated by some layer betweenBINTREE and ALLOC in the inheritance

hierarchy.SIZEOF andTIMESTAMPnegateP_NoSizeof andP_NoTimestamp ,

respectively. Also they require that they have some ancestor asserting pro

P_Datastructure . This accurately describes the constraints we want to imp

on the compositions of these four mixin layers: aBINTREEhas to be present and if

a TIMESTAMPor SIZEOF are present they must be descendants ofBINTREE in the

inheritance chain.

The method described above only makes use of access control (suc

commonly found in C++ or Java and easily emulated in CLOS) and the same

eral language mechanisms used for mixin layers. The method’s clarity coul

improved using some form of syntactic sugar. In the absence of static typing (

if we were to implement this technique in CLOS) the checking would have to

performed at run-time by calling an appropriate method. We have developed o

constraint techniques for C++ but they are language-specific (or even comp

specific as is the case with many compile-time techniques that rely on cons

folding).
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There are more important restrictions of the technique we presented, h

ever. First, even though it is easy to have a layer express requirements for

layersaboveit in the inheritance hierarchy, it is quite hard to do the same for lay

belowit. Such requirements can only be expressed by having a “catch-all” laye

the bottom of all compositions, to check for unsatisfied requirements. A sec

problem of the above technique is that even when an erroneous compositi

detected, the error message may be far from informative. In essence, we ex

relatively deep errors (e.g., semantic incompatibilities among large scale com

nents) through the absence of an inherited class. The compiler will still comp

about an undefined type, but the cause of the error (not to mention a possible

not immediately apparent. The problem is intensified in the case of mixin lay

developed and used independently by different programmers. A casual use

expect much more expressive error reporting from a black-box component

our technique can offer. Reference [BG97] presents a general technique for

matically detecting (and suggesting repairs to) errors in layered implementati

3.2  Interfaces for Mixin Layers

The parameterization examples that we have considered this far are all in the

language. C++ templates are an example of anunconstrainedparameterization

mechanism. That is, templates offer no way to constrain the possible values t

template parameter may assume. For instance, consider a simple mixin:

template <class Super> class Mixin1  : public Super {
void foo() { Super::bar(); }
... /* other methods, vars */

} ;

Super is a parameter to the template and some restrictions on its struc

are apparent from the code. For example,Super has to export a methodbar in its
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interface (“public” or “protected” in C++). Furthermore,Super::bar should

have no arguments. Nevertheless, these restrictions are never made explicit

programmer and the compiler has no knowledge of them. This approach has

main disadvantages:

• The compiler cannot easily verify that all restrictions are satisfied. Errors

discovered belatedly, hindering accurate error reporting. For instance, i

programmer parameterizesMixin1 with a class defining nobar method, the

resulting parameterization error will only be detected as a call to an un

fined method. In C++, in particular, the error will only be discovered wh

(and if) methodfoo is actually used (this is discussed in detail in Sectio

3.4).

• The modularity of templatized code is not preserved. Ideally we would l

the compiler to process each parameterized unit of code independently.

way parameterized modules (like mixin layers) will only need to be link

together at composition time. With unconstrained parameterization this is

possible. Type-checking (e.g., checking for undefined methods as in

above example) has to occur after the composition is specified. The sam

true for code generation, meaning that a piece of parameterized code h

be processed once for each composition it participates in. Thus, the lac

modularity of templatized code means that such code offers few opport

ties for separate, incremental compilation. Furthermore, having incomp

type information at compile-time does not allow certain combinations

parameterized components (like a useful fixpoint construction that we

cuss in Section 3.3).

To avoid the problems of unconstrained parameterization, manycon-

strainedparameterization mechanisms have been proposed (e.g., [AFM97, OW

BOSW98, MBL97]). In this section we examine constrained parameteriza
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from the standpoint of mixin layers. The ideas presented here are general, bu

illustration purposes, we will focus on the Java language, and, in particular, on

constrained parameterization mechanism for Java proposed by Agesen

[AFM97]. We describe this mechanism in Section 3.2.1. In Section 3.2.2 we a

that, with regards to mixin layers, even though the principles upon which

mechanism is based are correct, it fails in practice. This failure is due to the

nested classes and interfaces are handled in Java. By demonstrating the pro

we essentially identify the properties of an object-oriented type system, powe

enough to support constraints for mixin layers. We propose extensions to the

language to correct the problem without affecting existing Java programs. Fin

we discuss some closely related work in Section 3.2.3.

3.2.1  Constrained Parameterization

Before we introduce the parameterization mechanism of Agesen et al. [AFM

we discuss briefly the Java “interface” mechanism.

Background: Java Interfaces.Interfaces in Java are used to specify explicit typ

signatures for classes. Consider the following example of a Javainterface dec-

laration:

interface Foo1 {
Foo1 meth1 ();
boolean meth2 (Foo1 foo);

}

Any (concrete) Java class that conforms to this interface has to define

methodsmeth1 andmeth2 with the exact type signatures (return types and arg

ment types) specified in the interface. Conformance is declared using theimple-

ments  keyword. For instance:
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class Baz implements Foo1 {
public Foo1 meth1() { return new Baz(); }
public boolean meth2(Foo1 foo) { return true; }

}

The definition ofBaz is legal because it supports both methods prescrib

by the interface (i.e., it defines both methods withidenticalsignatures to the inter-

face prototypes).4 It should be clear from this example that interface specificatio

are simply constraints on class definitions.

It is worth noting that the Java type system (of which interfaces are a p

forms an incomplete constraint language. Even though some properties are e

express (for instance, “classA should support a methodfoo that takes no argument

and returns an object of classB”) others are not expressible (for instance, “classA

should support a method namedfoo ”). That is, interfaces only support complet

type signatures for methods. This is only one of the restrictions of the mechan

Such restrictions are usually imposed because of technical limitations (e.g., sim

fied parsing) and lack of significant need in everyday programming.

A Constrained Parameterization Mechanism.The parameterization mechanism

of Agesen et al. [AFM97] is superficially similar to C++ class templates but allo

parameterizations to be constrained using interface specifications or subtype

tions. That is, parameterized classes have the general form:

class SomeClass < parameters > {  ... }

where parameters is a list of type variables (representing classes, interface

primitive Java types) which may be constrained in either of two forms:

4. Java isnon-variantwith respect to method signatures in superclasses and interfaces (i.e., me
signatures have to be identical). The language isco-variantwith respect to arrays: an array o
subclass instances can be used in place of an array of superclass instances [Tho97].
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• P implements I : ParameterP has to be either a class which implemen

interfaceI  or an interface which hasI  as a super-interface.

• P extends B : ParameterP has to be a subclass ofB.

(Interestingly,I andB, above, can be expressions containing the param

P, thus allowing for powerful fixpoint constructions, like “P implements

Countable<P> ”. This is useful because concrete interfaces are not sufficient

describing generic behavior. Thus, interface templates are needed and these

specialized with actual types. For a good example of this usage, see [AFM

Mixins with constrained arguments can easily be specified using this mechan

As an example, consider the following interface and mixin definitions:

interface Foo2 {
Foo2 meth1 ();

}

class Mix <Super implements Foo2> extends Super {
Foo2 get_foo() { return super.meth1(); }
...

}

The implements clause in the mixin definition specifies that the mixi

parameter (i.e., the superclass of the produced class) should conform to inte

Foo2 . The need for conformance is evident in the body of methodget_foo : the

code calls a methodmeth1  in the mixin’s superclass.5

5. In this case, the dependency could be inferred from the code. That is, by analogy to many
forms of polymorphism in programming languages, the mixin could be considered a polym
phic entity that can be parameterized by any class specifying a methodmeth1 with a compatible
type signature. We will discuss polymorphism and type inference in more detail in Section 3
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3.2.2  Interfaces for Nested Classes

Nested classes are a powerful mechanism for integrating some of the bene

block-structured programming in object-oriented programming languages. Ne

classes in Java [Jav97b] behave in many respects like other class members

ods and member variables): they are inherited by subclasses, they have the

access control specifiers (e.g.,public , private ), and the outer class acts as

namespace for scoping purposes.

Using a nesting pattern, similar to that of C++ mixin layers, combined w

the parameterization mechanism of Section 3.2.1, we can express the genera

of mixin layers as:

class LayerThis <LayerSuper> extends LayerSuper {
public class  FirstInner  extends LayerSuper.FirstInner

 { ... }
public class  SecondInner  extends LayerSuper.SecondInner
{  ... }
public class  ThirdInner extends LayerSuper.ThirdInner
{  ... }

}

Ideally, we should be able to constrain the parameterization so that the supe

(LayerSuper ) always contain three nested classesFirstInner , SecondInner ,

andThirdInner . Unfortunately this constraint (as well as many others that ha

to do with class nesting) is not expressible using Java interfaces, as we di

below.

Problems with Interfaces and Nested Classes.We mentioned previously that the

Java type system has some restrictions with respect to the properties express

it. One of the restrictions has to do with expressing properties for nested cla

More specifically, there is no way to constrain a class with respect to the ne
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classes that it must contain. One may think that nesting interfaces will achieve

desired result. For instance, consider the interface declaration:

interface ThreeInners {
interface FirstInner { ... }
interface SecondInner {  ... }
interface ThirdInner {  ... }

}

It may seem that a class that implements interfaceThreeInners has to

contain nested classes implementingThreeInners.FirstInner , ThreeIn-

ners.SecondInner , andThreeInners.ThirdInner .6 This is not, however,

the case in Java. Interface nesting only has namespace significance and do

imply any constraints for the class implementing the outer interface! We will fi

define precisely the general form of constraints that the type system needs

able to express to support nested classes. Then we will present an extension t

that supports these constraints without changing the semantics of existing

grams.

General Form of Constraints for Nested Classes.We are trying to ensure that

the extends and implements clauses have straightforward extensions for t

case of nested classes. This would be valuable, for instance, in type-che

mixin layers compositions (but also in other occasions as we will see in Sec

3.2.3). There are two general forms of constraints that we would like to be ab

express:

6. For instance, Bruce, Odersky, and Wadler [BOW98] presented an example with nested
faces which required functionality similar to what we suggest. They write: “The intention is
any implementation of the ‘outer’ interface [...] must provide implementations of the ‘inn
interfaces.” They did not, however, recognize that this intention is not supported by Java.
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• (deep subclassing) the constrained classC is adeep subclassof another class

B. That is,C is a subclass ofB and for every publicly accessible nested cla

B.N , there is a publicly accessible classC.N that is a deep subclass ofB.N .

• (deep interface conformance) the constrained classC conforms deeplyto

interfaceI . That is,C conforms toI and for each publicly accessible neste

interfaceI.N , there is a publicly accessible classC.N that conforms deeply

to I.N .

Note that both definitions are recursive and can be applied to class ne

of arbitrary depth. (For instance, we could specify the property “classA should

contain nested classB which contains nested classesC andD conforming to inter-

facesI  andJ , respectively”.)

Expressing Constraints.Obviously, a programming language can use deep s

classing and deep interface conformance as the only kinds of subclassing

interface conformance. That is, a language may enforce that every subclas

deep subclass, and every class conforming to an interface conforms deeply

Although this is a reasonable design choice, in the case of Java it necess

changing the meaning of existing programs.

A second alternative is to maintain both regular subclassing and deep

classing (and similarly for interface conformance). In Java, this could be suppo

by adding new syntax to the language so that the two cases are differentiated

it becomes clear which of the nested classes or interfaces are intended fo

under deep subtyping or deep interface conformance). Next, we will desc

informally a small set of changes to the Java syntax (as well as the correspon

extensions to the semantics) to support deep interface conformance without c

ing the semantics of programs that use standard Java interface conformance

same ideas apply to integrating deep subtyping in Java.
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Backwards-Compatible Deep Interface Conformance for Java.The con-

straints that we are interested in expressing could be addressed by allowingclass

prototypesto be nested inside interfaces. By “class prototype” we mean a c

declaration with no class body.7 This is analogous to the current Java syntax f

function prototypes in interfaces. The semantics for this extension is straigh

ward: we specify thata publicly accessible class prototype nested inside an int

face declaration means that classes conforming to the interface should ha

publicly available nested class conforming to the prototype. Consider the follow-

ing example:

interface DS {
interface IfElement {

void set (IfElement element);
IfElement get ();

}
interface IfContainer {

void insert(IfElement element);
boolean find(IfElement element);

}

class Element implements IfElement; // Syntax extension
class Container  implements IfContainer;// Syntax extension

}

This example describes a simplified (partial) interface for a compon

encapsulating classes that provide basic data structure functionality. For a cla

implement theDSinterface (under our extension) it has to contain two publicly v

ible nested classes calledElement , andContainer with each of them conform-

7. The current syntax for class declarations isClassDeclaration: ClassModifiers(opt)

class Identifier Super(opt) Interfaces(opt) ClassBody . Our proposed syntax
for class prototypes isPrototypeDeclaration: ClassModifiers(opt) class Iden-

tifier Interfaces(opt) with the restriction that prototypes can only appear nested ins
an interface.
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ing to the above interfaces (IfElement , IfContainer ). For instance, consider a

classBinaryTree  that implements this interface:

class BinaryTree  implements DS {
public class Element  implements DS.IfElement {

public void set (DS.IfElement element)
{ ... } // implementations omitted

public DS.IfElement get ()
{ ... }

}
public class Container  implements DS.IfContainer {

public void insert(DS.IfElement element)
{ ... }

public boolean find(DS.IfElement element)
{ ... }

}
}

The “implements DS ” clause in the class declaration makes the cla

conform to theDS interface. This entails the presence of two nested classes im

menting the corresponding interfaces. It is worth noting that a class prototype

be declared to implement more than one interface but there is no notion of inh

ance among prototypes (i.e., a prototype declaration has noextends  clause).

Note that the proposed scheme does not change the meaning of ex

interface nesting (thus, no existing Java programs are affected by the chan

Also, no new keywords are required in the language.

Applications of Deep Interface Conformance.Java classes are second-cla

entities: they cannot be assigned to variables or passed as arguments to fun

but there are language mechanisms that manipulate classes (most notably, in

ance). Type systems exhibit their benefits mainly in the presence of variability

instance, arguments of functions are unknown but have a specific type). He

one would expect that a more powerful type system (i.e., one supporting d
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interface conformance) will be useful in the case ofclass functors: functions with

class arguments and/or producing new classes. Indeed deep interface confor

is invaluable in the case of mixin layers—mixins are the most common kind

class functors in object-oriented languages.

For a demonstration, we will re-use our example of Section 3.1, expres

in Java. In this example, four data structure layers are defined, containing re

ments for theContainer andElement classes. We would like to define genera

ized interfaces for allocators and data structures (e.g., binary trees, hash t

lists). Interface conformance will serve as a static check of the interchangeab

of the corresponding mixin layers. This could be effected with the following int

face declarations (note that the first is reproduced from our previous example

interface DS {
interface IfElement {

void set (IfElement element);
IfElement get ();

}
interface IfContainer {

void insert(IfElement element);
boolean find(IfElement element);

}

class Element implements IfElement;
class Container  implements IfContainer;

}

interface ALLOC {
interface IfElement { }
interface IfContainer {

IfElement alloc_node();
}
class Element implements IfElement;
class Container  implements IfContainer;

}
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Consider now an example mixin layer defining a binary tree. We would l

to constrain the mixin parameter so that its valid values are classes supportin

ALLOC interface.

class BinaryTree <Alloc implements ALLOC>
implements DS extends Alloc
{

class Element  implements DS.IfElement extends
Alloc.Element {

public void set (DS.IfElement element)
{ ... } // Implementation omitted

public DS.IfElement get () { ... }
}
class Container  implements DS.IfContainer
extends Alloc.IfContainer
{

public void insert(DS.IfElement element)
{ ... }

public boolean find(DS.IfElement element)
{ ... }

}
} (3.2)

The constraint on the mixin parameter (“Alloc implements ALLOC ”)

prevents theBinaryTree layer from being instantiated with classes that w

result in invalid compositions.

3.2.3  Discussion/Related Work

The work presented in this section has a few direct connections to other work

are worth mentioning:

Deep subtyping was introduced by Wadler, Odersky, and this au

[WOS98] in a slightly different context (that of the GJ language). The mechan

is of general utility in Java, however, and complements the proposal of deep i
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A class containing nested classes can be considered a large scale co

nent. Extending the interface functionality to include such classes is a signifi

step in increasing the granularity of reusable software entities. Type signature

multiple-class components have been studied before. The GenVoca model of

ware construction (see Chapter 5) defines the idea of a component’srealm. A

realm identifies the set of all components that are interchangeable in a param

ization, exactly like our extended interfaces. In fact, the concept of a realm is

fied as a programming language construct in the P++ language [Sin96].

As we mentioned before, interfaces can be viewed as explicit types

classes. From a programming language standpoint it makes sense to ask w

the type of a class can be inferred from its definition. This is (to an extent) tru

all the examples we discussed. Consider, for instance, the code fragment (3.2

sented previously. Both requirements on the mixin parameter can be inferred

the mixin layer definition:

• The Element nested class has a superclass calledElement , nested inside

the mixin parameter (Alloc.Element )

• The Container nested class has a superclass calledContainer , nested

inside the mixin parameter (Alloc.Container ). The additional require-

ment that this superclass provide a methodalloc_node is expected to be

deducible from the definition of theinsert  method (omitted in (3.2)).

In other words, instead of using explicit constraints on classes, we co

consider them polymorphic: they assume the most general type permitted by

definitions. Nested classes are no different from other members of the class w

comes to type inference. Even though we have not explored the possibilities
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approach could result in a type inference technique that can handle the ty

requirements of nested classes and mixins.

3.3  Communicating Static Information in a
Composition

Mixin layers are source code components that are defined in isolation but us

conjunction with one another. Often a mixin layer needs to acquire static infor

tion (e.g., types) about other layers or the entire composition it participates in.

may be hard when the information needs to move upwards in the inheritance

archy (i.e., from a more refined to a more general class). This section pre

techniques for propagating such information and discusses some language

system issues that arise.

3.3.1  Introduction: Virtual Types

An interesting issue arises in various layered implementations that use inheri

together with static typing. This is essentially a symmetric problem to the one

originally motivated mixins. Recall that mixins were introduced to remove

restriction that the definition of a subclass in an inheritance relation needs to r

ence its superclass. This restriction, however, means that superclasses are ge

known when a subclass is defined (and references to them may exist in sub

code) while the converse is not true. This is not a problem when a superclass

needs to transfer control to a subclass (i.e., when a superclass needs to call

class method). The usual dynamic binding (orlate binding) of methods—the hall-

mark of object-oriented programming—deals with exactly this. When, howe

superclass code depends on type information that is specific to the current
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class, the problem is harder—type sub-languages usually do not have late bi

capabilities.

Recall theALLOClayer from our data structure example (in C++).ALLOCis

the root of the inheritance hierarchy for all compositions of mixin layers in Sect

3.1.1. One of the compositions we examined is replicated here:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC < int > > > >
Tree1 ; (3.3)

The node_alloc method in theContainer nested class ofALLOC is

responsible for allocating storage for a data structure element. One would t

that the implementation of this method would be as simple as:

{ return new Node; }

Unfortunately, this is not true. The actual allocated object should not b

typeNode, as defined in theALLOClayer (that is,ALLOC<int>::Node in (3.3)).

Instead it should be of classNode as defined in themost refinedlayer (i.e., the final

subclass in the hierarchy—Tree1::Node in (3.3)). In this way, the allocated node

will have enough room for the stored data as well as fields added by every on

the mixin layers of compositionTree1 (e.g., theparent_link , left_link , and

right_link pointers added byBINTREE). We can circumvent this problem by

weakening our type constraints and obtaining the necessary information at

time through dynamic binding. In this particular example we need to set the re

value of thenode_alloc method to a universal pointer type (void* ) and get the

size of the allocated node through a C++virtual call (not shown). This solution

is general but inconvenient, error-prone (type information is lost), and poss

inefficient (depending on the overhead of dynamic binding).

A complete and elegant solution to the problem is offered byvirtual types

language mechanisms. Virtual types can be refined by subclasses in an inher
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chain and the most refined version is the one used by superclass code. In ou

structure example, by declaringNode as a virtual type we express precisely ou

intention. Any references toNode (for instance, in “new Node”) are taken relative

to the most refined class in the inheritance chain (Tree1::Node  in (3.3)).

Virtual types first appeared asvirtual class patternsin the Beta program-

ming language (see [MMN93], ch.9). Recently they have been employed in a

ety of programming language mechanisms implementing parameterization

layered frameworks similar to mixin layers. The work of [Tho97], proposes

approach for genericity in Java using virtual types. We recognize the “assumes

inner ” primitive of feature-oriented programming [Pre97] as a virtual type dec

ration specifier. Theforward construct in the P++ language [Sin96] serve

exactly the same purpose, declaring that a certain type will be refined by su

quent layers in a composition. Our language extensions to Java that add supp

mixin layers [BLS98] include virtual types.

3.3.2  Emulating Virtual Types through Parameterization

Virtual typing is often viewed as an alternative to explicit parameterization

generic code templates. Thus, virtual types have often been compared to ex

parameterization mechanisms in terms of expressibility. Bruce, Odersky,

Wadler [BOW98] offered a discussion of the relative advantages of the

approaches. Later, Wadler, Odersky, and this author [WOS98] gave a more el

method for emulating virtual types through explicit parametric types. That solu

was presented in the context of Generic Java (GJ [BOSW98]), an extension of

with parametric polymorphism, based on a homogeneous model of transform

(and, thus, not supporting mixins). Here we will discuss the same idea from

perspective of mixins. This technique is far from specific to mixins, however (e
73
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it has been used by Czarnecki and Eisenecker [CE99a-b] in their C++ m

programming methodology).

Initially we present a way to propagate type information through param

terization in C++. The main idea enabling the propagation of type informat

from subclasses to superclasses is to parameterize the superclass with the

class hierarchy. For instance, consider a composition of three mixins,Mixin1 to

Mixin3 . If Mixin1 expects a type parameter describing the entire composit

then the composition could be expressed as:

class Total : public Mixin3 < Mixin2 < Mixin1 < Total > > >
{  /* empty body */ } ; (3.4)

Note how the result of the composition (Total ) is used as the paramete

for the inner-most mixin layer. This recursive declaration of classTotal corre-

sponds to a fixpoint construction and allows the superclass to obtain static kn

edge of the type of the subclass. For instance,Mixin1  could have the form:

template < class Param > class Mixin1 {
public:

Param *allocate() { return new Param; }
...

} ;

This way the right kind of object gets allocated, and all three mixins m

have contributed data members to this object.

The same technique can be used to statically dispatch to methods defin

subclasses. Note that this isdifferent from dynamic binding: even though the

method invoked is defined in a subclass, the method is uniquely determine

compile-time. For example, consider the composition of code fragment (3

above, withMixin1 containing code that invokes a method defined in one of
74
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subclasses (i.e., the method will be part either ofMixin2 or Mixin3 ). This could

be effected by definingMixin1  through an idiom like:

template < class Param > class Mixin1 {
public:

void invoke_below() { ((Param *)this)->Param::method(); }
// “method” is defined in Mixin2 or Mixin3
...

} ;

3.3.3  Limitations and the Value of Constraints

The fixpoint technique presented above offers an interesting way to pass

information from a subclass to a superclass. Even though the same idea wo

multiple environments (e.g., in C++ as well as GJ) it has a few limitations, es

cially in the context of unconstrained parameterization. These limitations bec

apparent when we try to apply this idea to C++ mixin layers.

Consider again the binary tree data structure defined in Section 3

through the composition of theSIZEOF, TIMESTAMP, BINTREE, andALLOC lay-

ers. As we pointed out in Section 3.3.1, theALLOC layer needs to have static

knowledge of the type of node that is to be allocated. One might think that it is

ficient to parameterizeALLOCby the result of the entire composition, just like i

our previous examples with simple mixins:

class Tree :
public SIZEOF <TIMESTAMP <BINTREE <ALLOC <int, Tree> > > >

{  /* empty body */ } ; (3.5)

Nevertheless, this composition is not valid in C++ (in contrast to the s

pler compositions presented in Section 3.3.2, which are perfectly valid). To se

problem, consider how theALLOC layer might be defined:
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template < class Element, class Param > class ALLOC {
public:

...
class Container {
protected:

Param::Node *allocate() { return new Param::Node; }
// error! “Param::Node” is not a legal type

...
} ;

} ;

The reason for the problem is that the type parameterParam represents an

incomplete type and its member types (e.g.,Param::Node ) cannot be accessed.8

The problem occurs when the compiler attempts to instantiate theALLOCtemplate

with a recursive reference to the entire composition, as in code fragment (3.5

Fully supporting the above idiom is much easier if a constrained parame

ization mechanism (e.g., see Section 3.2.1) is adopted. In the previous exam

the type signature of the expected type parameterParam was known, the technique

would work correctly, sinceParam would be guaranteed to have a member cla

calledNode. This is another instance of the separate compilation capabilities

parameterized code afforded by constrained parameterization. With a constr

parameterization mechanism, knowledge regarding type parameters bec

explicit and the compiler can handle advanced uses of type parameters ind

dently of their values (i.e., regardless of the actual parameter instantiations).

3.4  Mixins and C++ Idiosyncrasies

Up to this point, most of our mixin layers examples have been in C++. This

hardly surprising since C++ is the most widespread object-oriented language

8. It may be possible to inform the compiler that the memberParam::Node is a type, by using the
typename keyword (e.g., see the example in [CE99b], p.27). Nevertheless, few C++ comp
support this idiom for nested classes and it is not clear if it is required by the C++ standard
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mixin layers can be expressed directly in it. This section discusses some prag

issues pertaining to the use of mixins (mixin classes and mixin layers alike

C++. Most of the points raised below concern fine interactions between the m

approach and C++ idiosyncrasies. Others are implementation suggestions.

are all useful knowledge before one embarks on a development effort using

mixins. Additionally, our observations could serve to guide design choices

future parameterization mechanisms in programming languages.

Lack of template type-checking.Templates do not correspond to types in th

C++ language. Thus, they are not type-checked until instantiation time (tha

composition time for mixins). Furthermore, methods of templatized classes

themselves considered function templates (see [Str97], p.330). Function temp

in C++ are instantiated automatically and only when needed. Thus, even after

ins are composed, not all their methods will be type-checked (code will only

produced for methods actually referenced in the object code). This means tha

tain errors (including type mismatches and references to undeclared methods

only be detected with the right template instantiations and method calls. Con

the following example:

template <class Super> class ErrorMixin  : public Super {
public:

...
void sort(FOO foo) {

Super::srot(foo); // misspelled
}

} ;

If client code never calls methodsort , the compiler willnotcatch the mis-

spelled identifier above. This is true even if theErrorMixin template is used to

create classes, and methods other thansort are invoked on objects of those

classes. It is, therefore, a good idea to develop a library with mixin compon
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simultaneously with a large set of regression tests that will exercise most o

library functionality. This is anyway a good engineering practice for detecting r

time errors.

When “subtype of” does not mean “substitutable for”.There are two instances

where inheritance may not behave the way one would expect in C++. First,

structor methods are not inherited. Ellis and Stroustrup ([ES90], p.264) pre

valid reasons for this design choice: the constructor of a superclass does not s

for initializing data members added by a subclass. Often, however, a mixin c

may be used only to enrich or adapt the method interface of its superclasseswith-

out adding data members (e.g., consider our adaptor layers in Section 2.4.1

this case it would be quite reasonable to inherit a constructor, which, unfortuna

is not possible. The practical consequence of this policy is that the only cons

tors that are visible in the result of a mixin composition are the ones present in

outer-most mixin (bottom-most class in the resulting inheritance hierarchy).

make matters worse, constructor initialization lists (e.g.,

constr() : init1(1,2), init2(3) {} )

can only be used to initialize direct parent classes. In other words, all classes

to know the interface for the constructor of their direct superclass (if they are to

constructor initialization lists). This is a problem with mixins since a single mix

class can be used with several distinct superclasses. In this case, one can use

dardized construction interface. A way to do this is by creating a construction c

encoding the union of all possible arguments to constructors in a hierar

Destructors for base classes, on the other hand, are called automatically so

should not be replicated.

The second instance where subtypes are not substitutable in C++ oc

with top-level function templates. Assume a function template of the form:
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template <class Next> void weird_function ( Mixin<Next> arg)
{ ... }

This function template will be instantiated correctly when called with

argument of typeMixin<Base> , but not when called with an argument of typ

NewMixin<Mixin<Base> > . Even though the latter type is a subtype of th

former, subtyping is not involved in the function template instantiation policy

C++. The problem is solved only by ensuring that the template gets instanti

with an argument of typeMixin<Base> (e.g., there is an explicit call to

weird_function with an argument of this type). Once this is done, the functi

generated by the template can be invoked with actual arguments that are sub

of the corresponding formal argument types.

Synonyms for compositions.In the past sections we have used two different id

oms to introduce synonyms for complicated mixin compositions. The first w

based ontypedef  declarations—e.g.,

typedef A < B < C > > Synonym;

The second idiom introduces an empty subclass:

class Synonym : public A < B < C > > { } ;

The first form has the advantage of preserving constructors of componeA

in the synonym. The second idiom is cleanly integrated into the language (e.

can be templatized, compilers create short link names for the synonym, it can

port the fixpoint construction of Section 3.3.2, etc.).

Designating virtual methods.Sometimes C++ policies have pleasant side-effe

when used in conjunction with mixins. An interesting case is that of a mixin u

to create classes where a certain method can be virtual (i.e., dynamically boun

not, depending on the concrete class used to instantiate the mixin. This is d
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the C++ policy of letting a superclass declare whether a method is virtual, w

the subclass does not need to specify this explicitly. Consider a regular mixin

two concrete classes instantiating it:

template <class Super> class MixinA  : public Super {
public:

void virtual_or_not(FOO foo) { ... }
} ;

class Base1 {
public:

virtual void virtual_or_not(FOO foo) {...}
... // methods using “virtual_or_not”

} ;

class Base2 {
public:

void virtual_or_not(FOO foo) {...}
} ;

The compositionMixinA<Base1> designates a class in which the metho

virtual_or_not is virtual. Conversely, the same method is not virtual in th

compositionMixinA<Base2> . Hence, calls tovirtual_or_not in Base1 will

call the method supplied by the mixin in the former case but not in the latter.

In the general case, this phenomenon allows for interesting mixin confi

rations. Classes at an intermediate layer may specify methods and let the i

most layer decide whether they are virtual or not.

Single mixin for multiple uses.The lack of template type-checking in C++ ca

actually be beneficial in some cases. Consider two classesBase1 andBase2 with

very similar interfaces (except for a few methods):

class Base1 {
public:

void regular() {...}
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...
} ;
class Base2 {
public:

void weird() {...}
... // otherwise same interface as Base1

} ;

Because of the similarities betweenBase1 andBase2 , it makes sense to

use a single mixin to adapt both. Such a mixin may need to have methods ca

either of the methods specific to one of the two base classes. This is perfectly f

ble. A mixin can be specified so that it calls eitherregular  or weird :

template <class Super> class Mixin  : public Super {
...

public:
void meth1() { Super::regular(); }
void meth2() { Super::weird(); }

} ;

This is a correct definition and it will do the right thing for both compos

tion Mixin<Base1> and Mixin<Base2> ! What is remarkable is that part of

Mixin seems invalid (calls an undefined method), no matter which composi

we decide to perform. But, since methods of class templates are treated as fun

templates, no error will be signalled unless the program actually uses the w

method (which may bemeth1 or meth2 depending on the composition). That is

an error will be signalled only if the program is indeed wrong. We have used

technique to provide uniform extensions to data structures supporting slightly

ferent interfaces (in particular, the red-black tree and hash table of the SGI im

mentation of the Standard Template Library [SGIWeb]).

Hygienic templates in the C++ standard.The (newly adopted) C++ standard

imposes several rules for name resolution of identifiers that occur inside templ
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Even though we are not aware of any compiler that implements these rules,

useful to have them in mind for future compatibility reasons. Realistically, we

not expect that the template name resolution strategy described in the lang

standard will be commonplace in actual compilers for a few years. (Changes t

entire model of handling templates seem to be required.)

According to the C++ standard, templates have ahygieniccharacter: they

cannot contain code that refers to “nonlocal” variables or methods. Intuitiv

“nonlocal” denotes variables or methods that do not depend on a template par

ter and are not in scope at the global point closest to the template definition

actual rules are quite complicated—e.g., see [Str97], C.13.8). This rule prev

template instantiations from capturing arbitrary names from their instantia

context, which could lead to behavior not predicted by the template author.9

To see how such rules impact mixin-based programming, consider

example of a mixin, calling a method defined in its parameter (i.e., the superc

of the class it will create when instantiated):

class Base {
public:

void meth1() { ... }
} ;

template <class Super> class Mixin  : public Super {
public:

void wrong() { meth1(); }
void correct() { Super::meth1(); }

} ;

void client() {
Mixin < Base > test;

9. This is a well-known problem in programming language research, first identified by wor
hygienic macros [KFFD86].
82



d

in

t this

for

ased

late

ous

y to

r and,

oes

anism

ically

cor-

ith no

er-

com-

hers

get
test.wrong(); //  currently works but shouldn’t, according to the C++ standar
test.correct();

}

Note what is happening in this example: classMixin<Base> inherits

methodmeth1 from its superclass,Base . When templateMixin is compiled, the

declaration of methodmeth1 is nonlocal, hence it cannot be accessed from code

the template body. None of the several compilers we tried was able to detec

error. Nevertheless, qualifying names explicitly (as shown in methodcorrect ) is

a good practice for future compatibility. Note that the naming resolution rules

templates found in the C++ standard have implications on the way template-b

programs should be developed. In particular, changing acorrect class definition

into a class template definition (by turning one of the types used into a temp

parameter) isnot guaranteed to work any more. As can be seen from the previ

example, errors may be quite insidious in the case of mixins: there is no wa

quickly tell that an unqualified method name depends on a template paramete

thus, should be qualified when a regular class is turned into a class template.

As a side observation extending beyond C++, note how this problem d

not occur in the case of constrained parameterization (i.e., a language mech

like that described in Section 3.2). The interface of the superclass is then stat

known and the hygienic approach is enforced by default. In this case, turning a

rect concrete class into a correct parameterized class is guaranteed to work w

changes to the code for its methods.

Compiler support. Not all compilers have good support for parameterized inh

itance (the technique we used for mixins) and nested classes. Although many

pilers were virtually trouble-free in our experiments, we have encountered ot

that will either not accept these language constructs or will require re-coding to
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around some of their peculiarities. Because of the transient nature of this info

tion, we do not include it here, but the interested reader can find it in [SB98c]

There are several important compiler dependencies that are not parti

to mixin-based programming but concern all template-based C++ programs. T

include limitations on the debugging support, error checking, etc. We will not d

cuss such issues as they have been presented before (e.g., [CE99a]). Note

ever, that mixin-based programming is not more complex than regular temp

instantiation. The compiler support issues involved in mixin-based programm

are about the same as those arising in implementing the C++ Standard Tem

Library (STL) [SL95].
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Chapter 4

An Application: the Jakarta Tool Suite

In the previous chapters, we proposed mixin layers as a modularization techn

for object-oriented programs, showed the advantages of mixin layers for im

menting collaboration-based designs, and discussed pragmatic issues rela

language support for mixin layers. In this chapter, we discuss an applicatio

mixin layers to an actual medium-size software project. The project is theJakarta

Tool Suite (JTS)[BLS98]—a set of language extensibility tools, aimed mainly

the Java language. We use mixin layers as the building blocks that form diffe

versions of theJak tool of JTS. Jak is the actual modular compiler in JTS. Diffe

ent versions of Jak can be created using different combinations of layers. La

may be responsible for type-checking, compiling, and/or creating code for a di

ent set of language constructs. Additionally, layers may be used to add new

tionality across a large group of existing classes. In this way, the user can des

language by putting together conceptual language “modules” (i.e., consisten

of language constructs) and implement a compiler for this language as a versi

Jak composed of the mixin layers corresponding to each language module.

rently available layers support the base Java language, meta-programming e

sions, general purpose extensions (e.g., syntax macros for Java), a domain-s

language for data structure programming (P3), etc.
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The choice of the compiler domain as a large-scale test case for mixin

ers is not arbitrary. Compilers are well-understood, with modern compiler c

struction benefitting from years of formal development and stylized des

patterns. The domain of compilers has been used several times in the past in

to demonstrate modularization mechanisms. Selectively, we mention thevisitor

design pattern [GHJV94], which is commonly described using the example

compiler with a class corresponding to each syntactic type that its parser can

ognize (e.g., there is a class for if-statements, a class for declarations, etc.). I

case, the visitor pattern can be used to add new functionality to all classes, wi

distributing this functionality across the classes. Our application of mixin layer

the compilers domain has very much the same modularization flavor. We use m

layers to isolate aspects of the compiler implementation, which can be added

removed at will. Compared to the visitor pattern, mixin layers offer greater ca

bilities—for instance, allowing the addition of state (i.e., member variables)

existing classes.

Overall, the outcome of applying mixin layers to JTS was very success

The flexibility afforded by the layered design is essential in forming compilers

different languages. Additionally, mixin layers helped with the internal organi

tion of the code, so that changes were easily localized. Additions that coul

conceptually grouped together (like those reflecting the language changes

Java 1.0 to Java 1.1) were introduced as new mixin layers, without disrupting

existing design. Due to mixin layers, JTS was easier to implement and has be

easier to maintain.

This chapter discusses JTS and the use of mixin layers in its impleme

tion. Section 4.1 offers some essential background in JTS by describing the

parsers are generated and initial class hierarchies are established based o

guage syntax. Section 4.2 discusses the actual application of mixin layers in 
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4.1  JTS Background: Bali as a Parser Generator1

Bali is the JTS tool responsible for putting together compilers. Although Bali i

component-based tool, in this section we will limit our attention to the more c

ventional grammar-specification aspects of Bali.

With respect to grammar specifications, Bali looks similar to other too

the syntax of a language is specified using an annotated BNF grammar, exte

with regular-expression repetitions. Bali transforms a Bali grammar into a lex

analyzer and parser. For example, two Bali productions are shown below:

definesStatementList as a sequence of one or moreStatements , and the

other definesArgumentList as a sequence of one or moreArguments separated

by commas.

StatementList : ( Statement )+ ;
ArgumentList : Argument ( ‘,’ Argument )*;

Repetitions have been used before in the literature [Wil93, Rea90]. They sim

grammar specifications and allow an efficient internal representation as a li

trees.

Bali productions are annotated by the class of objects that is to be inst

ated when the production is recognized. For example, consider the Bali spec

tion of the JakSelectStmt  rule:

SelectStmt
: IF ‘(’ Expression ‘)’ Statement ::IfStm
| SWITCH ‘(’ Expression ‘)’ Block ::SwStm
;

1. Parts of this section and Section 4.2 are taken from reference [BLS98] (© 1998 IEEE).
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When a parser recognizes an “if” statement (i.e., anIF token, followed by ‘( ‘,

Expression , ‘) ’, and Statement ), an object of classIfStm is created. Simi-

larly, when the pattern defining a “switch” statement (aSWITCHtoken followed by

‘ ( ‘, Expression , ‘) ’, andBlock ) is recognized, an object of classSwStm is cre-

ated. As a program is parsed, the parser instantiates the classes that annota

ductions, and links these objects together to produce the syntax tree of

program.

A Bali grammar specification is a streamlined document. It is a list of

lexical patterns that define the tokens of the grammar followed by a list of an

tated productions that define the grammar itself. A Bali grammar for an elemen

integer calculator is shown in Figure 4.1. From the grammar specification,

// Lexeme definitions
"print" PRINT
"+" PLUS
"-" MINUS
"(" LPAREN
")" RPAREN
"[0-9]*" INTEGER

%% // production definitions
// start rule is Action

Action : PRINT Expr :: Print
;

Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr :: Minus
| MINUS Expr :: UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER :: Integer
;

Figure 4.1: A Bali Grammar for an Integer Calculator
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will generate a lexical analyzer and a parser (we use theJavaCC lexer/parser gen-

erator as a backend).

Associating grammar rules with classes allows Bali to do more than ge

ate a parser. In particular, Bali can deduce an inheritance hierarchy of classe

resenting different pieces of syntax. Consider Figure 4.2(a), which shows r

Rule1 andRule2 . When an instance ofRule1 is parsed, it may be an instance o

pattern1 (an object of classC1), or an instance ofRule2 (an object of class

Rule2 ). Similarly, an instance ofRule2 is either an instance ofpattern2 (an

object ofC2) or an instance ofpattern3 (an object ofC3). From this information,

the inheritance hierarchy of Figure 4.2(b) is constructed: classesC1 andRule2 are

subclasses ofRule1 , andC2 andC3 are subclasses ofRule2 .

Additionally, for each production Bali infers the constructors for synt

tree node classes. Each parameter of a constructor corresponds to a token o

terminal of a pattern.2 For example, the constructor of theIfStm class has the fol-

lowing signature:

2. The tokens need not be saved. However, Bali-produced precompilers presently save all
space—including comments—with tokens. In this way, JTS-produced tools that trans
domain-specific programs will retain embedded comments. This is useful when debugging
grams that have a mixture of generated and hand-written code, and is a necessary fea
transformed programs will subsequently be maintained by hand [TB95].

Figure 4.2: Inferring inheritance hierarchies from grammar rules

Rule1 : pattern1 :: C1
| Rule2
;

Rule2 : pattern2 :: C2
| pattern3 :: C3
;

Rule1

C1 Rule2

C2 C3

(b)(a)
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IfStm( Token iftok, Token lp, Expression exp, Token rp,
Statement stm )

Methods for editing and unparsing nodes are additionally generated.

Although Bali automatically generates an inheritance hierarchy and s

methods for the produced Jak compiler, there are obviously many methods

cannot be generated automatically. These including type checking, reduction

optimization methods. Such methods are syntax-type-specific; we hand-code

methods and encapsulate them as subclasses of Bali-generated classes.

In essence, Bali takes the grammar specification and uses it to produ

skeleton for the compiler of the language. The skeleton has the form of a s

classes organized in an inheritance hierarchy, together with the methods tha

be automatically produced (that is, constructors, editing, and unparsing meth

In other words, Bali produces anapplication framework[JF88] for a compiler. As

we explain in the next section, the framework itself has the form of a compon

that occupies the root of a mixin layer composition—i.e., a class with many ne

classes that will be subsequently refined. The refinements determine the sem

of each syntax type and are expressed as mixin layers.

4.2  Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes lang

implementations from components. Bali can create compilers for a family of

guages, depending on the selection of components used as its input. We u

nameJak for any Bali-generated compiler. Currently available Bali compone

support the base Java language, meta-programming extensions (e.g., code te

operators), general purpose extensions (e.g., syntax macros for Java), a do

specific language for data structure programming (P3 [BCRW98]), and m

Compositions of these components define different variants of Jak: with/with
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meta-programming constructs, with/without extensions for data structure prog

ming, with/without CORBA IDL extensions, and so on. This a classical exam

of the library scalability problem[BSST93, Big94]: there aren features and often

an exponential number of valid combinations (because most components

optional). It is not possible or practical to build all combinations by hand. Inste

the specific instances that are needed can be composed from components en

lating orthogonal units of functionality.

A Bali componenthas two parts: The first is a Bali grammar file (whic

contains the lexical tokens and grammar rules that define the syntax of the

language or language extension). The second is a mixin layer encapsulating

lection of multiple hand-coded classes that contain the reduction, type-chec

etc. methods for each syntax type defined in that grammar file.

To illustrate how classes are defined and refined in Bali, consider four c

crete Bali components:Java is a component implementing the base Java la

guage,SST implements code template operators like tree constructors and exp

escapes3, GScope supplies scoping support for program generation, andP3 imple-

ments a language for data structures. The Jak language and compiler c

defined by a composition of these components. We use the[ ...] operator to desig-

nate component composition—for instance,P3[GScope[SST[Java]]] .

The syntax of a composed language is defined by taking the union of

sets of production rules in each Bali component grammar. The semantics of a

position is defined by composing the corresponding mixin layers. Figure

depicts the class hierarchy of the Jak compiler.AstNode belongs to the JTS ker-

3. Our code template operators are analogous to the backquote/unquote pair of Lisp ope
Unlike Lisp, however, multiple operators exist in JTS—one for each syntactic type (e.g., de
ration, expression, etc.). Multiple constructors in syntactically rich languages are common
[WC93], [Chi96]). The main reason has to do with the ease of parsing code fragments.
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nel, and is the root of all inheritance hierarchies that Bali generates. Using

composition grammar file (the union of the grammar files for theJava , SST,

GScope, andP3 components), Bali generates a hierarchy of classes that con

tree node constructors, unparsing, and editing methods. Each mixin layer

grafts onto this hierarchy its hand-coded classes. These define the reduction

mization, and type-checking methods of tree nodes by refining existing clas

The terminal classes of this hierarchy are those that are instantiated by the ge

ated compiler.

It is worth noting that Figure 4.3 is not drawn to scale. Jak consists of o

500 classes. The number of classes that a mixin layer adds to an existing hier

ranges from 5 to 40. Nevertheless, the simplicity and economy of specifying

using component compositions is enormous: to build the Jak compiler, all

users have to provide to Bali is the equationJak = P3[GScope[SST[Java]]] ,

and Bali does the rest. To compose all these classes by hand (as would be re

by Java) would be very slow, extremely tedious, and error prone. Additionally,

scalability advantages of mixin layers can easily be obtained: when new exten

mechanisms or new base languages are specified as components, a subset

can be selected and Bali will automatically compose a compiler for the desired

guage variant.

Bali component stack Inheritance hierarchy after mixin layers composition

Figure 4.3: The Jak Inheritance Hierarchy

AstNode
P3

GScope

SST

Java

Bali-generated

Subclasses added

classes

by mixin layers
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4.3  Java Mixin Layers for JTS

In Chapter 2, we discussed the applicability of mixin layers in various progra

ming languages. There we explained that Java already supports nested class

the language currently specifies no parameterization mechanism. Furtherm

some of the proposed parameterization mechanisms for Java (e.g., Pizza [O

or Thorup’s virtual types [Tho97]) do not support parameterized inheritance

order to support mixin layers for Bali components in JTS, we implemented

own Java language extensions for parameterization. This section gives a brief

view of the main language constructs.

Our parameterization extensions to Java are geared towards mixin

development (as opposed to general-purpose genericity). Our approach in de

ing and implementing these language constructs was motivated by pragmati

not conceptual considerations: We needed a layer mechanism to facilitate our

development efforts—not to supply the best-designed and robust parameteriz

mechanism for Java. Therefore, our implementation was straightforward, ado

a heterogeneous model of transformation: for each instantiation of a mixin lay

new Java class is created at the source code level. Thus, our approach rese

C++ template instantiation and does not take advantage of the facilities for l

time class adaptation offered by the Java Virtual Machine (see, e.g., the app

of Agesen et al. [AFM97] and the work on binary component adaptation [KH9

Nevertheless, in our context our approach is not necessarily at a disadvan

Mixin layers in Bali component compositions are never reused in the same a

cation (i.e., a single Jak compiler can use at most one instance of a mixin la

Therefore, code bloat (redundancy in generated classes) is not a problem. A

same time, our straightforward approach made for an easier implementation w

contributed to the quicker development of JTS.
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The implementation of our Java extensions for mixin layer supp

occurred concurrently with the development of JTS. In fact, an early version

JTS was used to implement the first version of our Java mixin layers. The

mixin layers were, in turn, used to evolve and further develop JTS, resulting

bootstrapped implementation. (Actually, this is not the only reason why JTS

based on a bootstrapped implementation. Another reason is that the meta-pro

ming capabilities added to Java have been used in the code that implement

itself. The entire JTS system is compiled using a basic version of the Jak com

composed of only a few layers that specify the basic Java language, code tem

operators, syntax macros, etc.)

The syntax of our Java mixin layers is straightforward and resembles t

C++ counterparts. Two new keywords are introduced:layer and realm . The

layer keyword is analogous toclass but defines a mixin layer (i.e., an oute

class that may be parameterized with respect to its superclass). Therealm key-

word is used to specify interface conformance for mixin layers (see Section 3.2

analogy to the Javaimplements keyword. (The reader may recall from Sectio

3.2 that “realm” is another name used in the literature for interfaces of multi-c

components.) Finally, the[...] operator is used to specify layer compositio

The (slightly simplified) general form of a layer definition is shown below, wi

the terminal symbols appearing in bold for clarity:

layer_definition :
layer  layer_name ( param_list ) realm  realm_name [super]
{

declaration_list
}

The syntax for non-terminals in the above definition is straightforwa

param_list is a list of type parameters for the mixin layer. If the parameter l

contains layers, the parameterization can be constrained by specifying
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expected realm of these layers. The optionalsuper construct designates an

extends clause (in much the same way as for regular Java classes). The con

of a mixin layer can only be Java type declarations.

The actual details of our mixin layers implementation in Java are

important, however. We consider of much greater importance the general app

that this implementation represents. What we did in JTS is a prime represent

of adomain-specific languagesapproach to software construction. In the course

creating our medium-size software project (JTS is implemented in about 30K l

of code), we recognized that mixin layers would facilitate our task significan

That is, we saw an opportunity for improving our implementation through ex

language support. It then proved cost-effective to add the extra linguistic const

that were needed (i.e., mixin layers), in the course of implementing the orig

project (i.e., JTS). Our language support for mixin layers is not perfect, but it

fills its task of facilitating the implementation of JTS.

It is our belief that the domain-specific language approach to software c

struction is a promising way to building better software. The designer of a softw

application can (and should) be thinking about language constructs that can h

significant impact in the application’s efficiency, maintainability, or reusabili

Often such constructs can be readily identified, but they are not available in

implementation language of choice. With the advent of language extensib

tools, as well as extensible/reflective programming languages, supplying spe

purpose (ordomain-specific) language support may be the right approach in fig

ing software complexity. JTS itself is a tool aiming at facilitating the implemen

tion of domain-specific languages and language extensions. The use of m

layers in the implementation of JTS is a vivid demonstration of the same parad

that JTS promotes.
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Chapter 5

Related Work

The focus of this dissertation is on the implementation of large-scale object

ented components. Such components give rise to a layered model of software

struction: components form building blocks and entire software applications

built through component composition. Thus, our ideas are similar to many o

research efforts on modular software implementations. In the previous chapte

concentrated on the concrete elements of our approach and demonstrated

novelty. In this chapter we concentrate on theconceptual similaritiesof our ideas

to work in the literature. Hence, the discussion in this chapter is at a more abs

level than that of previous chapters and the emphasis is on positioning our wo

the greater software systems literature.

There are two main axes around which this chapter’s discussion revo

First, our ideas are an outgrowth of a large body of work on theGenVocamodel of

software design and implementation. Mixin layers were originally inspired

GenVoca and are now an essential part of the GenVoca arsenal of implemen

techniques. Second, modular software construction has been studied exten

(often under many different names) and there are clear connections between

work and ours. Section 5.1 discusses the GenVoca model and mixin layers w

it. This provides a “local perspective” of mixin layers and the closely related id
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that led to their development. Section 5.2 positions our work in the overall sp

trum of modular software implementation.

5.1  The GenVoca Model

GenVocais a design and implementation model for defining families of hierarc

cal systems as compositions of reusable components. GenVoca has been em

in the implementation of severalapplication generators(that is, compilers for

domain-specific programming languages). Indeed, the name GenVoca is de

from the first two GenVoca generators that were recognized as such: Ge

[Bat88, BBG+88] and Avoca [OP92]. Many other independently-designed gene

tors in different domains exhibit the characteristics captured by GenVoca: Ro

in data manipulation languages [Vil94, Vil97], Ficus in distributed file syste

[HP94], Brale in host-at-sea buoy systems [Wei90], and ADAGE in real-time a

onics software [CS93, BCGH95]. Thus, GenVoca is based on factoring out

common, domain-independent principles that underlie many different genera

These principles give rise to design techniques as well as implementation g

lines for the construction of GenVoca-based software. Mixin layers form a c

crete implementation technique that follows the GenVoca implementa

guidelines and is applicable to a wide subset of GenVoca designs.

The following subsections describe GenVoca in detail before discussing

connections between GenVoca and various elements of the mixin layers appr

5.1.1  Elements of GenVoca

GenVoca is a methodology—not a programming language or a tool. Thus, it is

expressed as a collection of ideas that aim at influencing software designer
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implementors. The same ideas have formed the general themes in previous

ters of this dissertation. We summarize them briefly below:

• Subsystems are the building blocks of generated systems. Effective software

synthesis requires that systems be constructed from combinations ofsub-

systems(a.k.a.,componentsor layers) consisting of suites of interrelated

functions and/or classes. It is too unwieldy to construct large software

selecting and assembling hundreds or thousands of functions and cl

from a reuse library. Thus, larger units of software encapsulation are ne

• GenVoca is both a design and an implementation methodology. One of the

characterizing features of GenVoca is that designs are straightforwa

mapped into implementations. That is, the modularity of GenVoca com

nents should be preserved at the implementation level, with each de

component being represented by a distinct implementation entity.

• Components import and export standardized interfaces. The key to software

synthesis is composition. Composition is much easier when compo

interfaces correspond to fundamental abstractions of the target domain

these interfaces have been standardized. Standardization encourages

tionally similar components to be plug-compatible and interchangeable.

• Component interfaces are explicitly expressible at the implementation le.

In a GenVoca implementation, interfaces are explicit actual implementa

entities. A GenVocarealm is a set of components that implement a compa

ble interface in different ways. That is, all the components in a realm sh

what is, to a first approximation, the same interface, but have different im

mentations. Because their interfaces are compatible, all the members

realm are plug-compatible and interchangeable. Realms play the role of

signatures in GenVoca implementations and conformance of a compone

a realm is declared explicitly.
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• Relationships between components can be complicated but effort shou

made to keep them simple. Even though GenVoca components can be para

eterized in arbitrary ways, ideally components should have very little kno

edge of other components’ characteristics. In many cases compo

interdependencies collapse into a simplevirtual machinemodel. This means

that one component is expressed in terms of the operations supplie

another, without knowing how this functionality is implemented.

5.1.2  The GenVoca Notation

To better express component compositions, GenVoca offers a simple notatio

representing components, realms, and systems. If a component imports an

component’s interface, it is designated as a parameter. Thus, in the GenVoca

tion, a component is denoted by its name, followed by a bracketed list of the na

of the realms it imports, followed by a colon and the name of the realm it expo

For example, a componentc that imports realm interfaceS and exports realm

interfaceR is expressed asc[S] : R .

A realm is denoted as a set of elements, where each element represe

component belonging to the realm. For example, Figure 5.1 shows three realmR,

S, andT.

RealmR has three components:a, b, andc ; realmS also has three:d, e,

andf ; and realmT has one:g. Componentb imports realm interfaceRand compo-

nentc imports realmS. Because it has two parameters, componentf imports the

R = { a, b[R], c[S] }
S = { d[T], e, f[S, T] }
T = { g }

Figure 5.1: Example of three realms expressed in the GenVoca notation
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two realm interfacesS andT. In essence, this notation treats a realm as if it wer

type. A component from a realm is simply a function of some type, and a com

nent that imports an interface has a parameter of some type. So,d is an object of

typeS, whered has a parameter of typeT.

A type expression(a.k.a.,equation) is a named composition of component

that form a composite system. For example, a type expression that specifies

componentsc , d, andg are combined to form a composite system is:

A = c[d[g]]

Note that the components’ syntactic compatibility is easily checked by v

ifying that each parameter’s imported interface matches the corresponding co

nent’s exported interface. Thus,A is syntactically valid, becausec ’s imported and

d’s exported interface are both realmS, andd’s imported andg’s exported inter-

face are both realmT.

Component semantic compatibility is a more complicated issue. Note

some combinations of components may be syntactically but not semantically

rect. That is, each pair of components in the system imports and exports com

ble interfaces, but the resulting algorithms may be invalid for some reason

verify the semantic correctness of a system, each component must supply do

specific information that describes the assumptions and restrictions on the u

the component (see [BG97] for details).

Consider the meaning of type expressionA, above. GenVoca component

are relatively sophisticated, which makes arefinementmodel appropriate for

understanding component combinations. That is, when two components are

connected, they exchange function, data type, and customization information

one another. In GenVoca, the refinements ofA start at the top componentc , which

provides data type information to componentd; d, in turn, provides its own data

types tog; which then supplies implemented data types and functions back td;
100



way

this

gard-

ften

,

at the

form

mod-

two

t an

exe-

mic/

s are

pile-

they

tial,

al

ent

stati-
and so on. Note that the refinements start at the top component, work their

down to the bottom component, and then back up to the top component. In

way, the presence of one component can alter the behavior of any other—re

less of whether they are “above” it or “below” it in a layer hierarchy.

In addition to imported and exported realm parameters, components o

take additional imported parameters called annotations.Annotations(a.k.a.,non-

realm parametersor configuration parameters) are instantiated by key field names

predicates, timestamp field names, file names, and other constants.

5.1.3  Variations in the GenVoca Design Space

As discussed in Section 5.1.1, GenVoca components map to separate entities

implementation level. Nevertheless, the model does not specify a particular

for these entities. Thus, GenVoca components could correspond to language

ules, classes, binary objects (e.g., COM or CORBA components), etc.

Generally, the spectrum of GenVoca implementations varies along

axes [Bat97]: components may be eithercompositionalor transformational, and

eitherdynamicor static. Compositional components define the source code tha

application will execute; transformational components define code that, when

cuted, will generate the source code that an application will execute. The dyna

static attribute refers to the time of component composition. When component

composed at application run-time, they are dynamic. When composed at com

time, they are static.

The choice of how components should be implemented and when

should be combined reflects a trade-off between factors like optimization poten

implementation effort, and binary compatibility. In particular, transformation

components offer more opportunities for optimization but are harder to implem

than compositional components. At the same time, composing components
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cally eliminates the dynamic overhead of operation dispatch across compo

(which could be significant for fine-grained components), but dynamic comp

tion allows reusing binary components without modification.

5.1.4  GenVoca, Mixin Layers, and Collaborations

At this point, our description of GenVoca is complete and we can see the co

spondence between mixin layers, collaboration-based design, and GenVoca.

The main concepts of GenVoca design and collaboration-based desig

identical. The central idea in both cases is that of a component that interre

many object classes. Classes themselves become of secondary importance.

gle class, however, has functionality that results from the combination of sev

components. The terminology is slightly different (for instance, GenVocalayers

correspond to collaborations; GenVoca has no name for roles).

Under this light, mixin layers are a way to offer programming langua

support for implementing GenVoca designs. Since layer composition occur

application compilation time, and layers specify executable code, mixin layers

ideally suited for implementingstatic compositional GenVoca designs. All of the

elements of GenVoca are immediately identifiable in mixin layers:

• Mixin layers correspond to GenVoca components and form the build

blocks of entire software applications (as discussed in Chapter 2). Mixin

ers are larger units of encapsulation than single classes or functions, ex

as GenVoca prescribes.

• Mixin layers map design components (collaborations) into implementa

entities. In this way, the GenVoca property that the design modularity be

served in the implementation is guaranteed.

• Mixin layers can import and export standardized interfaces. As discusse

Section 3.2, language support for layer interfaces can be provided (e.g.,
102
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extension to the Java interface mechanism). Such explicit interfaces re

sent types for mixin layers and correspond directly to the GenVoca con

of a “realm”.

• Mixin layers provide a simple model of component interaction. Each com

nent can receive type information from other components and rely on

functionality other components provide. The propagation of types and op

tions in both directions (up and down) in a GenVoca composition is effec

through dynamic binding (for operations) and virtual types (for type info

mation, as discussed in Section 3.3).

• The GenVoca notation for type equations is remarkably similar to the n

tion used for mixin layer instantiation. For instance, a mixin layer compo

tion of the form

typedef Collab1 <Collab2 <Collab3 <FinalCollab> > > T ;

is directly analogous to a GenVoca type equation

T = Collab1 [ Collab2 [ Collab3 [ FinalCollab ] ] ]

except for minor syntactic variations (“[...] ” replaces “<...> ”, etc.).

• Non-realm parameters (GenVoca annotations) are directly expressible in

mixin layers framework as layer parameters that are not themselves la

Thus, an arbitrary type could be passed as a parameter to a layer—se

instance, theelement  parameter of theALLOC layer in Section 3.1.1.

5.1.5  Mixin Layers and Dynamic GenVoca Designs

Mixin layers are a straightforward implementation technique for static comp

tional GenVoca designs. An interesting question, however, is whether similar i

can be applied to transformational and/or dynamic GenVoca designs.

To answer the first part of the question, the classification of GenV

designs into transformational and compositional is rather arbitrary and orthog
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to the actual implementation of these designs. A transformational GenVoca de

for an application entails a compositional GenVoca design for the programgener-

ating the application. In other words, transformational GenVoca components

be viewed as compositional components for a GenVoca generator. The co

nents contain code that isexecutedduring the generator runtime, buttransforms

(or just generates) the code of the final application. Regarding mixin layers,

above observation means that their compositional character does not prevent

layers from being employed in a transformational setting. Mixin layers can

building blocks for generators, just as well as for target applications.

Therefore, the interesting question is whether mixin layer principles can

applied todynamicGenVoca designs, where components are composed du

application run-time, when objects only exist in binary form. Clearly, in a dynam

setting there can be no language support for layer specification and compo

(e.g., no type checking or scoping). Nevertheless, there may be benefits from

nizing dynamic components in a GenVoca-like fashion. First, many related ob

can be grouped together and used as a unit. Second, GenVoca components a

flexible as they can be parameterized by other components to form several d

ent combinations.

Indeed, some of the ideas behind mixin layers can be applied in a dyna

context. In this case, the counterpart of mixin layers is adesign patternfor organiz-

ing objects into large scale, composable components. Recall our discussion in

tion 2.3, where we identified encapsulation and mixin-based inheritance as the

essential elements of mixin layers. Although data hiding cannot be achieved

dynamic setting, encapsulation without data hiding is possible through the us

factory methods. That is, a factory object (the dynamic counterpart of a m

layer) may be used to group together many other kinds of objects by defi

methods to create objects of these kinds. In this way, each factory method ca
104
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viewed as representing the class of the objects it creates. The factory object

groups together these “classes”.

Mixin-based inheritance can also be approximated among binary obje

Instead of inheriting members and methods from a superclass, however, a dyn

object (called the “outer” object) can only reuse the operations (methods

another object (called the “inner” object), exporting them as its own without re

fining each operation individually. This dynamic counterpart of inheritance is co

monly calledaggregationand is, for instance, supported by the COM object mod

for binary components [Bro95b]. In fact, because of the dynamic character of

objects, aggregation is analogous to mixin-based inheritance (i.e., the “su

object” is not statically specified at object definition time).

Putting together the above two mechanisms, we can obtain a dyna

counterpart of mixin layers—let us call itdynamic layers. A dynamic layer is a

factory object (i.e., an instance of a concrete factory class [GHJV94]) that cre

objects which can be aggregated. Dynamic layers themselves can be written s

one layer candelegateits factory methods to the layer following it in a compos

tion. (The difference between delegation and aggregation is that in delegatio

“inner” object’s methods are not automatically exported as methods of the “ou

object.) Figure 5.2 shows such a composition of dynamic layers. Note how e

factory method calls the corresponding method of the next layer, while the ob

created by the outermost layer is passed as a parameter to each factory m

(We use the namesAi , Bi for the objects created by layeri.) The reason is that the

generated objects will be aggregated and the inner object of the aggregation

to know what the outermost object is, so that it can dispatch methods appropri
105
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(that is, the aggregated object needs to know which object it is a part of, so th

can direct self-methods accordingly).

Based on the above scheme for dynamic layers, the corresponding g

ated objects become simply a collection of aggregated objects, as shown in F

5.3. ObjectsA1, A2, andA3 are in a one-to-one correspondence, and so areB1, B2,

andB3 (but we may have created arbitrarily many such object triples by repeat

invoking theCreateA andCreateB methods in the dynamic layers). Note tha

for instance, objectA1 aggregates objectA2, which in turn aggregates objectA3.

This design was actually employed in the DiSTiL generator for data str

ture programming [SB97]. DiSTiL is implemented as a language extension for

Intentional Programming system of Microsoft Research [Sim95] and follows

GenVoca paradigm. The components in DiSTiL are transformational with res

to the actual application using the DiSTiL data structure code. That is, compon

collaborate to produce and transform code. From the perspective of the DiS

Figure 5.2: Example of a dynamic layer composition

Layer1
(A1)

(B1)

Layer2
(A1)

(B1)

Layer3
CreateA CreateA CreateA

CreateB CreateB CreateB

Figure 5.3: Example of the objects created by dynamic layers. Outer objec
aggregate inner objects—this is analogous to inheritance in a dynamic sett

A1

A2
A3

B1

B2
B3
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generator, however, the components are compositional and are put tog

dynamically (the exact composition of components is determined at generator

time). Following the pattern shown in Figure 5.2 and Figure 5.3, DiSTiL com

nents are factory objects and create other objects which are aggregated u

simple binary object system.

5.2  Other Related Work

The difficulty of constructing software has been acknowledged early on in

development of Computer Science. In the often-referenced 1968 Software E

neering report of the NATO Science Committee [NR68], the termsoftware crisis

was used to describe the problems of software development. Given the longev

the problem, it is not surprising that a wealth of work has been performed in

general area of software construction. Here we selectively discuss s

approaches that are closely related to our work but have not been describ

detail in the previous chapters.

5.2.1  Modules in High-Level Languages

High-level languages often providemodules(a.k.a.packagesor namespaces) as

fundamental abstractions. Modules can usually encapsulate static entities

functions and types. Unlike classes, however, there is usually no notion of sep

dynamic instances of a module, each with its own state. Since there is a very

number of languages supporting modules, we selectively discuss a few repres

tive approaches. The Adapackagemechanism (e.g., [Bar89]) is the prototypica

modularization scheme for block structured languages. ML [MTH90] provide

very powerful module system, based on polymorphic types. The C++ equivale

a module is anamespace [Str97].
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Mixin layers are probably directly expressible in the latest incarnations

Ada (Ada95 [ISO95]). Standard ML still lacks support for extensible records (i

a counterpart of inheritance). Nevertheless, there is nothing fundamental tha

vents integrating mixin layers in the language. Recent research has brought

of the mixin layers ideas in a modular language framework. Findler and Fla

work [FF98] introduces constructs remarkably similar to mixin layers, in an exp

imental, module-based object system.

The most interesting lesson, however, from comparing mixin layers to

ditional modules is simple: classes are a very powerful modularization mechan

Class nesting allows outer classes to play the role of modules. Using class

modules offers distinct advantages. First, the mechanism of inheritance ca

used to inherit static members (e.g., types) from another class. Second, sta

access control (e.g., using theprivate keyword in C++ or Java) can be used fo

access protection of nested classes. Third, classes are usually better integra

programming languages than modules (e.g., a C++ namespace cannot be pa

terized, while a class can). Having a uniform treatment of classes and mod

simplifies a language and results in a more appealing design. Consequentl

believe that the introduction of namespaces in the C++ language should have

avoided, and better support for class nesting should have been provided in th

guage (enabling classes to fully replace namespaces in all their current funct

5.2.2  Meta-Object Protocols

Meta-Object Protocols(e.g., [FDM94, KRB91]) are reflective facilities for modi-

fying the behavior of an object system, while the system is being used. Pote

modifications include executing arbitrary code around method invocati

(methodwrapping), changing the semantics of inheritance, etc. We will not offe

comprehensive introduction to meta-object protocols here—the interested re
108



the

of

rap-

t-ori-

ction

ta-

to

nit and

ocols

associ-

-

rs in

s can

rap-

s

ined

eems

and

ls.

cing
may consult reference [KRB91] outlining the design and implementation of

CLOS meta-object protocol (the most flexible and powerful representative

meta-object protocols).

Meta-object protocols can be used in several different ways. Method w

pers have been employed to give an object-oriented interface to non-objec

ented legacy systems [JGJ97]. Other applications of wrappers include fun

tracing, invariant checking, and object locking [FDM94]. Nevertheless, me

object protocols solve a different problem than mixin layers. Mixin layers intend

address the issue of grouping classes together so they can be treated as a u

distinguished from other classes or class groups. In contrast, meta-object prot

operate on single classes. Under meta-object protocols, each class has an

atedclass meta-object(an instance of ameta-class), which determines the seman

tics of object system operations on the class. The only grouping that occu

meta-object protocols is that of methods under a single class: a meta-clas

define functionality that affects all methods of a class together (e.g., a single w

per is applied to all of them).

5.2.3  Aspect-Oriented Programming

A methodology that has gained significant popularity lately is that ofaspect-ori-

ented programming (AOP)[KLM +97]. Aspect-oriented programming advocate

decomposing application domains into orthogonalaspects. Aspects are distinct

implementation entities and encapsulate code that would otherwise be intertw

throughout an application. In this respect, aspect-oriented programming s

strikingly similar to the GenVoca model. Just like GenVoca, AOP is a design

implementationmethodology—that is, a set of guidelines and not a set of too

Hence, it is best described in prose, as a collection of ideas that aim at influen

software designers and implementors.
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In this abstract sense, mixin layers qualify as an aspect-oriented implem

tation mechanism. Nevertheless, the parameterization ability of mixin layers

the ability to instantiate a layer in multiple inheritance hierarchies, or multi

times in the same inheritance hierarchy) does not seem to be part of stan

aspect-orientation.

It should be noted that the foremost application of AOP to date is

AspectJ tool [LK98]: atransformationalmeta-object protocol for Java. Its trans

formational character means that AspectJ detects actions of the Java object s

in the program text(e.g., method invocation sites). Then arbitrary code can be e

cuted to modify the program text according to the prescriptions of differ

aspects.

5.2.4  Adaptive OO Components

Another well-known approach to modular OO software development is Lieb

herr’sDemetermethod and adaptive components [Lie96, LP97, ML98]. Adapt

components specify functionality additions based on an abstract pattern of pa

pating classes. The pattern can later be applied to actual classes of an applic

so that their functionality is enhanced. This technique is analogous to identif

collaborations in an object-oriented design, only now collaborations are im

mentation-level entities. Note that mixin layers offer the same flexibility throu

the concept of adaptor layers discussed in Section 2.4.1. An important differen

that adaptor layers are themselves mixin layers. That is, with mixin layers, both

representation of a collaboration and the representation of a collaboration app

tion are the same (namely, mixin layers).

Nevertheless, the work on adaptive components has revealed an intere

direction of research, with no counterpart in our work. Adaptive components

be applied through astrategy. A strategy is a way to specify a path through th
110
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class graph(the graph induced on classes by inheritance and containment rela

ships among them). Along each node in the strategy, extra functionality ca

added. In this way, strategies allow expressing functionality additions for m

classes that are grouped together based on their position in the class grap

instance, one can easily specify new methods to be added to a classand all its

superclasses. Similarly, assume that classA has a member variable that can hold a

instance of classB, which, in turn, may hold an instance of classC. Using strate-

gies, a programmer can describe the path fromA to C in the class graph. (ClassB

does not need to be specified explicitly.) An adaptive component employing

strategy can then define a new method to be added to all three classes. C

mixin layers do not have this ability of identifying classes positionally, but inste

rely on explicitly naming the classes that a layer refines.

5.2.5  Design Patterns for Modularization

The visitor design pattern [GHJV94] can often serve similar modularization p

poses to mixin layers. Visitor is a pattern allowing afunctionalstyle of program-

ming in object-oriented languages: Multiple definitions of the same opera

(applicable to objects of several different classes) can all be grouped togethe

visitor class, instead of being distributed in the individual classes. Visitor is a f

damental modularization mechanism and has been used to implement

sophisticated techniques (e.g., [ML98]). Nevertheless, visitors are different f

mixin layers in two main ways. First, visitors are dynamic in nature, wher

mixin layers are static. This means, for instance, that mixin layers can be us

add state (i.e., member variables) to the classes they define. Additionally, vis

impose a run-time overhead, unlike mixin layers. Second, visitors are not allo

to access the internals of the classes they are extending. In contrast, mixin l

define subclasses of the refined classes. Hence, mixin layers are often a
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access many more implementation details than visitors. For instance, a C++

may export a fairly extensive interface to its subclasses (using theprotected

keyword), without making the same interface public so that its visitors can us

Overall, many design patterns address some of the same issues as

layers. Nevertheless, a mixin layer can be viewed as an elegant way of expres

collaboration pattern among classes so that it is clear at the language level. M

layers are expressed with the aid of the type system, rather than bypassing

that more compile-time checking and optimization is possible.

5.2.6  Subjectivity and Views

Objects written for one application may not be reusable in another, because

interfaces are different, even though both applications may deal with what is

damentally the same object. The principle ofsubjectivityasserts that no single

interface can adequately describe any object; objects are described by a fam

related interfaces [HO93, HOSU94, OH92, OKH+95]. The appropriate interface

for an object is application-dependent (orsubjective).

Subjectivity arose from the need for simplifying programming abstra

tions—e.g., defining views that emphasize relevant aspects of objects and tha

irrelevant details. Ossher and Harrison took an important step further by recog

ing that application-specific views of inheritance hierarchies can be produced a

matically by composing “building blocks” calledextensions[OH92]. An extension

encapsulates a primitive aspect or “view” of a hierarchy, whose implementa

requires a set of additions (e.g., new data and method members) to one or

classes of the hierarchy. A customized “view” of an inheritance hierarchy co

therefore be defined by composing extensions.

Different and powerful approaches to views and software reuse have

proposed by Goguen [Gog86] and Novak [Nov92, Nov97]. Goguen’s work ma
112



s at

efine

cus-

-

ew

lti-

ixin

rs are

re.

d

me-

ns

lity.

oth

oft-

eas-

ude

able

rized

classes

bet-
focusses on mathematical descriptions and axioms, while Novak’s work aim

implementing real applications. The essence of both approaches is to d

generic abstract components that are automatically specialized to present a

tomized concrete implementation. Aview is an isomorphism that defines a map

ping of an object to a customized “perspective”. Interestingly, Novak’s vi

clusters[Nov92, Nov93] encapsulate a suite of interrelated views and map mu

ple data objects simultaneously. Hence, view clusters are closely related to m

layers, providing the same essence of grouping classes together. View cluste

probably the first instance of a mixin layer-like pattern to appear in the literatu

5.2.7  Parameterized Programming

Parameterized programmingallows generic software to be written once, an

instantiated many times for different uses. Goguen identifies two types of para

terization: horizontal and vertical [Gog86].Horizontal parameterizationis used to

factor out common design elements (e.g., constant values or data types).Vertical

parameterizationis used to layer progressively higher programming abstractio

(i.e., abstract machines) in order to progressively implement functiona

Goguen’s library interconnection language, LIL, simultaneously provides b

horizontal and vertical parameterization. This provides a powerful model of s

ware, allowing maximum reuse of existing software artifacts, and greatly incr

ing productivity. Other important parameterized programming systems incl

GLISP [Nov83], LILEANNA [Tra93], PARIS [KRT87], and RESOLVE [SW94].

Our approach to implementing layered designs is not directly compar

to a parameterized programming system. Mixin layers advocate that paramete

modules should be able to encapsulate classes and be viewed themselves as

(i.e., support inheritance). Clearly, powerful parameterization mechanisms can
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ter support mixin layers, but the essential idea is not specific to any paramete

tion system.

5.2.8  Software Reuse

Software reuseis the process of creating new systems from existingartifacts

(a.k.a.,assets) rather than building new systems from scratch [Kru92, Pri9

Reuse has obvious and significant appeal. It is much easier to reuse existing

facts than build new ones from scratch [Sel88]. The most obvious example of

facts that can be reused are source code fragments. But reusable artifacts m

drawn from the full life cycle: requirements, analysis, specifications, designs,

umentation, and object code. Potentially reusable design artifacts include sp

cations written in a design modeling language such as the Unified Mode

Language (UML) and design patterns [GHJV94].

The most naive approach to reuse is scavenging.Code scavenging(a.k.a.,

leverage, cloning [GW94], copying, or cut-and-paste) is an ad hoc technique by

which software engineers accumulate or locate source code of existing systemnot

specifically designed to be reused (calledlegacy systemsif they arestill in use),

find relevant fragments in these systems, and either (1) use themas-is (a.k.a.,

black-box reuse) or (2) manually adapt them for use in new systems (a.k.a.,white-

box reuse).1 Unfortunately, finding relevant source code fragments may requ

considerable searching, and modifying existing systems for reuse requires u

standing them, which itself may require more effort than writing the code fr

scratch. Thus, although credible, the benefits of scavenging are modest [BR8

1. The termdesign scavengingis sometimes used to describe scavenging in which a large block
source code is used, but many of the internal details are deleted, while the global template
design is retained [Kru92]. We avoid using this term, which we consider misleading, becaus
artifact that is being scavenged is still sourcecode, rather than adesign.
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A more successful approach to reuse is based on libraries. Alibrary (a.k.a.,

repositoryor knowledge base[Nei94]) is a collection of artifacts, calledcompo-

nents, specifically designed to be reused. In 1968, McIlroy [McI68] original

envisioned that the components in the library would be functions (a.k.a., sub

tines or procedures), because functions were the only suitable language fe

available at that time. Since then, however, libraries have been so successfu

high level languages have evolved features specifically designed to support co

nents: modules, packages, subsystems, and classes [Kru92].

Reuse can greatly simplify software construction—it has the potentia

provide an order of magnitude increase in programmer productivity. Unfo

nately, it has three major disadvantages:

• Difficulty of construction. It is more difficult to build an object if it is

intended to be reused than if it is not. In general, it is 2 to 3 times more d

cult [Bro95a]. But the payoff of building for reuse can be substantial.

• Limited domain of applicability. Thedomainmay be the most important fac-

tor in reuse success. The domain must be narrow, well-understood,

slowly changing. Biggerstaff estimates that these properties of the dom

account for 80% of the success of software reuse [Big92].

• The feature combinatorics problemor library scalability problem. This was

discussed in Section 2.4 and its essence is that there is an exponential

ber of component combinations, which makes implementing all combi

tions by hand infeasible.

Mixin layers complement other approaches to reuse and provide large-scale

able components. In our experience, it is indeed true that building mixin laye

harder than building non-reusable classes. Nevertheless, the benefits of re

mixin layers are significant. By employing a static parameterization mechan
115
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mixin layers can express an exponential number of combinations without incur

run-time overhead, thus effectively addressing the library scalability problem.
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Chapter 6

Conclusions

This dissertation analyzed techniques for implementing large-scale object-orie

components. In this chapter, we review our central results and primary cont

tions, and discuss a few areas of future research.

6.1  Results and Contributions

Constructing software is a tedious and error-prone task. To alleviate these p

lems, programming language research has aimed at developing powerful mod

ization techniques. Using such techniques, a unit of software functionality ca

expressed independently of the application in which it is used. In this way, s

ware entities become reusable in multiple environments without having to be

implemented. This dissertation concentrated on a novel kind of modulariza

large-scale object-oriented components. Such components can group tog

many traditional object-oriented components (classes or binary objects). A

same time, these components act themselves as object-oriented entities, supp

the mechanism of (parameterized) inheritance.

As we demonstrated in previous chapters, large-scale object-oriented

ponents offer several advantages compared to conventional object-oriented

gramming. We implemented large-scale components by using existing lang

facilities and showed that they result in much simpler implementations than o
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existing techniques. We called our componentsmixin layers, to emphasize their

connection to the commonmixin concept in object-oriented languages. Unfort

nately, support for mixin layers is not ideal in any mainstream programming

guages. We showed what is missing and how the omissions can be corre

Finally, we presented a language extension that adds mixin layers to Java and

it to implement an extensible compiler for the Java language. We review the

crete contributions of our research in more detail below:

• In Chapter 2, we introduced mixin layers and described how they can

implemented in multiple programming languages. We showed that m

layers offer a better way to implement object-orientedcollaboration-based

designs than either application frameworks [JF88] or the technique of V

Hilst and Notkin [VN96a-c, Van97]. Mixin layers preserve the advantages

the VanHilst and Notkin implementation method over application fram

works (i.e., maintain design structure, facilitate reuse, and avoid unneces

dynamic binding). At the same time, mixin layers correct the scalabi

problems of the VanHilst and Notkin technique yielding simpler code a

shorter compositions.

• In Chapter 3, we addressed several programming language issues conce

mixin layers. We showed how type-system support for large-scale com

nents can be provided using two new properties (termeddeep subtypingand

deep interface conformance) in order to express constraints for mixin laye

parameters. We also showed how type propagation problems (virtual typing)

can be solved in a mixin layer framework. Other issues addressed inc

checking the validity of a layer composition through programmer-suppl

propositional properties, and analyzing the interaction of mixin layers a

other language constructs in mainstream OO languages.
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• In Chapter 4 we discussed an actual application that further validates

mixin layers approach. We used mixin layers as the primary implementa

technique in a medium-size project (the JTS tool suite for implement

domain-specific languages). Our experience showed that mixin layers

versatile and can handle components of substantial size. The implement

of mixin layers used in that project was itself specified as an extension to

Java language.

6.2  Future Research

Large-scale software components are promising for the future of software

struction. The area is relatively young and several interesting directions for fu

research can be identified.

• Verifying composition correctness. The methods discussed in Chapter 3 f

verifying the correctness of a composition rely on the programmer supply

simple properties for components. Although this approach can be accept

two problems arise. First, the stated properties may not exactly match

component behavior. That is, the checking is not performed on the ac

code but on the declared properties of the code. Second, the languag

describing requirements may not be expressive enough. Both problems

gest that sophisticated checking mechanisms may be desirable. Prop

could be matched to the actual component behavior more closely, perha

semi-automatic techniques that will verify that components truly satisfy th

stated properties. A richer requirements language could allow the progr

mer to express declaratively the specification of a “correct” compositi

which would later need to be matched to the properties of actual compo

compositions. Formal verification of computing elements is the focus o
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large body of work in Computer Science. Some of the existing or fut

results may provide the right balance of automation and expressibility for

in component-based software.

• Applications and characterization of applicability. Mixin layers could be

applied to several software domains and simplify programming by allow

reusable components to be expressed concisely. Candidate domains in

those for which GenVoca designs have been successful in the past. Neve

less, there is no clear characterization of the domains for which our appro

is suitable. The essence of software is its complexity,1 and software elements

often exhibit many interdependencies. Mixin layers rely on isolating orth

onal features of a domain and expressing them independently. Often, sep

ing different software aspects into independent components is imposs

however. Complexity is inherent in such domains and software canno

decomposed into manageable units. It would be highly valuable to chara

ize common software domains with respect to their amenability to com

nent-based solutions.

• Binary components. Dynamic composition of binary components is a ve

interesting area for future work. We discussed in Chapter 5 how some of

ideas can be adapted to dynamic components. It remains to be shown,

ever, whether the expression of mixin-layer-like constructs in a dynamic

ting is more advantageous than other patterns of parameterizing bi

components. A compelling demonstration (e.g., of the sort presented in

tion 2.4) of the advantages of dynamic layers over other actual techniq

would be particularly useful in establishing the value of our ideas.

1. To quote Charles Simonyi, “Software is distilled complexity.”
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