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Abstract

The main contribution of this paper is the development of a novel approach, based on the theory of

Reproducing Kernel Hilbert Spaces (RKHS), for the problem of Noise Removal in the spatial domain. The

proposed methodology has the advantage that it is able to remove any kind of additive noise (impulse,

gaussian, uniform, e.t.c.) from any digital image, in contrast to the most commonly used denoising

techniques, which are noise-dependent. The problem is castas an optimization task in a RKHS, by

taking advantage of the celebrated Representer Theorem in its semi-parametric formulation. The semi-

parametric formulation, although known in theory, has so far found limited, to our knowledge, application.

However, in the image denoising problem its use is dictated by the nature of the problem itself. The

need for edge preservation naturally leads to such a modeling. Examples verify that in the presence

of gaussian noise the proposed methodology performs well compared to wavelet based technics and

outperforms them significantly in the presence of impulse ormixed noise.
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Adaptive kernel-based image denoising

employing semi-parametric regularization

I. INTRODUCTION

The problem of noise removal from a digitized image is one of the most important ones in digital

image processing. So far, various techniques have been proposed to deal with it. Among the most

popular methodologies are, for example, the wavelet-basedimage denoising methods (which dominate the

research in recent years, see for example [1], [2], [3], [4]), the image denoising methods based on Partial

Differential Equations ([5]), some heuristic methods for impulse detection (see [6], [7], [8]), methods

based on fractal theory [9] and, more recently, methods of non linear modeling using Taylor expansion

approximation techniques [10]. In most cases, the denoising techniques are focused on a particular noise

model (gaussian, impulse, e.t.c.). Thus, they cannot treateffectively more complex models, which are

often met in practical applications. In this paper, we propose a different approach. We treat noise in

a unified framework. Our only assumption is that the image is corrupted by zero mean additive noise,

without any additional information with respect to the noise pdf. To remove the noise, we employ the

well known (especially in pattern analysis) theory of kernels.

In kernel methodology, the notion of the Reproducing KernelHlibert Space (RKHS) plays a crucial

role. A RKHS, introduced in [11], [12], [13], is a rich construct (roughly, a smooth space with an

inner product), which has been proved to be a very powerful tool. Kernel based methods are utilized

in an increasingly large number of scientific areas, especially where non-linear models are required. For

example, in pattern analysis, a classification task of a setX ⊂ R
m is usually reformed by mapping

the data into a higher dimensional space (possibly of infinite dimension)H, which is a Reproducing

Kernel Hilbert Space (RKHS). The advantage of such a mappingis to make the task more tractable,

by employing a linear classifier in the feature spaceH, exploiting Cover’s theorem (see [14]). This is

equivalent with solving a non-linear problem in the original space. Similar approaches have been used

in principal components analysis, in Fisher’s linear discriminant analysis, in clustering, regression and in

many other subdisciplines (see [14], [15] for more). Recently, processing in RKHS is gaining in popularity

within the SP community in the context of adaptive filtering and beam forming [16], [17], [18], [19].

Though there has been some work exploring the use of kernels in the denoising problem, our method-

ology is fundamentally different. In [20] and [21] a supportvector regression approach is considered for
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the gaussian noise case and in [22] the kernel principal components of an image are extracted and this

expansion is truncated to produce the denoising effect. However, in all the aforementioned approaches

the reported results are rather poor.

In our case, we exploit a useful property of RKHS, the so called representer theorem. It states that the

minimizer of any optimization task inH, with a cost function of a certain type, has finite representation in

H. We recast the image denoising problem as an optimization task of this type and use a semi-parametric

variant of the representer theorem to obtain its solution algorithmically. The semi-parametric part of the

methodology is used to explicitly model, and thus preserve,the sharp edges of the image, which are

not respected if only the kernel expansion is considered. The denoising procedure is performed inside a

pixel-centered region that moves from one pixel to the next and the parameters of the model are controlled

adaptively at each region to preserve the fine details and local characteristics of the image.

The paper is structured as follows. In Section II, we briefly describe the key mathematical preliminaries

behind the notion of RKHS and state the representer theorem.In Section III, we present the kernelized

approach to the image denoising problem. The framework, thedetails of the implementation as well

as the algorithmic scheme can be found there. Experiments onimages corrupted by various types of

synthetic noise models (impulse, gaussian, uniform, mixed) are detailed in Section IV and Section V

concludes the paper.

II. M ATHEMATICAL PRELIMINARIES

A. Reproducing Kernel Hilbert Spaces

We start with some basic definitions regarding the property of positive definite matrices and functions,

which play a fundamental role in the study of RKHS.

Definition II.1. (Gram Matrix) LetX be a set. Given a functionκ : X ×X → R and x1, . . . ,xN ∈ X ,

the matrix1 K = (Ki,j)
N with elementsKi,j = κ(xi,xj), for i, j = 1, . . . , N , is called the Gram matrix

(or kernel matrix) ofκ with respect tox1, . . . , xN .

Definition II.2. (Positive Definite Matrix) A real symmetric matrixK = (Ki,j)
N satisfying

vT ·K · v =

N,N
∑

i=1,j=1

vivjKi,j ≥ 0,

1The term(Ki,j)
N denotes a squareN ×N matrix.
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for all vi ∈ R, i = 1, . . . , N , is called Positive Definite. In matrix analysis literature, this is the definition

of the positive semidefinite matrix, but since this is a rather cumbersome term and the distinction between

positive definite and positive semidefinite matrices is not important in this paper, we employ the term

positive definite in the way presented here. Furthermore, the term positive definite was introduced for

the first time by Mercer in kernel context (see [23]).

Definition II.3. (Positive Definite Kernel) LetX be a nonempty set. Then a functionκ : X × X → R,

which for all N ∈ N and all x1, . . . ,xN ∈ X gives rise to a positive definite Gram matrixK is called

a Positive Definite Kernel.

In the following, we will frequently refer to a positive definite kernel simply as kernel. The reason

that the kernels are so popular is that they can be regarded asa "generalized dot product". In fact, any

dot product is a kernel (of course the opposite is not true). Several properties of dot products (such as

the Cauchy-Schwartz inequality) do have natural generalizations to kernels (see [13], [24] and [15]).

Having dealt with the definitions of positivity, we are readyto move on and discuss the main issue

of this section. Consider a Hilbert spaceH of real valued functionsf defined on a setX , with a

corresponding inner product〈·, ·〉H. We will call H as aReproducing Kernel Hilbert Space- RKHS, if

there exists a kernelκ : X × X → R with the following two properties:

1) For everyx ∈ X , κ(x, ·) belongs toH.

2) κ has the so calledreproducing property, i.e.

f(x) = 〈f, κ(x, ·)〉H, for all f ∈ H, (1)

in particularκ(x,y) = 〈κ(x, ·), κ(y, ·)〉H.

It has been shown (see [12], [24]) that to every positive definite kernelκ there corresponds one and

only one class of functionsH with a uniquely determined inner product in it, forming a Hilbert space

and admittingκ as a reproducing kernel. In fact, the kernelκ produces the entire spaceH, i.e.

H = span{κ(x, ·)|x ∈ X},

where the overbar denotes the closure of the respective space. There are several kernels that are used in

practice (see [15]). In this work, we focus on one of the most widely used, the Gaussian Kernel:

κ(x,y) = exp

(

−‖x − y‖2

2σ2

)

, σ > 0,

due to some additional properties that it admits.



4

One of the powerful properties of Kernel-theory is the introduction of non-linearity via a computation-

ally elegant way known as thekernel trick:

"Given an algorithm which is formulated in terms of dot products, one can construct an

alternative algorithm by replacing each one of the dot products with a positive definite kernel

κ."

The kernel trick is based on the use use of the mappingΦ : X → H : Φ(x) = κ(x, ·), which maps any

element ofX to an element ofH. In addition this map has the interesting property:

〈Φ(x),Φ(y)〉H = κ(x,y). (2)

Using the mapΦ, the kernel trick transforms a non linear problem defined onX to a linear one on the

rich spaceH. The next step is to solve the linear problem onH (usually this is an easier task), which,

in turn, provides a non linear solution onX .

Another powerful tool in kernel theory is the application ofthe representer theorem toregularized risk

minimizationproblems (see [15] [14] and [25]):

Theorem II.1 (Representer Theorem). Denote byΩ : [0,∞) → R a strictly monotonic increasing

function, byX a set and byc : (X ×R
2)N → R∪ {∞} an arbitrary loss function. Then each minimizer

f ∈ H of the regularized risk functional

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) + Ω (‖f‖H) (3)

admits a representation of the form

f(x) =
N

∑

n=1

αnκ(xn,x). (4)

In regression and classification tasks,c often admits the form

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) =

N
∑

n=1

L (zn − f(xn)) ,

whereL is a suitable loss function. Usually the regularization term Ω(f) takes the formΩ(f) = 1

2
‖f‖2

H.

In the case of a RKHS produced by the gaussian Kernel (which implies an infinite dimensional space

[15]) it can be shown that2

‖f‖H =

∫

X

∑

n

σ2n

n!2n
(Onf(x))2dx, (5)

2In the cases whereX = R
m, m > 0.
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with O2n = ∆n andO2n+1 = ∇∆n, ∆ being the Laplacian and∇ the gradient operator (see [15]).

The implication of this is that the regularization term "penalizes" the derivatives of the minimizer. This

results to a very smooth solution of the regularized risk minimization problem. In fact, this penalization

occurs in a more influential fashion than thetotal variationscheme, which is often used in wavelet-based

denoising (see for example [26], [27], [28], [29], [30]). Indeed, while the total variation penalizes only

the first order derivatives, the term‖f‖2
H penalizes derivatives of any order, resulting to very smooth

estimates.

The representer theorem plays a central role in solving practical problems of statistical estimation. Its

significance is apparent. Although we are solving an optimization problem and we search for an estimate

of a functionf , in a rich spaceH (possibly infinite-dimensional), the optimal solution lies in the span of

a finite number of particular kernels; i.e., those centered on the training pointsx1, . . . ,xN . In addition,

it has been found that for suitable choices of loss functionsmany of the coefficientsαn in (4) are often

equal to 0. That is, the solution can be sparse, which is in line with our desire to guard against overfitting

[14]. In theSupport Vector Machinesliterature equation (4) is called thesupport vector expansion. This

theorem can be generalized by the addition of some real valued functions (which may indicate some

additional a priori knowledge of the problem), as follows:

Theorem II.2 (Semi-parametric Representer Theorem). Suppose that, in addition to the assumptions of

the previous theorem, we are givenΩ2 : [0,∞) → R another strictly monotonic increasing function and a

set ofM real-valued functions{ψk}M
k=1

: X → R, with the property that theN ×M matrix (ψp(xn))n,p

has rank M. Then anỹf := f + ψ, with f ∈ H andψ ∈ H = span{ψk}, where‖ · ‖ is a norm defined

in H, minimizing the regularized risk functional

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) + Ω (‖f‖H) + Ω2 (‖ψ‖) (6)

admits a representation of the form (e.g. [15])

f̃(x) =

N
∑

n=1

αnκ(xn,x) +

M
∑

k=1

βkψk(x). (7)

III. A PPLICATION OFRKHS THEORY TO THE DENOISING PROBLEM

As it is usually the case, we model the noisy image as

f̂(x, y) = f(x, y) + η(x, y), (8)

for x, y ∈ [0, 1], wheref is the input image andη the additive noise [31]. Given̂f , the objective of

any denoising methodology is to obtain an estimate of the original image. Usually, this is carried out
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Fig. 1. An orthogonalN ×N region centered at a pixel.

by exploiting some extra knowledge about the noise term. In contrast, our method needs no additional

information with respect to the pdf ofη.

A. Problem formulation in RKHS

Let fi,j and f̂i,j be the restrictions off and f̂ on theN ×N orthogonal region centered at the pixel

(i, j) of each image accordingly (N is an odd number, in order to have a central pixel, see figure 1). Our

task is to estimatefi,j, given the samples of̂fi,j. For simplicity, we drop thei, j indices and consider

fi,j and f̂i,j (which from now on will be written asf and f̂ ) as functions defined on[0, 1] × [0, 1] (and

zero elsewhere). The pixel values of the digitized image aregiven byf(xn, ym) andzn,m = f̂(xn, ym),

wherexn = n/(N − 1), ym = m/(N − 1) for n,m = 0, 1, . . . , N − 1.

The idea is to consider our imagef as a function in a RKHSH. We assume that the RKHSH is

generated by the Gaussian kernel:

κ
(

(x, y), (x′, y′)
)

= exp

(

−|x− x′|2 + |y − y′|2
2σ2

)

for σ > 0.

Then to obtainf we may solve the regularized risk minimization problem:

minimize
f∈H,h∈R

c(f, h) =
N−1
∑

n=0

N−1
∑

m=0

|f(xn, ym) + h− zn,m| +
λ

2
‖f‖2

H. (9)

This is reasonable, since we want the denoised image to be smooth (recall that usually a RKHS is

comprised of smooth functions). Note, that a thresholdh has explicitly been used, as it is commonly

used in the support vector regression (SVR) rationale. It turns out that this is important in order to

counteract the effect of the regularizer, which also affects the leveling of the solution (i.e. the regularizer

penalizes the values of the function and its derivatives, see (5)). To solve this problem, we use the
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celebrated representer theorem (theorem II.1), which, now, ensures that the minimizer̃f will have a finite

representation inH +R (whereR = {g : R
2 → R : g(x, y) = h, for h ∈ R}), i.e.

f̃min(·, ·) =

N−1
∑

n=0

N−1
∑

m=0

αn,mκ ((xn, ym), (·, ·)) + h, (10)

where the notationf̃min(·, ·) denotes thatf̃min is a function of two varibles (the same is true for

κ ((xn, ym), (·, ·))). Note that in (9) the cost function used is thel1 norm. This has a two fold advantage.

It guards against outliers and also, it is in line with our desire to obtain as sparse solutions as possible,

as this is well documented in compressed sensing literature.

Having stated the problem, our goal now becomes to estimate the values of the parameters,αn,m,

n,m = 0, . . . , N − 1, h in (10). To this end, (10) is substituted in (9) and the respective optimization

has to be carried out. However, note that the cost function, defined by thel1 norm, is not differentiable.

Hence the notion of the subgradient (see appendix A) has to bemobilized. In this paper the well known

Polyak’s Projected Subgradient Method (see [32]) has been employed. Polyak’s algorithm solves for the

optimal value ofx iteratively and it can be summarized in the following recursion:

xn+1 = xn − γn · ∇c(xn)

‖∇c(xn)‖ , (11)

where c(x) is the cost function of the minimization problem,γn is an arbitrary sequence such that
∑∞

n=0
γn = ∞,

∑∞
n=0

γ2
n < ∞ and∇c(x) is any subgradient ofc at x. To implement the algorithm

in the case of (9), we need to compute any of the subgradients∇c(f, h). Taking into account that

f(x, y) = 〈f, κ ((x, y), (·, ·))〉H, we can deduce (after some algebra) that a suitable choice is:

∇c(f, h) =





∇fc(f, h)

∇hc(f, h)



 , (12)

where∇fc(f, h) and∇hc(f, h) are defined as follows (see Appendix A):

∇cf (f, h) =
N−1
∑

n=0

N−1
∑

m=0

sign (f(xn, ym) + h− zn,m) · κ ((xn, ym), (·, ·)) + λ · f, (13)

∇ch(f, h) =

N−1
∑

n=0

N−1
∑

m=0

sign (f(xn, ym) + h− zn,m) . (14)

Under the above formulation, the proposed denoising algorithm can be summarized in the following

three steps:

• For each pixel(i, j) do:

– Form theN ×N "pixel centered" region̂f .
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(a) (b)

Fig. 2. (a) Lena corrupted by 20% of impulse noise, (b) the denoised result without semi-parametric modelling (PSNR=28,6

dB). Most of the fine details have been lost.

– Solve the minimization problem (9) for that particular region.

– Move to the next pixel.

Note that each pixel is assigned toN2 different values (since it belongs to the each one of theN2 regions

of its neighboring pixels). The actual value that we assign to each pixel is the mean of these values.

Figure 2 shows the results obtained by the previous modelling.

Figure 2 shows the results obtained by the application of theprevious algorithm on Lena. One can

immediately see that the result of the denoising process is ablurry image. The noise has been removed

successively, but in the process most of the fine details havebeen lost. The same problem can be observed

in other kernel-based denoising approaches such as the one in [22] (see figure 4). This is where the semi-

parametric representer theorem comes into the scene.

Remark III.1. We have used the notationH + R, in a rather "naive" way. In Appendix B, a more

rigorous elaboration is provided.

B. Semi-parametric formulation

In this section, we adopt the semi-parametric modeling, as the means to remedy the smoothing effects

associated with the problem formulation of the previous section. Moreover, we will attack the problem

not by ad-hoc techniques, but by a theoretically sound modeling. We consider a set of real valued
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two dimensional functions{ψk, k = 1, . . . ,K}, that can adequately model edges. Various types of

functions can be used. In our experiments we used bivariate polynomials of order 1, functions of the

form Erf(a · x+ b · y + c), where Erf is the error function, i.e.

Erf(x) =
2√
π

∫ x

0

e−t2dt,

(which can approximate ridges - see figure 3(a), (b)) as well as functions of the form Exp(−(a·x+b·y+c)2)
(see figure 3(c)) for several suitable choices ofa, b andc. The regularized risk minimization problem is

now reformulated as follows:

minimize
f∈H, β∈RK ,h∈R4

c(f,h,β) =
1

N2

N−1
∑

n=0

N−1
∑

m=0

∣

∣

∣
f(xn, ym) + h0 + h1xn + h2ym + h3xnym +

K
∑

k=1

βkψk(xn, ym)

−zn,m

∣

∣

∣
+

λ

2N2
‖f‖2

H +
µ

2K

K
∑

k=1

β2
k +

µ1

2

3
∑

l=1

h2
l ,

(15)

where β = (β1, . . . , βK), h = (h0, h1, h2, h3). In this case, the minimizer̃f belongs to the space

H + Ψ + P, whereΨ = span{ψk, k = 1, . . . ,K} andP is the space of the bivariate polynomials of

order 1 (see Appendix B). In other words, we recast problem (9), to account for some extra parameters,

i.e.βk, k = 1, . . . ,K, hi, i = 0, . . . , 3 (that contribute to the preservation of the fine details of the image),

which are also regularized.

The semi-parametric theorem II.2 ensures that the minimizer will have a finite representation of the

form:

f̃(x, y) =
N−1
∑

n=0

M−1
∑

m=0

αn,mκ((xn, ym), (x, y)) +
M
∑

k=1

βkψk(x, y) + h0 + h1x+ h2y + h3xy. (16)

Once more, we can solve this problem using Polyak’s Projected Subgradient Method. The necessary

selected subgradients are given below:

∇c(f,h,β) =



































∇cf (f,h,β)

∇ch0
(f,h,β)

...

∇ch3
(f,h,β)

∇cβ1
(f,h,β)

. . .

∇cβK
(f,h,β)



































, (17)
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Fig. 3. Some of the functionsψk that are used to represent edges. (a) Erf(8x−8y−2), (b) Erf(8x−4), (c) Exp(−(8x−4)2).

where

∇cf (f,h,β) =
1

N2

(

N−1
∑

n=0

N−1
∑

m=0

sign
(

f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+

K
∑

k=1

βkψk(xn, ym) − zn,m

)

· κ ((xn, ym), (·, ·)) + λ‖f‖H

)

, (18)

∇ch0
(f,h,β) =

1

N2

(

N−1
∑

n=0

N−1
∑

m=0

sign
(

f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+

K
∑

k=1

βkψk(xn, ym) − zn,m

)

, (19)

∇chi
(f,h,β) =

1

N2

(

N−1
∑

n=0

N−1
∑

m=0

sign
(

f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+
K

∑

k=1

βkψk(xn, ym) − zn,m

)

· xn + µ1 · hi, (20)

for i = 1, 2,

∇ch3
(f,h,β) =

1

N2

(

N−1
∑

n=0

N−1
∑

m=0

sign
(

f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+
K

∑

k=1

βkψk(xn, ym) − zn,m

)

· xn · ym + µ1 · h3, (21)



11

(a) (b) (c)

Fig. 4. (a) Lena (256× 256) corrupted by impulse noise, (b) the denoised image according to kernel PCA denoising presented

in [22] (PSNR=26,14 dB), (c) the denoised image according tothe proposed method (PSNR=27,43 dB). The difference in quality

is increased significantly if the512 × 512 version of Lena is used.

and

∇cβk
(f,h,β) =

1

N2

(

N−1
∑

n=0

N−1
∑

m=0

sign
(

f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+

K
∑

k=1

βkψk(xn, ym) − zn,m

)

· ψk(xn, ym) +
µ

K
· βk, (22)

for k = 1, . . . ,K.

C. The algorithm

The choice of the regularization parametersµ, µ1 (especially the first one) plays an important role in

the edge-preservation properties of the algorithm. Roughly speaking, we adjustµ and µ1 so that they

take small values around edges and large values in smoother areas (the regularization parameterλ is kept

fixed). The reason for this approach is quite obvious. Small values for the regularization parameters,µ and

µ1, enhance the contribution of the semi-parametric part, which is desirable around edges. On the other

hand, in smoother regions, the effect of the semi-parametric part of the algorithm needs to be suppressed.

Thus, larger values forµ, µ1 are adopted. As the algorithm moves from one pixel to the next(with

user-defined step sizes,s), it decides whether the corresponding pixel-centered region contains edges or

not (in order to compute a proper value forµ and µ1) and it solves the corresponding minimization

problem; that is, either (9) or (15), depending on the "degree of smoothness" of the specific region.

More specifically, we considerL different types of smoothness, whereL is a user defined parameter. The

smoothness of each region is determined by the value of the mean gradient in the region. We consider
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L distinct cases for the regions, depending on how large the respective mean gradient is. Once the type

of region has been decided, we assign values toµ andµ1 accordingly. This is accomplished using the

values of the vectors (L elements each)µ andµ1. The elementsµi andµ1,i contain the regularization

values associated with any region of typei. The input parameters of the algorithm and their usage are

shown in table I.

In order to compute the mean gradient in each one of the regions, and therefore assign each region to

a specific typei, a preprocessing step is first required. The regularizationparametersµ andµ1 are fixed

(i.e., they are given initial values) and the minimization problem (15) is solved for all regions, moving

from one pixel to the next (at this step, each region has sizeN0 ×N0, whereN0 is a user-defined initial

value). This first estimate of the denoised image (which contains much less noise from the original noisy

one) is used to compute the gradients during the second step.The process is repeated, however this time,

each region is assigned to a specific typei, 1 ≤ i ≤ L (according to the "degree" of smoothness). Thus,

the respective valuesµi and µ1,i are used for the regularization. The second image estimate contains

even less noise and the iteration continues (usually no morethan 3 steps are needed). To assign a region

to a specific type, we use the respective mean gradient (obtained after the preprocessing step) and the

information contained in the vectorp (L elements that sum up to 1). If the mean gradient of the region

is larger than the100 · (1 − p1)% of the mean gradients of all regions, then the region is of type 1

(strongest edge). If the region is not of type 1 and its mean gradient is larger than the100 · (1− p2)% of

the mean gradients of all regions, then the region is of type 2, e.t.c. In smooth regions (i.e., type 6 or 5)

we solve (9), while in regions which contain edges we solve the minimization problem (15), using the

correspondingµi andµ1,i depending on the "smoothness degree". The actual size of each pixel-centered

region is defined by the vectorN (see table I). The latter is a vector of dimensionL. Its i-th element, i.e.,

Ni, defines the sizeNi×Ni of the respective window for regions of thei-th type. These are user-defined

variables and the values used in the context of this paper areshown in Tables II-VI. This concept of

variable size windows has previously been used in the context of median filtering.

The last algorithmic issue is how the final values of pixels are computed. Keep in mind that, each

region centered at a specific pixel assigns values to all its neighbors. This means that each pixel is

assigned to as much asN2 discrete values (possibly less, if the step sizes are taken to be larger than 1).

There are two solutions to this problem. The final value of thepixel can be computed either as the mean

of all the aforementioned values, or alternatively, as the value assigned to it by its corresponding region

(i.e., the region centered at the pixel in question). For impulse noise removal, the latter solution seems

to result to slightly better performance.
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Finally, the problem of the selection of functionsψ suitable to represent edges must be addressed.

As mentioned in section III-B, we employed bivariate polynomials of order 1, functions of the form

Erf(a ·x+ b ·y+ c) and functions of the form Exp(−(a ·x+ b ·y+ c)2), for several suitable choices ofa,

b andc. In particular, for regions of size5 × 5, 44 functions are used (mainly rotations and translations

of the ones shown in figure 3), for regions of size7 × 7, 52 functions are used and for9 × 9 regions,

76 functions are considered3. Also, we should emphasize that the choice of the collectionof ψ functions

is far from critical. . It is possible that a larger set of suitable functions would enhance the results, but

it would increase the computing time significantly. In otherwords, these functions can be considered

as rich enough "basis" to account for the different orientations as well as locations of the edges within

each window. The choice of their number and the respective parameters has been the result of extensive

experimentation. The exact values of the parameters are notcritical, as long as a rich enough representation

has been achieved. Relevant details can be found in http://cgi.di.uoa.gr/∼stheodor/ker_den/index.htm.

The algorithm is given below in a more detail.

Kernel Denoising algorithm

1) Input: f̂ (the noisy image),N0, λ, µ0, L, µ, µ2, p, c, N , m, ν, s.

2) (Initialization step) For each pixel do:

a) Take theN0 ×N0 neighborhood of the pixel

b) Solve the optimization problem (15) using the parametersλ, µ0.

c) Put the solution to the denoised imagef1.

d) Move to the next pixel using the steps1

3) SetN = max{N1, . . . NL}
4) for r = 2 to ν do:

a) At each pixel, compute the mean gradient of all pixels in the correspondingN × N neigh-

borhood of imagefr−1.

b) Sort the values of the gradients in a descending order.

c) For each pixel do:

i) Compute the typei of the region according to the mean gradient and the information

stored inp (see table I).

ii) Take theN i × N i neighborhood of the current pixel of the imagefr−1

3Details can be found in "http://cgi.di.uoa.gr/∼stheodor/ker_den/index.htm".
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iii) Set µ = µi andµ1 = µ1,i (see table I).

iv) Take the (noisy) region of imagêf centered at the specified pixel and solve the optimization

problem with the parametersλ, µ, µ2 using the Polyak’s Projected Subgradient Method.

The problem to be solved is either (9) or (15), according to the type of the region. This

information is stored inmi.

v) Put the solution to the denoised imagefr.

vi) Move to the next pixel using the stepsr.

5) Output: The denoised imagefν .

Parameter Type Usage
L integer The number of distinct types of regions depending on the "degree of smoothness".

N0 odd integer The size of the pixel-centered region for the initial step.

µ0 real The value forµ andµ2 for the initial step of the algorithm.

p

This vector is used to detect the type of region.

vector (L elements) If the mean gradient of the region is larger than the100 · (1 − p1)% of the mean gradients

that sum up to 1 of all regions, then the region is of type 1 (strongest edge).If the region is not of type 1

and its mean gradient is larger than the100 · (1 − p2)% of the mean gradients of all

regions, then the region is of type 2 e.t.c.

N vector (L elements)
This vector contains the values ofN (the size of the region) that will be

considered at each pixel according to its type. If the regionis of type i thenN = Ni.

µ vector (L elements)
This vector contains the values ofµ that will be used to each region according to its type.

If the region is of typei thenµ = µi.

µ
2

vector (L elements)
This vector contains the values ofµ2 that will be used to each region according to its type.

If the region is of typei thenµ2 = µ
2,i.

ν integer the number of iteration steps.

s vector (ν elements) the step size from one pixel to the next for each iteration.

λ real the regularization parameter of the optimization problem.

σ real the parameter of the gaussian kernel.

TABLE I

DESCRIPTION OF THE INPUT PARAMETERS OF THE ALGORITHM.
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IV. EXPERIMENTS

The kernelized algorithm was implemented in C. The source code along with all the images used in the

paper can be found in http://cgi.di.uoa.gr/∼stheodor/ker_den/index.htm.4, for the sake of reproducibility

of results [33]. Experiments were conducted on several testimages contained in the Waterloo Image

Repository (see [34]), which were corrupted with various types of synthetic noise. The results were

compared with those obtained using several state of the art wavelet-based models (BiShrink - [3], [4],

[35] / ProbShrink - [36] / BLS-GSM - [2]). The results show that the kernel approach performs almost

as well as BiShrink in the presence of Gaussian noise. However, it outperforms significantly the wavelet-

based methods when impulse or mixed noise is considered. This enhanced performance is obtained at

the cost of higher complexity, which is basically contributed by the optimization step, which is of the

order ofO(MN) per pixel. Thus on a512 × 512 image the algorithm may need up to ten minutes to

complete. Currently, more efficient optimization algorithms are considered. Moreover, the whole setting

is open to a straightforward parallelization, when a parallel processing environment is available. This is

also currently under consideration.

Though the kernel based algorithm presented in this paper, at a first look, has many input parameters (as

shown in Table I), most of them were kept constant. In particular, L = 6, µ = (0.01, 0.1, 0.5, 5, 50, 100),

µ2 = (0, 0, 0, 0.1, 1, 3), µ0 = 0.1, m = (2, 2, 1, 1, 1, 0), ν = 3, s = (3, 3, 1), λ = 1, σ = 3. Loosely

speaking, this means that 6 types of regions are considered:the first two are regions that contain strong

edges (thus smaller values forµ are taken and a large number of iterations is used as the values of m

indicate), the next three are regions with soft edges and thelast type is for smooth regions. In addition

for all the examples we setc = (1, 1, 1, 1, 1, 1). Therefore the only parameters that need to be selected

by the user are the vectorsN andp. The values ofN depend on the amount of the additive noise (as

it is the case in median filters; the larger the noise the larger the values of the elements ofN ), while

the values ofp depend on the percentage of edges in the image. In the experiments we used the values

p = (0.1, 0.1, 0.1, 0.1, 0.2, 0.2) for images with a medium amount of edges (such as lena and peppers)

and the valuesp = (0.2, 0.2, 0.1, 0.1, 0.2, 0.4) for images which contain many edges (such as barbara

and boat). Once more, we emphasize the low sensitivity of thealgorithm to the input parameters.

4In this page the interested reader can found many more test images.
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A. Impulse Noise

Two types of impulse noise are considered. The first, which wecall type 1, is the typical (bipolar)

impulse noise with pdf:

p(z) =



















p, if z = a

p, if z = −a
0, otherwise,

(23)

for some0 ≤ p ≤ 1

2
, a > 0. This means that approximately200p% of the pixels will be corrupted.

The second type of impulse noise (type II) has uniformly distributed impulses, i.e.200p% of the pixels

will be corrupted with additive uniform noise in the range[−a, a], for some0 ≤ p ≤ 1

2
, a > 0. In

both types of impulse noise the proposed algorithm gives excellent results (both visually and in terms of

PSNR). The wavelet-based techniques are known not to be ableto deal with impulse noise effectively.

Results show that our kernel-based noise removal can achieve an improvement of more than 5dB (some

times up to 10dB) in terms of PSNR, over wavelet-based methods and much better visual quality (even

in cases where the difference of PSNRs is relatively small).Furthermore, the kernelized approach gives

significantly enhanced results over the traditional medianfilter, especially in visual quality. Tables II, III

and figures 5-9 report the results of the kernelized denoising algorithm on Lena, Peppers, Barbara and

Boat images corrupted by various types of impulse noise.

B. Gaussian Noise

The pdf of the zero-mean gaussian noise is given by:

p(z) =
1√
2πs

e−
z
2

2s2 , (24)

wherez represents the gray level ands is the standard deviation (the average value ofz is 0). It is well

known that70% of the values ofz will be in the range[−s, s] and95% will be in the range[−2s, 2s].

Most wavelet based methods were developed especially for this kind of noise (mainly because of its

mathematical tractability in both spatial and frequency domains). The BLS-GSM methodology developed

in [2] is reported to be one of the best approaches in gaussiannoise removal. Its performance shows

an average improvement of approximately 1-2 dBs (sometimesmore) over the kernel-based approach.

In many cases, our method seems to have similar behavior (in terms of PSNR) with another very well

known wavelet-based algorithm called BiShrink5 (see [3], [4]). Table IV and figures 10-14 report the

results of the experiments conducted on several images corrupted by gaussian noise.

5This is also true for ProbShrink ([36]).
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C. Uniform Noise

The pdf of the zero-mean uniform noise is given by

p(z) =







1

2a
, if − a ≤ z ≤ a

0, otherwise,
(25)

for a > 0. Its variance isσ2 = a2

3
.

The kernelized denoising algorithm performs relatively well in the presence of uniform noise, but

wavelet-based methods clearly give better results both visually and in terms of PSNR (see Table V).

D. Mixed Noise

We included in the simulated experiments several images corrupted by mixed noise of various types

as specified below:

mixed 1: 20% of impulse noise (type II,a = 128) + gaussian noise withs = 10.

mixed 2: 30% of impulse noise (type II,a = 128) + gaussian noise withs = 20.

mixed 3: uniform noise in the interval[−10, 10] + gaussian noise withs = 10.

mixed 4: uniform noise in the interval[−10, 10] + 10% impulse noise (type II,a = 128).

mixed 5: uniform noise in the interval[−10, 10] + 10% impulse noise (type II,a = 128) + gaussian

noise withs = 10.

The results are reported in table VI and figures 15-17. The kernelized denoising method can effectively

remove any of these types of mixed noise. In the presence of noise with impulse components, the proposed

algorithm clearly outperforms wavelet-based techniques.Even when the enhancement in terms of PSNR

is less than 2dB, the kernel method gives a visually superiorresult.
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Image Noise noisy PSNR Kernel Denoising BiShrink Median

N denoised PSNR

Lena

20% 15,77 dB (5, 5, 5, 5, 5, 5) 34,31 dB 24,57 dB 30.7 dB

30% 14.01 dB (7, 7, 7, 7, 7, 7) 32.07 dB 26.19 dB 28.3 dB

40% 12.76 dB (7, 7, 7, 7, 7, 7) 30.28 dB 26.19 dB 26.97 dB

50% 11.78 dB (7, 7, 7, 9, 9, 9) 28.53 dB 24.43 dB 25.1 dB

Peppers

20% 16,10 dB (5, 5, 5, 5, 5, 5) 32,27 dB 23,24 dB 30.81 dB

30% 14.31 dB (5, 5, 5, 7, 7, 7) 30,48 dB 25.37 dB 29.00 dB

40% 13.08 dB (7, 7, 7, 7, 7, 7) 29,19 dB 24.29 dB 27.64 dB

50% 12.13 dB (7, 7, 7, 9, 9, 9) 27,88 dB 23.30 dB 25.77 dB

Barbara

20% 15,81 dB (5, 5, 5, 5, 5, 5) 26,21 dB 23,45 dB 23.85 dB

30% 14.07 dB (5, 5, 5, 7, 7, 7) 24,92 dB 23.47 dB 22.41 dB

40% 12.78 dB (7, 7, 7, 7, 7, 7) 23,80 dB 22.78 dB 22.00 dB

50% 11.81 dB (7, 7, 7, 9, 9, 9) 22,88 dB 22.28 dB 21.88 dB

Boat

20% 15.92 dB (5, 5, 5, 5, 5, 5) 31,04 dB 24.04 dB 228.37 dB

30% 14.14 dB (5, 5, 5, 7, 7, 7) 28,86 dB 24.73 dB 26.00 dB

40% 12.90 dB (7, 7, 7, 7, 7, 7) 27,62 dB 24.91 dB 25.05 dB

50% 11.92 dB (7, 7, 7, 9, 9, 9) 25,88 dB 23.30 dB 23.31 dB

TABLE II

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGES(WITH DIMENSIONS 512 × 512) CORRUPTED BY

IMPULSE NOISE OF TYPEI, FORa = 100.

(a) (b) (c)

Fig. 5. (a) Lena corrupted by 20% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=35,27 dB), (c)

denoising with BiShrink (PSNR=22.83 dB).
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(a) (b)

(c) (d)

Fig. 6. (a) Lena corrupted by 50% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=30,71 dB), (c)

denoising with BiShrink (PSNR=26.41 dB), (d) denoising with the median filter of MatLab (PSNR=28.08 dB).

(a) (b) (c)

Fig. 7. (a) Peppers corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=30,5 dB),

(c) denoising with BiShrink (PSNR=25.89 dB).
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Image Noise noisy PSNR Kernel Denoising BiShrink

N denoised PSNR

Lena

20% 18.42 dB (5, 5, 5, 5, 5, 5) 35.27 dB 22.83 dB

30% 16.60 dB (5, 5, 5, 7, 7, 7) 33.20 dB 25.90 dB

40% 15.37 dB (7, 7, 7, 7, 7, 7) 31.78 dB 26.76 dB

50% 14.41 dB (7, 7, 7, 9, 9, 9) 30.71 dB 26.41 dB

Peppers

20% 18.68 dB (5, 5, 5, 5, 5, 5) 33.01 dB 22.94 dB

30% 16.93 dB (5, 5, 5, 7, 7, 7) 31.77 dB 25.21 dB

40% 15.68 dB (7, 7, 7, 7, 7, 7) 30.50 dB 25.89 dB

50% 14.68 dB (7, 7, 7, 9, 9, 9) 29.72 dB 25.50 dB

Barbara

20% 18.42 dB (5, 5, 5, 5, 5, 5) 27.26 dB 22.86 dB

30% 16.67 dB (5, 5, 5, 7, 7, 7) 26.09 dB 24.34 dB

40% 15.43 dB (7, 7, 7, 7, 7, 7) 24.81 dB 24.28 dB

50% 14.45 dB (7, 7, 7, 9, 9, 9) 24.29 dB 23.81 dB

Boat

20% 18.56 dB (5, 5, 5, 5, 5, 5) 32.36 dB 22.59 dB

30% 16.77 dB (5, 5, 5, 5, 5, 5) 30.66 dB 25.07 dB

40% 15.52 dB (5, 5, 5, 7, 7, 7) 29.14 dB 25.40 dB

50% 14.55 dB (7, 7, 7, 7, 7, 7) 28.10 dB 25.09 dB

TABLE III

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGES(WITH DIMENSIONS 512 × 512) CORRUPTED BY

IMPULSE NOISE OF TYPEII, FORa = 128.

(a) (b) (c)

Fig. 8. (a) Barbara corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=24,81 dB),

(c) denoising with BiShrink (PSNR=24.28 dB).
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Image Noise noisy PSNR Kernel Denoising BiShrink (DWT) BLS-GSM

N denoised PSNR

Lena

s = 10 28.12 dB (5, 5, 5, 5, 5, 5) 33.98 dB 34.33 dB 35.60 dB

s = 20 22.14 dB (5, 5, 5, 7, 7, 7) 31.12 dB 31.17 dB 32.65 dB

s = 30 18.72 dB (7, 7, 7, 7, 7, 7) 29.11 dB 29.35 dB 30.5 dB

Peppers

s = 10 28.26 dB (5, 5, 5, 5, 5, 5) 32.44 dB 33.62 dB 34.71 dB

s = 20 22.32 dB (5, 5, 5, 7, 7, 7) 30.38 dB 30.67 dB 31.90 dB

s = 30 18.93 dB (7, 7, 7, 7, 7, 7) 28.60 dB 28.71 dB 29.83 dB

Barbara

s = 10 28.11 dB (5, 5, 5, 5, 5, 5) 27.60 dB 32.46 dB 34.02 dB

s = 20 22.16 dB (5, 5, 5, 7, 7, 7) 26.01 dB 28.56 dB 30.27 dB

s = 30 18.73 dB (7, 7, 7, 7, 7, 7) 24.06 dB 26.46 dB 28.05 dB

Boat

s = 10 28.13 dB (5, 5, 5, 5, 5, 5) 31.78 dB 33.29 dB 34.52 dB

s = 20 22.19 dB (5, 5, 5, 7, 7, 7) 29.25 dB 29.68 dB 30.90 dB

s = 30 18.73 dB (7, 7, 7, 7, 7, 7) 27.34 dB 27.79 dB 28.90 dB

TABLE IV

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESCORRUPTED BY GAUSSIAN NOISE.

Image Noise noisy PSNR Kernel Denoising BiShrink (DWT)

N denoised PSNR

lena

±20 26.88 dB (5, 5, 5, 5, 5, 5) 33.00 dB 33.66 dB

±30 23.36 dB (5, 5, 5, 7, 7, 7) 30.81 dB 31.84 dB

±40 20.85 dB (7, 7, 7, 7, 7, 7) 29.41 dB 30.51 dB

Peppers

±20 27.00 dB (5, 5, 5, 5, 5, 5) 31.78 dB 33.05 dB

±30 23.50 dB (5, 5, 5, 7, 7, 7) 30.28 dB 31.31 dB

±40 21.05 dB (7, 7, 7, 7, 7, 7) 28.81 dB 29.96 dB

Barbara

±20 26.87 dB (5, 5, 5, 5, 5, 5) 27.16 dB 31.60 dB

±30 23.35 dB (5, 5, 5, 7, 7, 7) 25.95 dB 29.24 dB

±40 20.87 dB (7, 7, 7, 7, 7, 7) 24.19 dB 27.72 dB

Boat

±20 26.88 dB (5, 5, 5, 5, 5, 5) 31.15 dB 32.48 dB

±30 23.39 dB (5, 5, 5, 7, 7, 7) 29.38 dB 30.40 dB

±40 20.92 dB (7, 7, 7, 7, 7, 7) 27.47 dB 29.02 dB

TABLE V

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESCORRUPTED BY UNIFORM NOISE.
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(a) (b) (c)

Fig. 9. (a) Boat corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=29,14 dB), (c)

denoising with BiShrink (PSNR=25.40 dB).

(a) (b) (c)

Fig. 10. (a) Lena corrupted by gaussian noise withs = 10, (b) denoising using the kernel approach (PSNR=33.98 dB), (c)

denoising with BiShrink (PSNR=34.33 dB).

(a) (b) (c)

Fig. 11. (a) Lena corrupted by gaussian noise withs = 20, (b) denoising using the kernel approach (PSNR=31.12 dB), (c)

denoising with BiShrink (PSNR=31.17 dB).
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(a) (b) (c)

Fig. 12. (a) Lena corrupted by gaussian noise withs = 30, (b) denoising using the kernel approach (PSNR=29.11 dB), (c)

denoising with BiShrink (PSNR=29.35 dB).

(a) (b) (c)

Fig. 13. (a) Barbara corrupted by gaussian noise withs = 20, (b) denoising using the kernel approach (PSNR=26.01 dB), (c)

denoising with BiShrink (PSNR=28.56 dB).

(a) (b) (c)

Fig. 14. (a) Boat corrupted by gaussian noise withs = 20, (b) denoising using the kernel approach (PSNR=29.46 dB), (c)

denoising with BiShrink (PSNR=29.68 dB).
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Image Noise noisy PSNR Kernel Denoising BiShrink (DWT)

N denoised PSNR

Lena

mixed 1 17.98 dB (5, 5, 5, 7, 7, 7) 32.27 dB 25.30 dB

mixed 2 15,68 dB (5, 5, 5, 7, 7, 7) 29.20 dB 27.11 dB

mixed 3 26.89 dB (5, 5, 5, 7, 7, 7) 33.42 dB 33.68 dB

mixed 4 21.18 dB (5, 5, 5, 5, 5, 5) 34.48 dB 23.72 dB

mixed 5 20.35 dB (5, 5, 5, 7, 7, 7) 32.74 dB 25.99 dB

Boat

mixed 1 18.14 dB (5, 5, 5, 7, 7, 7) 30.27 dB 24.58 dB

mixed 2 15.82 dB (5, 5, 5, 7, 7, 7) 26.90 dB 25.62 dB

mixed 3 26.90 dB (5, 5, 5, 7, 7, 7) 31.56 dB 32.51 dB

mixed 4 21.20 dB (5, 5, 5, 5, 5, 5) 32.28 dB 23.55 dB

mixed 5 20.46 dB (5, 5, 5, 7, 7, 7) 30.70 dB 25.53 dB

TABLE VI

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESCORRUPTED BY MIXED NOISE.

(a) (b) (c)

Fig. 15. (a) Lena corrupted by gaussian noise withs = 10 and 20% of impulse noise of type II (a = 128), (b) denoising

using the kernel approach (PSNR=32.27 dB), (c) denoising with BiShrink (PSNR=25.30 dB).

V. CONCLUSIONS

A novel denoising algorithm was presented based on the use ofReproducing Kernel Hilbert Spaces.

The semiparametric Representer Theorem was exploited in order to cope with the problems associated

with the smoothing around edges, which is a common problem inalmost all denoising algorithms.

The comparative study against wavelet based techniques, showed that significantly enhanced results are

obtained in the case of impulse noise. In the case of gaussiannoise, the proposed algorithm performs

quite well (in terms of PSNR the results are similar with BiShrink). In addition the kernelized approach
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(a) (b) (c)

Fig. 16. (a) Boat corrupted by gaussian noise withs = 20 and 30% of impulse noise of type II (a = 128), (b) denoising using

the kernel approach (PSNR=26.90 dB), (c) denoising with BiShrink (PSNR=25.62 dB).

(a) (b) (c)

Fig. 17. (a) Lena corrupted by gaussian noise withs = 10, uniform noise in the interval[−10,+10] and 10% of impulse noise

of type II (a = 128), (b) denoising using the kernel approach (PSNR=32.74 dB),(c) denoising with BiShrink (PSNR=25.53

dB).

can effectively treat any type of mixed noise, resulting at significantly better results than wavelet-based

methods, especially if impulse components are present. Thepreviously reported enhanced performance

is achieved at a higher computational complexity.

APPENDIX A

DIFFERENTIABILITY OF OPERATORS

Since gradients and subgradients of operators defined in Hilbert spaces play a crucial role in several

parts of this paper, it is important to present their formal definitions and their key properties.

Definition A.1. Consider an operatorT : H → R, where (H, 〈·, ·〉H ) is a Hilbert space.T is said to
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be Fréchet differentiable atx0, if there exists ay ∈ H such that

lim
‖h‖H→0

T (x0 + h) − T (x0) − 〈y, h〉H
‖h‖H

= 0, (26)

where‖ · ‖H =
√

〈·, ·〉H is the induced norm. Usually, the elementy ∈ H is called the gradient ofT at

x and the notationy = ∇T (x0) is used to refer to it6.

For convex functions defined on Hilbert spaces the gradient at x0 satisfies the well known first order

condition:

T (z) ≥ T (x0) + 〈∇T (x0), z − x0〉.

for all z. This condition has a simple geometric meaning whenT is finite atx0: it says that the graph

of the affine functionh(z) = T (x0) + 〈∇T (x0), z − x0〉 is a non-vertical supporting hyperplane to the

convex setepiT 7 at (x0, T (x0)). In other words, (a)h(z) defines an osculant hyperplane of the graph of

T at (x0, T (x0)) and (b) all the points of the graph ofT lie at the same side of the hyperplane (see figure

??). This is one of the reasons why the notion of gradient is so important in optimization problems. If

T is not differentiable atx, we can still construct such a hyperplane using a subgradient.

Definition A.2. Let T : H → R be a convex function defined on a Hilbert space (H, 〈·, ·〉H ). A vector

x∗ ∈ H is said to be a subgradient ofT at x0 if

T (z) ≥ T (x0) + 〈x∗, z − x0〉H .

The set of all subgradients off at x0 is called the subdifferential ofT at x0 and is denoted by∂T (x).

As an example, we consider the operatorT (f) = ‖f(x0)−y0‖, defined on a RKHSH, wherex0 ∈ R
n

andy0 ∈ R (in other words we take a simple form of a cost function that employs thel1 norm). Using

the kernel properties (see section II) we takef(x0) = 〈f, κ(x0, ·)〉. ThusT (f) = ‖〈f, κ(x0, ·)〉 − y0‖.

This operator is non differentiable at anyf , such thatf(x0) = y0. The subgradients ofT at f are given

below:

∇T (f)(·) =







sign (f(x0) − y0) · κ(x0, ·), if f : f(x0) 6= y0,

λκ(x0, ·), for any − 1 ≤ λ ≤ 1, if f : f(x0) = y0.
(27)

More on the subject can be found in [37], [38], [39], [40].

6In the literature the notationT ′(x) is also used to refer to the gradient ofT at x.

7epiT denotes the epigraph ofT , i.e. the set{(x, y) : x ∈ H, y ∈ R : T (x) ≤ y}.
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APPENDIX B

SUMS OF HILBERT SPACES

Another concept, that is used in key parts of the paper, is that of the summation of Hilbert Spaces.

Here, we give a more rigorous analysis of this important subject. Note, that there are two distinct cases

of Hilbert space’s summation: thedirect sumand theordinary sum.

Definition B.1. Two Hilbert spaces (H1, 〈·, ·〉H1
) and (H2, 〈·, ·〉H2

) can be combined into another Hilbert

space, called the (orthogonal) direct sum, and denoted byH = H1 ⊕ H2, consisting of the set of all

ordered pairs(x1, x2) wherexi ∈ Hi, i = 1, 2, and inner product defined by

〈(x1, x2), (y1, y2)〉H1⊕H2
= 〈x1, y1〉H1

+ 〈x2, y2〉H2
. (28)

The direct sum can be generalized to infinite sums of Hilbert spaces (see e.g. [38]).

Definition B.2. Consider two Hilbert spaces (H1, 〈·, ·〉H1
) and (H2, 〈·, ·〉H2

) subsets of the larger space

F . We may define the sumH = H1 +H2 ⊆ F , as follows:

x ∈ H, iff there arex1 ∈ H1 and x2 ∈ H2, such thatx = x1 + x2. (29)

ThenH is a Hilbert space with inner product defined by

〈x, y〉H1+H2
= min{〈x1, y1〉H1

+ 〈x2, y2〉H2
, for all x1, y1 ∈ H1, x2, y2 ∈ H2, (30)

such thatx = x1 + x2, y = y1 + y2}.

The sum of Hilbert spaces can be easily generalized to include a finite number of Hilbert spaces (see

[13]). In contrast with the direct sum, this generalizationis not valid, if an infinite number of spaces

is considered. Note that in the special case, where for eachx ∈ H there is a unique decomposition

x1 + x2, x1 ∈ H1, x2 ∈ H2, the two sums coincide (i.e. there is a 1-1 mapping betweenH1 +H2 and

H1 ⊕ H2). Moreover, it is easy to see that in both cases we can define gradients and subgradients of

operators defined in the combined spaceH.

In sections III-A and III-B the sumsH + R andH + Ψ + P were used in a rather superficial way.

However, in light of the information given before, one may easily see that each element ofH+R can be

uniquely decomposed intof +g, wheref ∈ H andg ∈ R (in fact f lies in a finite dimensional subspace

of H) and thus to conclude that the sumH +R can be identified to the spaceH⊕R. Hence, we don’t

have to use the cumbersome inner product (and respective norm) given in (30) to compute the gradients.

Instead, we employ the more elegant inner product associated to the direct sum definition in (28).
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With the same rationale, the spaceH+ Ψ +P can be also identified to the spaceH⊕Ψ⊕P. Indeed,

It is easy to see that if we select the functionsψk properly (i.e. so that they cannot be decomposed into

a finite sum of gaussian kernels and/or bivariate polynomials of order 1), then each̃f ∈ H + Ψ + P is

uniquely decomposed intof + ψ + p wheref ∈ H, ψ ∈ Ψ, p ∈ P.
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