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Abstract

The main contribution of this paper is the development of sehapproach, based on the theory of
Reproducing Kernel Hilbert Spaces (RKHS), for the probldiNaise Removal in the spatial domain. The
proposed methodology has the advantage that it is able toweny kind of additive noise (impulse,
gaussian, uniform, e.t.c.) from any digital image, in castrto the most commonly used denoising
techniques, which are noise-dependent. The problem isasastn optimization task in a RKHS, by
taking advantage of the celebrated Representer Theoreta geimi-parametric formulation. The semi-
parametric formulation, although known in theory, has sddand limited, to our knowledge, application.
However, in the image denoising problem its use is dictatgedhle nature of the problem itself. The
need for edge preservation naturally leads to such a maddiiramples verify that in the presence
of gaussian noise the proposed methodology performs wetipaoed to wavelet based technics and

outperforms them significantly in the presence of impulsenoted noise.
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Adaptive kernel-based image denoising

employing semi-parametric regularization

. INTRODUCTION

The problem of noise removal from a digitized image is onehaf most important ones in digital
image processing. So far, various techniques have beerogedpto deal with it. Among the most
popular methodologies are, for example, the wavelet-besade denoising methods (which dominate the
research in recent years, see for example [1], [2], [3]. [#@ image denoising methods based on Partial
Differential Equations ([5]), some heuristic methods forpulse detection (see [6], [7], [8]), methods
based on fractal theory [9] and, more recently, methods of lmear modeling using Taylor expansion
approximation techniques [10]. In most cases, the derpigichniques are focused on a particular noise
model (gaussian, impulse, e.t.c.). Thus, they cannot g#attively more complex models, which are
often met in practical applications. In this paper, we psmpa different approach. We treat noise in
a unified framework. Our only assumption is that the imageoisupted by zero mean additive noise,
without any additional information with respect to the mosdf. To remove the noise, we employ the
well known (especially in pattern analysis) theory of kdsne

In kernel methodology, the notion of the Reproducing Ketdibert Space (RKHS) plays a crucial
role. A RKHS, introduced in [11], [12], [13], is a rich constt (roughly, a smooth space with an
inner product), which has been proved to be a very powerfull tdernel based methods are utilized
in an increasingly large number of scientific areas, espgaidiere non-linear models are required. For
example, in pattern analysis, a classification task of aiset R™ is usually reformed by mapping
the data into a higher dimensional space (possibly of imfiditmension)H, which is a Reproducing
Kernel Hilbert Space (RKHS). The advantage of such a mapg@ing make the task more tractable,
by employing a linear classifier in the feature spateexploiting Cover’s theorem (see [14]). This is
equivalent with solving a non-linear problem in the oridispace. Similar approaches have been used
in principal components analysis, in Fisher’s linear disgrant analysis, in clustering, regression and in
many other subdisciplines (see [14], [15] for more). Relgeptocessing in RKHS is gaining in popularity
within the SP community in the context of adaptive filteringdebeam forming [16], [17], [18], [19].

Though there has been some work exploring the use of kerméteidenoising problem, our method-

ology is fundamentally different. In [20] and [21] a suppw@eictor regression approach is considered for



the gaussian noise case and in [22] the kernel principal coemts of an image are extracted and this
expansion is truncated to produce the denoising effect.ddew in all the aforementioned approaches
the reported results are rather poor.

In our case, we exploit a useful property of RKHS, the so daigresenter theorenit states that the
minimizer of any optimization task ifi, with a cost function of a certain type, has finite repreg@an
‘H. We recast the image denoising problem as an optimizatslndathis type and use a semi-parametric
variant of the representer theorem to obtain its solutigmithmically. The semi-parametric part of the
methodology is used to explicitly model, and thus presetive,sharp edges of the image, which are
not respected if only the kernel expansion is considered. ddnoising procedure is performed inside a
pixel-centered region that moves from one pixel to the nagtthe parameters of the model are controlled
adaptively at each region to preserve the fine details aral twaracteristics of the image.

The paper is structured as follows. In Section Il, we briefigcribe the key mathematical preliminaries
behind the notion of RKHS and state the representer thedre®ection lll, we present the kernelized
approach to the image denoising problem. The framework,ditails of the implementation as well
as the algorithmic scheme can be found there. Experimentsnages corrupted by various types of
synthetic noise models (impulse, gaussian, uniform, mixad detailed in Section IV and Section V

concludes the paper.

I[l. MATHEMATICAL PRELIMINARIES
A. Reproducing Kernel Hilbert Spaces

We start with some basic definitions regarding the propéryositive definite matrices and functions,

which play a fundamental role in the study of RKHS.

Definition 11.1. (Gram Matrix) LetX be a set. Given a function: X x X — R andxy,...,zy € X,
the matrix K = (K; ;) with elementss; ; = x(z;, z;), fori,j = 1,..., N, is called the Gram matrix
(or kernel matrix) ofx with respect toxy,...,xzy.

Definition 11.2. (Positive Definite Matrix) A real symmetric matrix = (Ki,j)N satisfying

N,N
’UT K-v= E UZ'U]‘KZ'J‘ > 0,
i=1,j=1

The term(K; ;)™ denotes a squar® x N matrix.



forall v; e R,i=1,..., N, is called Positive Definite. In matrix analysis literatuthis is the definition

of the positive semidefinite matrix, but since this is a rathenbersome term and the distinction between
positive definite and positive semidefinite matrices is ngiartant in this paper, we employ the term

positive definite in the way presented here. Furthermore,téim positive definite was introduced for

the first time by Mercer in kernel context (see [23]).

Definition 11.3. (Positive Definite Kernel) Le®’ be a nonempty set. Then a functien X x X — R,
which for all N € N and all 4, ...,xy € X gives rise to a positive definite Gram mati is called

a Positive Definite Kernel.

In the following, we will frequently refer to a positive deitie kernel simply as kernel. The reason
that the kernels are so popular is that they can be regardad'gesneralized dot product”. In fact, any
dot product is a kernel (of course the opposite is not trueyefal properties of dot products (such as
the Cauchy-Schwartz inequality) do have natural genextidias to kernels (see [13], [24] and [15]).

Having dealt with the definitions of positivity, we are reamymove on and discuss the main issue
of this section. Consider a Hilbert spaéé of real valued functionsf defined on a seft, with a
corresponding inner product, -)+,. We will call H as aReproducing Kernel Hilbert SpaceRKHS, if

there exists a kernel : X x X — R with the following two properties:

1) For everyx € X, k(x,-) belongs toH.

2) « has the so calledeproducing propertyi.e.
f(®) = {f,r(x,))n, forall feH, 1

in particularx(z,y) = (k(x, ), k(y, ) x-
It has been shown (see [12], [24]) that to every positive dtefikernelx there corresponds one and
only one class of function®{ with a uniquely determined inner product in it, forming a bditt space

and admittings as a reproducing kernel. In fact, the kerreproduces the entire spat¢ i.e.

H = span{k(x,-)|x € X},

where the overbar denotes the closure of the respectivee spphere are several kernels that are used in

practice (see [15]). In this work, we focus on one of the mostely used, the Gaussian Kernel:

2
x_
H(:B,’y) = exp <_%> , 0 > 0)

due to some additional properties that it admits.



One of the powerful properties of Kernel-theory is the idtrotion of non-linearity via a computation-
ally elegant way known as thieernel trick
"Given an algorithm which is formulated in terms of dot proti) one can construct an
alternative algorithm by replacing each one of the dot pet&lwith a positive definite kernel

n

K.

The kernel trick is based on the use use of the mapg@ingt — H : ®(x) = k(«,-), which maps any

element ofX to an element of{. In addition this map has the interesting property:

(@(x), 2(y))n = k(x,Y)- )

Using the mapd, the kernel trick transforms a non linear problem definedito a linear one on the
rich spaceH. The next step is to solve the linear problem&n(usually this is an easier task), which,
in turn, provides a non linear solution Gt.

Another powerful tool in kernel theory is the applicationtbé representer theorem fiegularized risk

minimizationproblems (see [15] [14] and [25]):

Theorem 1.1 (Representer Theorempenote byQ : [0,00) — R a strictly monotonic increasing
function, byX’ a set and by : (X x R?)Y — RuU {oo} an arbitrary loss function. Then each minimizer

f € H of the regularized risk functional
C ((wlv 21, f(wl))v ceey (IEN, ZNs f(wN)) + 0 (HfHH) (3)
admits a representation of the form
N
fl@) =" ani(zn, ). 4)
n=1
In regression and classification taskspften admits the form

N
c((x1, 21, f(1)), -, (@, 28, fEN)) = Z L(zn = f(®n))
n=1

where/ is a suitable loss function. Usually the regularizatiomtét(f) takes the forn2(f) = 1| |13,
In the case of a RKHS produced by the gaussian Kernel (whigilies an infinite dimensional space

[15]) it can be shown that

UQn
Il = | 30 20" (@) ©)

%In the cases wher&@ = R™, m > 0.



with 02" = A™ and O?>"*t! = VA", A being the Laplacian an¥ the gradient operator (see [15]).
The implication of this is that the regularization term "péres" the derivatives of the minimizer. This
results to a very smooth solution of the regularized riskimipation problem. In fact, this penalization
occurs in a more influential fashion than ttogal variationscheme, which is often used in wavelet-based
denoising (see for example [26], [27], [28], [29], [30]).deed, while the total variation penalizes only
the first order derivatives, the ten{‘nf“%1 penalizes derivatives of any order, resulting to very sinoot
estimates.

The representer theorem plays a central role in solvingtiped@roblems of statistical estimation. Its
significance is apparent. Although we are solving an optitiin problem and we search for an estimate
of a function f, in a rich spacé+ (possibly infinite-dimensional), the optimal solutiondie the span of
a finite number of particular kernels; i.e., those centered on #ieitrg pointszy,...,xy. In addition,
it has been found that for suitable choices of loss functimasy of the coefficients;, in (4) are often
equal to 0. That is, the solution can be sparse, which is gnwith our desire to guard against overfitting
[14]. In the Support Vector Machinelgerature equation (4) is called trspport vector expansioi his
theorem can be generalized by the addition of some real ddiugctions (which may indicate some

additional a priori knowledge of the problem), as follows:

Theorem 11.2 (Semi-parametric Representer Theore@)ppose that, in addition to the assumptions of
the previous theorem, we are givea : [0,c0) — R another strictly monotonic increasing function and a
set of M real-valued functiongy, }2 | : X — R, with the property that theV x M matrix (¢, (xn))n.p
has rank M. Then any := f + ¢, with f € H and v € $ = spar{¢;,}, where| - || is a norm defined

in $, minimizing the regularized risk functional

c((z1, 21, f(21)), -, (N, 28, f(n) + Q[ fll) + Q2 ((191]) (6)

admits a representation of the form (e.g. [15])
~ N M
f@)=>" ank(@n, @)+ (). 7
n=1 k=1

[1l. APPLICATION OFRKHS THEORY TO THE DENOISING PROBLEM

As it is usually the case, we model the noisy image as

f(x,y) :f(x,y)+77(:c,y), 8)

for x,y € [0,1], where f is the input image and) the additive noise [31]. Giverf, the objective of

any denoising methodology is to obtain an estimate of thgiral image. Usually, this is carried out



Fig. 1. An orthogonalV x N region centered at a pixel.

by exploiting some extra knowledge about the noise term.olmrast, our method needs no additional

information with respect to the pdf of.

A. Problem formulation in RKHS

Let f; ; and f” be the restrictions of and f on the N x N orthogonal region centered at the pixel
(i,7) of each image accordingly\ is an odd number, in order to have a central pixel, see figur®dj)
task is to estimatef; ;, given the samples ofm-. For simplicity, we drop the, j indices and consider
fi; and f” (which from now on will be written ag’ and f) as functions defined of), 1] x [0,1] (and
zero elsewhere). The pixel values of the digitized imagegaren by f(z,, ym) andz, , = F(@ns ym),
wherez, =n/(N — 1), yp, =m/(N —1) for n,m =0,1,...,N — 1.

The idea is to consider our imagéas a function in a RKHS{. We assume that the RKHE is
generated by the Gaussian kernel:
=P Aly -y

202

5 (@), (2, 9) = exp( ) for o> 0.

Then to obtainf we may solve the regularized risk minimization problem:
N—1N-1

A
minimize h) = h— £ 113, 9
minimize o(f,h) = 3 > |/ (@nsym) +h = znml + SIS ©)
n=0 m=0
This is reasonable, since we want the denoised image to betknfeecall that usually a RKHS is
comprised of smooth functions). Note, that a threshioldas explicitly been used, as it is commonly
used in the support vector regression (SVR) rationale. ristwout that this is important in order to
counteract the effect of the regularizer, which also afféke leveling of the solution (i.e. the regularizer

penalizes the values of the function and its derivatives, &9). To solve this problem, we use the



celebrated representer theorem (theorem I1.1), which, rasures that the minimizgrwill have a finite

representation irt{ + R (whereR = {g :R? - R:g(x,y) = h, for h €R}), i.e.
—1N-1

fmln 7' Z Z Onmk xnaym) ( 7)) + h, (10)

n=0 m=0

where the notationfmin(-,-) denotes thatf}mn is a function of two varibles (the same is true for
K ((Zn,ym), (+,+))). Note that in (9) the cost function used is thenorm. This has a two fold advantage.
It guards against outliers and also, it is in line with ouride$o obtain as sparse solutions as possible,
as this is well documented in compressed sensing literature

Having stated the problem, our goal now becomes to estinmgevalues of the parameters,, ,,,
n,m =20,...,N —1, h in (10). To this end, (10) is substituted in (9) and the reipemptimization
has to be carried out. However, note that the cost functiefineld by thel; norm, is not differentiable.
Hence the notion of the subgradient (see appendix A) has tadi@lized. In this paper the well known
Polyak’s Projected Subgradient Method (see [32]) has begioyed. Polyak’s algorithm solves for the
optimal value ofx iteratively and it can be summarized in the following redoms

o Ve(zy,)

where ¢(x) is the cost function of the minimization problem, is an arbitrary sequence such that

(11)

> 0 = 00, Yool 2 < oo and Ve(z) is any subgradient of at z. To implement the algorithm
in the case of (9), we need to compute any of the subgradi®entg, 2). Taking into account that

f(x,y) = (f,x((=,9),(-,-)))», we can deduce (after some algebra) that a suitable choice is

Ve(f,h) = Vil ) : (12)
vhc(fv h)
whereVc(f,h) andVc(f, h) are defined as follows (see Appendix A):

N-1N-1

Ver(f,h) Z > " sign (f (@n, Ym) + h = znm) - £ (@0, Ym), () + X £, (13)
n=0 m=0
N-1N-1

VCh(f, h) = sign (f(-rna ym) +h— Zn,m) . (14)
n=0 m=0

Under the above formulation, the proposed denoising dlyarican be summarized in the following

three steps:
« For each pixel:, j) do:

— Form theN x N "pixel centered" regiory.



(@) (b)

Fig. 2. (a) Lena corrupted by 20% of impulse noise, (b) theodssd result without semi-parametric modelling (PSNR§28,

dB). Most of the fine details have been lost.

— Solve the minimization problem (9) for that particular @gi

— Move to the next pixel.

Note that each pixel is assigned A&’ different values (since it belongs to the each one ofXferegions
of its neighboring pixels). The actual value that we assigreach pixel is the mean of these values.
Figure 2 shows the results obtained by the previous modellin

Figure 2 shows the results obtained by the application ofptleious algorithm on Lena. One can
immediately see that the result of the denoising processhisiray image. The noise has been removed
successively, but in the process most of the fine details bega lost. The same problem can be observed
in other kernel-based denoising approaches such as the ¢22]i(see figure 4). This is where the semi-

parametric representer theorem comes into the scene.

Remark Ill.1. We have used the notatioH + R, in a rather "naive" way. In Appendix B, a more

rigorous elaboration is provided.

B. Semi-parametric formulation

In this section, we adopt the semi-parametric modelinghasteans to remedy the smoothing effects
associated with the problem formulation of the previoudisac Moreover, we will attack the problem

not by ad-hoc techniques, but by a theoretically sound niagleM/e consider a set of real valued



two dimensional functiondvy, k = 1,..., K}, that can adequately model edges. Various types of
functions can be used. In our experiments we used bivarialgnpmials of order 1, functions of the

form Erf(a -z + b -y + ¢), where Erf is the error function, i.e.

2 T
Erf(x) = —/ e tdt,
(=) VT Jo
(which can approximate ridges - see figure 3(a), (b)) as vedliactions of the form Exp-(a-z+b-y+c)?)

(see figure 3(c)) for several suitable choices:pb andc. The regularized risk minimization problem is

now reformulated as follows:

N—-1N-1 K
sepMinimize - e(f, k. B) = N go mZ:O (@ yim) + o + b + oy + hawayn + ;ﬁmm,ym)
A 9 1z & 2 1 & 2
—Znm| + WHfHH + ﬁ;ﬁk + 7;h,
(15)
where 8 = (f1,...,0x), h = (ho, h1,he,h3). In this case, the minimizef belongs to the space

H+ ¥ + P, where¥ = span{v, k=1,..., K} andP is the space of the bivariate polynomials of
order 1 (see Appendix B). In other words, we recast probleimt@account for some extra parameters,
ie.0, k=1,...,K, h;,i =0,...,3 (that contribute to the preservation of the fine details efithage),
which are also regularized.

The semi-parametric theorem 1.2 ensures that the minimik have a finite representation of the

form:
~ N—-1M-1 M
F@,9) = anmbl(@n, ym), (@,9)) + > Bevbe(,y) + ho + haz + hoy + hazy.  (16)
n=0 m=0 k=1

Once more, we can solve this problem using Polyak’s PrajeSigbgradient Method. The necessary

selected subgradients are given below:

Ve (f,h, B)
Ve, (f, h, B)

VC(f,h,B) - vchg(fvhvﬁ) ) (17)
Veg, (f,h, B)

Veg, (f b, B)
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(@) (b) (©)

Fig. 3. Some of the functiong;, that are used to represent edges. (aj&rf- 8y —2), (b) Erf(8z —4), (c) Exp(—(8z —4)?).

where
1 N—-1N-1
VCf(f, h,B) ~ N2 Sign(f(:l?n, Ym) + ho + h1xn + haym + h3Tnym
n=0 m=0
K
+ 3 Bur(n, Ym) = ) - (s ) () + A 1) (18)
k=1
1 N—-1N-1
Vep, (f7 h,,@) :m< Z Z sign(f(xn, ym) + ho + hixy + hotm + N3Tnym
=0 m=0
K
+ Z ﬂk¢k(xna ym) - Zn,m)a (19)
k=1
1 N—-1N-1
vchi(fa h, B) :m< Z Z SZgn(f(mru ym) + ho + hixn + hoYm + h3xnYm
n=0 m=0
K
+ Z 5]#/%(377“ ym) - Zn,m) C Iyt hi, (20)
k=1
fori=1,2,
1 N—-1N-1
vchs (fv h,ﬂ) :m< Z Z Sign(f(xn, ym) + ho + hizy + haym + h3xnym
n=0 m=0

K
+ Z ﬂk¢k(xna ym) - Zn,m) “Tn  Ym + H1 - hs, (21)
k=1
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@ (b) (©)

Fig. 4. (a) Lena%56 x 256) corrupted by impulse noise, (b) the denoised image acugridi kernel PCA denoising presented
in [22] (PSNR=26,14 dB), (c) the denoised image accordindpégroposed method (PSNR=27,43 dB). The difference intgual

is increased significantly if the12 x 512 version of Lena is used.

and
N—1N-1

1 .
vcﬁk (fa h’:ﬁ) :m< Z Z SZgn(f(xn7 ym) + hO + hlmn + h?ym + h3$nym

n=0 m=0

K
+ Z ﬂk‘d)k‘(xnv ym) - Zn,m) : Q/)k(xn, ym) +

k=1

B (22)

==

fork=1,..., K.

C. The algorithm

The choice of the regularization parametgrs:; (especially the first one) plays an important role in
the edge-preservation properties of the algorithm. Rougpkaking, we adjust and i; so that they
take small values around edges and large values in smoathes @he regularization parameteis kept
fixed). The reason for this approach is quite obvious. Snalles for the regularization parametergnd
11, enhance the contribution of the semi-parametric partclwvis desirable around edges. On the other
hand, in smoother regions, the effect of the semi-parampéit of the algorithm needs to be suppressed.
Thus, larger values fop, pq are adopted. As the algorithm moves from one pixel to the exrh
user-defined step sizes), it decides whether the corresponding pixel-centeretbregontains edges or
not (in order to compute a proper value farand p1) and it solves the corresponding minimization
problem; that is, either (9) or (15), depending on the "degwé smoothness" of the specific region.
More specifically, we considel different types of smoothness, wheltds a user defined parameter. The

smoothness of each region is determined by the value of tte mgeadient in the region. We consider
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L distinct cases for the regions, depending on how large thigertive mean gradient is. Once the type
of region has been decided, we assign valueg #nd i, accordingly. This is accomplished using the
values of the vectors/( elements eachj and ;. The elementg:,; andy; ; contain the regularization
values associated with any region of typeThe input parameters of the algorithm and their usage are
shown in table I.

In order to compute the mean gradient in each one of the regand therefore assign each region to
a specific type, a preprocessing step is first required. The regularizgitamameterg: and ., are fixed
(i.e., they are given initial values) and the minimizatiolgdem (15) is solved for all regions, moving
from one pixel to the next (at this step, each region has Size& Ny, whereNy is a user-defined initial
value). This first estimate of the denoised image (whichaiostmuch less noise from the original noisy
one) is used to compute the gradients during the second®tepprocess is repeated, however this time,
each region is assigned to a specific typé < i < L (according to the "degree" of smoothness). Thus,
the respective valueg; and 1, ; are used for the regularization. The second image estin@ttaios
even less noise and the iteration continues (usually no mhawe 3 steps are needed). To assign a region
to a specific type, we use the respective mean gradient (@otafter the preprocessing step) and the
information contained in the vectgr (L elements that sum up to 1). If the mean gradient of the region
is larger than thel00 - (1 — p;)% of the mean gradients of all regions, then the region is pétg
(strongest edge). If the region is not of type 1 and its meaxignt is larger than th&00 - (1 — p3)% of
the mean gradients of all regions, then the region is of typetx. In smooth regions (i.e., type 6 or 5)
we solve (9), while in regions which contain edges we solerttinimization problem (15), using the
corresponding:; and . ; depending on the "smoothness degree”. The actual size bfpeeel-centered
region is defined by the vectd¥ (see table I). The latter is a vector of dimensionits i-th element, i.e.,
N;, defines the sizé&V; x N; of the respective window for regions of thi¢h type. These are user-defined
variables and the values used in the context of this papestawen in Tables II-VI. This concept of
variable size windows has previously been used in the coofemedian filtering.

The last algorithmic issue is how the final values of pixels eomputed. Keep in mind that, each
region centered at a specific pixel assigns values to all gighibors. This means that each pixel is
assigned to as much @¢” discrete values (possibly less, if the step sizes are takée farger than 1).
There are two solutions to this problem. The final value ofgghel can be computed either as the mean
of all the aforementioned values, or alternatively, as thkier assigned to it by its corresponding region
(i.e., the region centered at the pixel in question). Foruls@ noise removal, the latter solution seems

to result to slightly better performance.
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Finally, the problem of the selection of functions suitable to represent edges must be addressed.
As mentioned in section 1lI-B, we employed bivariate polgmals of order 1, functions of the form
Erf(a-2+b-y+c) and functions of the form EXp-(a-x +b-y +c)?), for several suitable choices of
b andc. In particular, for regions of sizé x 5, 44 functions are used (mainly rotations and translations
of the ones shown in figure 3), for regions of sizex 7, 52 functions are used and forx 9 regions,

76 functions are considerédAlso, we should emphasize that the choice of the colleation functions

is far from critical. . It is possible that a larger set of abie functions would enhance the results, but
it would increase the computing time significantly. In otheords, these functions can be considered
as rich enough "basis" to account for the different orieotet as well as locations of the edges within

each window. The choice of their number and the respectivanpeters has been the result of extensive
experimentation. The exact values of the parameters amitiotll, as long as a rich enough representation
has been achieved. Relevant details can be found in hgfpdicioa.gri-stheodor/ker_den/index.htm.

The algorithm is given below in a more detail.

Kernel Denoising algorithm
1) Input: f (the noisy image)No, A, uo, L, g, po, p, ¢, N, m, v, s.
2) (Initialization step) For each pixel do:
a) Take theNy x Ny neighborhood of the pixel
b) Solve the optimization problem (15) using the parameiers,.
c) Put the solution to the denoised image
d) Move to the next pixel using the step
3) SetN = max{Ny,...Np}
4) forr =2 to v do:
a) At each pixel, compute the mean gradient of all pixels & ¢brrespondingV x N neigh-
borhood of imagef, ;.
b) Sort the values of the gradients in a descending order.
c) For each pixel do:
i) Compute the type of the region according to the mean gradient and the infaomat
stored inp (see table ).

i) Take the N; x N; neighborhood of the current pixel of the imagie {

3Details can be found in "http://cgi.di.uoa.gigtheodor/ker_den/index.htm".
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i) Setp=p; andu; = p, ; (see table I).

iv) Take the (noisy) region of imaggcentered at the specified pixel and solve the optimization

problem with the parameters p, uo using the Polyak’s Projected Subgradient Method.
The problem to be solved is either (9) or (15), according ®tipe of the region. This

information is stored inm;.

v) Put the solution to the denoised image

vi) Move to the next pixel using the steyp.

5) Output: The denoised imagg.

Parameter Type Usage
L integer The number of distinct types of regions depending on ther&egf smoothness".
No odd integer The size of the pixel-centered region for the initial step.
1o real The value fory and u2 for the initial step of the algorithm.
This vector is used to detect the type of region.
vector (L elements)| If the mean gradient of the region is larger than 198 - (1 — p1)% of the mean gradientg
p that sum up to 1 | of all regions, then the region is of type 1 (strongest edtjeghe region is not of type 1
and its mean gradient is larger than tH# - (1 — p2)% of the mean gradients of all
regions, then the region is of type 2 e.t.c.
This vector contains the values &f (the size of the region) that will be
N vector (L elements) ) ] ) ] .
considered at each pixel according to its type. If the redgsoof type: then N = N;,.
This vector contains the values pfthat will be used to each region according to its typ
" vector (L elements) o
If the region is of typei thenpy = p,.
This vector contains the values pf that will be used to each region according to its ty|
o vector (L elements) o
If the region is of typei then uz = p, ;.
v integer the number of iteration steps.
vector (v elements)| the step size from one pixel to the next for each iteration.
A real the regularization parameter of the optimization problem.
o real the parameter of the gaussian kernel.

pe.

TABLE |

DESCRIPTION OF THE INPUT PARAMETERS OF THE ALGORITHM
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IV. EXPERIMENTS

The kernelized algorithm was implemented in C. The sourde @ong with all the images used in the
paper can be found in http://cgi.di.uoa-gstheodor/ker_den/index.htnfor the sake of reproducibility
of results [33]. Experiments were conducted on severaliteages contained in the Waterloo Image
Repository (see [34]), which were corrupted with varioupety of synthetic noise. The results were
compared with those obtained using several state of the arehet-based models (BiShrink - [3], [4],
[35] / ProbShrink - [36] / BLS-GSM - [2]). The results show tithe kernel approach performs almost
as well as BiShrink in the presence of Gaussian noise. Hawi\aitperforms significantly the wavelet-
based methods when impulse or mixed noise is considered. élttianced performance is obtained at
the cost of higher complexity, which is basically contrigaitby the optimization step, which is of the
order of O(M N) per pixel. Thus on &12 x 512 image the algorithm may need up to ten minutes to
complete. Currently, more efficient optimization algomith are considered. Moreover, the whole setting
is open to a straightforward parallelization, when a peafgltocessing environment is available. This is
also currently under consideration.

Though the kernel based algorithm presented in this papafist look, has many input parameters (as
shown in Table I), most of them were kept constant. In paldicl = 6, . = (0.01,0.1,0.5,5, 50, 100),
ty = (0,0,0,0.1,1,3), po = 0.1, m = (2,2,1,1,1,0), v = 3, s = (3,3,1), A = 1, 0 = 3. Loosely
speaking, this means that 6 types of regions are considtredirst two are regions that contain strong
edges (thus smaller values forare taken and a large number of iterations is used as thesvafua
indicate), the next three are regions with soft edges andatttetype is for smooth regions. In addition
for all the examples we set= (1,1,1,1,1,1). Therefore the only parameters that need to be selected
by the user are the vectolS andp. The values ofNV depend on the amount of the additive noise (as
it is the case in median filters; the larger the noise the tatige values of the elements @¥), while
the values ofp depend on the percentage of edges in the image. In the ex@dsmwe used the values
p = (0.1,0.1,0.1,0.1,0.2,0.2) for images with a medium amount of edges (such as lena andcepgpp
and the valuep = (0.2,0.2,0.1,0.1,0.2,0.4) for images which contain many edges (such as barbara

and boat). Once more, we emphasize the low sensitivity ofitherithm to the input parameters.

“In this page the interested reader can found many more tegfeisn
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A. Impulse Noise

Two types of impulse noise are considered. The first, whichcaletype 1 is the typical (bipolar)
impulse noise with pdf:
p, if z=a
p(z) =13 p, if z=—a (23)
0, otherwise,
for some0 < p < % a > 0. This means that approximatep0p% of the pixels will be corrupted.
The second type of impulse noisgde Il) has uniformly distributed impulses, i.200p% of the pixels
will be corrupted with additive uniform noise in the rangea,a], for some0 < p < % a > 0.1In
both types of impulse noise the proposed algorithm givegle results (both visually and in terms of
PSNR). The wavelet-based techniques are known not to betaldeal with impulse noise effectively.
Results show that our kernel-based noise removal can achievmprovement of more than 5dB (some
times up to 10dB) in terms of PSNR, over wavelet-based meatlaod much better visual quality (even
in cases where the difference of PSNRs is relatively smiallythermore, the kernelized approach gives
significantly enhanced results over the traditional mediiéar, especially in visual quality. Tables II, 1lI
and figures 5-9 report the results of the kernelized dengiaigorithm on Lena, Peppers, Barbara and

Boat images corrupted by various types of impulse noise.

B. Gaussian Noise

The pdf of the zero-mean gaussian noise is given by:

1 _ 22
p(z) = e 22, (24)
2rs

wherez represents the gray level ards the standard deviation (the average value @ 0). It is well

known that70% of the values of: will be in the range/—s, s] and95% will be in the range/—2s, 2s].
Most wavelet based methods were developed especially forkthd of noise (mainly because of its
mathematical tractability in both spatial and frequencyndms). The BLS-GSM methodology developed
in [2] is reported to be one of the best approaches in gaussi@e removal. Its performance shows
an average improvement of approximately 1-2 dBs (sometime®) over the kernel-based approach.
In many cases, our method seems to have similar behavioefiinstof PSNR) with another very well
known wavelet-based algorithm called BiShingsee [3], [4]). Table IV and figures 10-14 report the

results of the experiments conducted on several imagespted by gaussian noise.

5This is also true for ProbShrink ([36]).
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C. Uniform Noise
The pdf of the zero-mean uniform noise is given by

%, if —a<z<a
p(2) = _ (25)
0, otherwise

for a > 0. Its variance is? = .
The kernelized denoising algorithm performs relativelyllvie the presence of uniform noise, but

wavelet-based methods clearly give better results botiallisand in terms of PSNR (see Table V).

D. Mixed Noise

We included in the simulated experiments several imagesipt@d by mixed noise of various types
as specified below:
mixed 1: 20% of impulse noise (type i, = 128) + gaussian noise with = 10.
mixed 2: 30% of impulse noise (type W, = 128) + gaussian noise with = 20.
mixed 3: uniform noise in the interva+10, 10] + gaussian noise witkh = 10.
mixed 4: uniform noise in the intervat10, 10] + 10% impulse noise (type Iy = 128).
mixed 5: uniform noise in the interval-10,10] + 10% impulse noise (type llg = 128) + gaussian

noise withs = 10.

The results are reported in table VI and figures 15-17. Thedteed denoising method can effectively
remove any of these types of mixed noise. In the presenceisd moth impulse components, the proposed
algorithm clearly outperforms wavelet-based technigi®®n when the enhancement in terms of PSNR

is less than 2dB, the kernel method gives a visually supegisult.
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40% 12.90 dB
50% 11.92 dB

7,7,7,7,7,7
7,7,7,9,9,9

27,62 dB 2491 dB| 25.05dB
25,88 dB 23.30dB | 23.31dB

Image | Noise | noisy PSNR Kernel Denoising BiShrink Median
N denoised PSNR
20% | 15,77 dB | (5,5,5,5,5,5) 34,31 dB 24,57 dB| 30.7 dB
Lena 30% 14.01dB | (7,7,7,7,7,7) 32.07 dB 26.19dB| 28.3dB
40% 12.76 dB | (7,7,7,7,7,7) 30.28 dB 26.19 dB | 26.97 dB
50% | 11.78dB | (7,7,7,9,9,9) 28.53 dB 2443 dB| 25.1 dB
20% | 16,10dB | (5,5,5,5,5,5) 32,27 dB 23,24 dB| 30.81 dB
30% 1431 dB | (5,5,5,7,7,7) 30,48 dB 25.37 dB | 29.00 dB
Peppers | 40% | 13.08dB | (7,7,7,7,7,7) 29,19 dB 2429 dB| 27.64 dB
50% | 12.13dB | (7,7,7,9,9,9) 27,88 dB 23.30dB| 25.77 dB
20% 1581 dB | (5,5,5,5,5,5) 26,21 dB 23,45 dB | 23.85dB
Barbara 30% 14.07 dB | (5,5,5,7,7,7) 24,92 dB 23.47 dB| 22.41 dB
40% | 1278 dB | (7,7,7,7,7,7) 23,80 dB 22.78 dB| 22.00 dB
50% 11.81dB | (7,7,7,9,9,9) 22,88 dB 22.28 dB| 21.88 dB
20% 15.92dB | (5,5,5,5,5,5) 31,04 dB 24.04 dB | 228.37 dB
Boat 30% | 14.14dB | (5,5,5,7,7,7) 28,86 dB 24.73 dB| 26.00 dB
( )
( )

TABLE Il
RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESWITH DIMENSIONS 512 x 512) CORRUPTED BY

IMPULSE NOISE OF TYPEl, FORa = 100.

(@) (b) (c)

Fig. 5. (a) Lena corrupted by 20% of impulse noise of typeH),denoising using the kernel approach (PSNR=35,27 dB), (c)
denoising with BiShrink (PSNR=22.83 dB).
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(©) (d)

Fig. 6. (a) Lena corrupted by 50% of impulse noise of typeH),denoising using the kernel approach (PSNR=30,71 dB), (c)
denoising with BiShrink (PSNR=26.41 dB), (d) denoisinglwihe median filter of MatLab (PSNR=28.08 dB).

(@) (b) (©)

Fig. 7. (a) Peppers corrupted by 40% of impulse noise of typéh) denoising using the kernel approach (PSNR=30,5 dB),
(c) denoising with BiShrink (PSNR=25.89 dB).
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Image | Noise | noisy PSNR Kernel Denoising BiShrink
N denoised PSNR
20% | 18.42dB | (5,5,5,5,5,5) 35.27 dB 22.83 dB
Lena 30% 16.60 dB | (5,5,5,7,7,7) 33.20 dB 25.90 dB
40% 15.37dB | (7,7,7,7,7,7) 31.78 dB 26.76 dB
50% | 14.41dB | (7,7,7,9,9,9) 30.71 dB 26.41 dB
20% | 18.68dB | (5,5,5,5,5,5) 33.01 dB 22.94 dB
30% 16.93dB | (5,5,5,7,7,7) 31.77 dB 25.21 dB
Peppers
40% | 15.68dB | (7,7,7,7,7,7) 30.50 dB 25.89 dB
50% | 14.68dB | (7,7,7,9,9,9) 29.72 dB 25.50 dB
20% 18.42 dB | (5,5,5,5,5,5) 27.26 dB 22.86 dB
30% 16.67 dB | (5,5,5,7,7,7) 26.09 dB 24.34 dB
Barbara
40% | 15.43dB | (7,7,7,7,7,7) 24.81 dB 24.28 dB
50% 1445dB | (7,7,7,9,9,9) 24.29 dB 23.81 dB
20% 18.56 dB | (5,5,5,5,5,5) 32.36 dB 22.59 dB
30% | 16.77dB | (5,5,5,5,5,5) 30.66 dB 25.07 dB
Boat 40% | 1552 dB | (5,5,5,7,7,7) 29.14 dB 25.40 dB
50% 1455dB | (7,7,7,7,7,7) 28.10 dB 25.09 dB

TABLE 11l
RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESWITH DIMENSIONS 512 x 512) CORRUPTED BY

IMPULSE NOISE OF TYPEHIl, FORa = 128.

(@) (b) (c)

Fig. 8. (a) Barbara corrupted by 40% of impulse noise of typéb) denoising using the kernel approach (PSNR=24,81 dB),
(c) denoising with BiShrink (PSNR=24.28 dB).



Image Noise | noisy PSNR Kernel Denoising BiShrink (DWT) | BLS-GSM
N denoised PSNR

s=10 28.12dB | (5,5,5,5,5,5) 33.98 dB 34.33 dB 35.60 dB

Lena | s=20| 2214dB | (5,5,5,7,7,7) 31.12 dB 31.17 dB 32.65 dB
s =30 18.72 dB (7,7,7,7,7,7) 29.11 dB 29.35 dB 30.5 dB

s=10| 2826dB | (5,5,5,5,5,5) 32.44 dB 33.62 dB 34.71 dB

Peppers | s =20 | 22.32dB | (5,5,5,7,7,7) 30.38 dB 30.67 dB 31.90 dB
s=30| 18.93dB | (7,7,7,7,7,7) 28.60 dB 28.71 dB 29.83 dB

s=10 28.11dB | (5,5,5,5,5,5) 27.60 dB 32.46 dB 34.02 dB

Barbara | s =20 22.16 dB (5,5,5,7,7,7) 26.01 dB 28.56 dB 30.27 dB
s=30| 18.73dB | (7,7,7,7,7,7) 24.06 dB 26.46 dB 28.05 dB

s=10| 2813dB | (5,5,5,5,5,5) 31.78 dB 33.29 dB 34.52 dB

Boat s=20 22.19dB | (5,5,5,7,7,7) 29.25 dB 29.68 dB 30.90 dB
s=30| 18.73dB | (7,7,7,7,7,7) 27.34 dB 27.79 dB 28.90 dB

TABLE IV

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESORRUPTED BY GAUSSIAN NOISE

Image | Noise | noisy PSNR Kernel Denoising BiShrink (DWT)
N denoised PSNR
+20 26.88dB | (5,5,5,5,5,5) 33.00 dB 33.66 dB
lena +30 2336 dB | (5,5,5,7,7,7) 30.81 dB 31.84 dB
+40 20.85dB | (7,7,7,7,7,7) 29.41 dB 30.51 dB
+20 27.00 dB (5,5,5,5,5,5) 31.78 dB 33.05 dB
Peppers | +30 23.50 dB (5,5,5,7,7,7) 30.28 dB 31.31 dB
+40 21.05 dB (7,7,7,7,7,7) 28.81 dB 29.96 dB
+20 26.87 dB | (5,5,5,5,5,5) 27.16 dB 31.60 dB
Barbara | +30 23.35 dB (5,5,5,7,7,7) 25.95 dB 29.24 dB
+40 20.87 dB | (7,7,7,7,7,7) 24.19 dB 27.72 dB
+20 26.88 dB | (5,5,5,5,5,5) 31.15 dB 32.48 dB
Boat +30 23.39dB | (5,5,5,7,7,7) 29.38 dB 30.40 dB
+40 20.92 dB (7,7,7,7,7,7) 27.47 dB 29.02 dB
TABLE V

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESORRUPTED BY UNIFORM NOISE
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(@) (b) (©)

Fig. 9. (a) Boat corrupted by 40% of impulse noise of type ), denoising using the kernel approach (PSNR=29,14 dB), (c)
denoising with BiShrink (PSNR=25.40 dB).

(b) (©)

Fig. 10. (a) Lena corrupted by gaussian noise with: 10, (b) denoising using the kernel approach (PSNR=33.98 dB), (
denoising with BiShrink (PSNR=34.33 dB).

(@) (b) (c)

Fig. 11. (a) Lena corrupted by gaussian noise wits 20, (b) denoising using the kernel approach (PSNR=31.12 dB), (
denoising with BiShrink (PSNR=31.17 dB).
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(@) (b) (©)

Fig. 12. (a) Lena corrupted by gaussian noise wita 30, (b) denoising using the kernel approach (PSNR=29.11 dB), (
denoising with BiShrink (PSNR=29.35 dB).

@ (b) (©)

Fig. 13. (a) Barbara corrupted by gaussian noise with 20, (b) denoising using the kernel approach (PSNR=26.01 dB), (
denoising with BiShrink (PSNR=28.56 dB).

(@) (b) (c)

Fig. 14. (a) Boat corrupted by gaussian noise witke 20, (b) denoising using the kernel approach (PSNR=29.46 dB), (
denoising with BiShrink (PSNR=29.68 dB).
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Image | Noise | noisy PSNR Kernel Denoising BiShrink (DWT)
N denoised PSNR

mixed 1| 17.98dB | (5,5,5,7,7,7) 32.27 dB 25.30 dB
mixed 2| 15,68 dB | (5,5,5,7,7,7) 29.20 dB 27.11 dB

Lena | mixed 3| 26.89dB | (5,5,5,7,7,7) 33.42 dB 33.68 dB
mixed 4| 21.18dB | (5,5,5,5,5,5) 34.48 dB 23.72 dB
mixed 5| 20.35dB | (5,5,5,7,7,7) 32.74 dB 25.99 dB
mixed 1| 18.14dB | (5,5,5,7,7,7) 30.27 dB 24.58 dB
mixed 2| 15.82dB | (5,5,5,7,7,7) 26.90 dB 25.62 dB

Boat | mixed 3| 26.90dB | (5,5,5,7,7,7) 31.56 dB 32.51 dB
mixed 4| 21.20dB | (5,5,5,5,5,5) 32.28 dB 23.55 dB
mixed 5| 20.46 dB | (5,5,5,7,7,7) 30.70 dB 25.53 dB

TABLE VI

RESULTS OF THE KERNELIZED DENOISING METHOD IN VARIOUS IMAGESORRUPTED BY MIXED NOISE

@ (b) ()

Fig. 15. (a) Lena corrupted by gaussian noise wite- 10 and 20% of impulse noise of type Ik (= 128), (b) denoising
using the kernel approach (PSNR=32.27 dB), (c) denoisirtg BiShrink (PSNR=25.30 dB).

V. CONCLUSIONS

A novel denoising algorithm was presented based on the usepfoducing Kernel Hilbert Spaces.
The semiparametric Representer Theorem was exploiteddier @0 cope with the problems associated
with the smoothing around edges, which is a common probleralimost all denoising algorithms.
The comparative study against wavelet based techniquesieshthat significantly enhanced results are
obtained in the case of impulse noise. In the case of gaussi@e, the proposed algorithm performs

quite well (in terms of PSNR the results are similar with Bi8k). In addition the kernelized approach
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(@) (b) (©)

Fig. 16. (a) Boat corrupted by gaussian noise with 20 and 30% of impulse noise of type lh & 128), (b) denoising using
the kernel approach (PSNR=26.90 dB), (c) denoising withhBitk (PSNR=25.62 dB).

(@) (b)

Fig. 17. (a) Lena corrupted by gaussian noise with 10, uniform noise in the intervgl-10, +10] and 10% of impulse noise
of type Il (@ = 128), (b) denoising using the kernel approach (PSNR=32.74 {)denoising with BiShrink (PSNR=25.53
dB).

can effectively treat any type of mixed noise, resultingighiicantly better results than wavelet-based
methods, especially if impulse components are present.pfédously reported enhanced performance

is achieved at a higher computational complexity.

APPENDIXA

DIFFERENTIABILITY OF OPERATORS

Since gradients and subgradients of operators defined betiispaces play a crucial role in several

parts of this paper, it is important to present their formefimitions and their key properties.

Definition A.1. Consider an operatofl’ : H — R, where #, (-,-)g) is a Hilbert spaceT is said to
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be Fréchet differentiable atg, if there exists ay € H such that

T(xo+h) —T(x0) — (y,h)H
7]l 10 |l e

— 0, (26)

where|| - ||z = v/ (-, -)m is the induced norm. Usually, the elemen& H is called the gradient of" at

x and the notationy = VT (zo) is used to refer to &

For convex functions defined on Hilbert spaces the gradiemt satisfies the well known first order
condition:

T(z) =2 T(xo) + (VT (20),z — x0)-

for all z. This condition has a simple geometric meaning whers finite atx: it says that the graph
of the affine functionh(z) = T'(x¢) + (VT (x),z — o) iS @ non-vertical supporting hyperplane to the
convex setpi T at (xg, T(x0)). In other words, (aj(z) defines an osculant hyperplane of the graph of
T at(x¢,T(x0)) and (b) all the points of the graph @flie at the same side of the hyperplane (see figure
?7?). This is one of the reasons why the notion of gradient is gooitant in optimization problems. If

T is not differentiable at:, we can still construct such a hyperplane using a subgradien

Definition A.2. LetT : H — R be a convex function defined on a Hilbert spaég (-,-) ). A vector

z* € H is said to be a subgradient @f at x if
T(z) > T(xo) + (x*,2 — xo)m.
The set of all subgradients g¢f at x is called the subdifferential df’ at o and is denoted byT'(x).

As an example, we consider the operaf@y) = || f(zo) —yo||, defined on a RKHS3{, wherex, € R"
andyo € R (in other words we take a simple form of a cost function thapkys thel; norm). Using
the kernel properties (see section Il) we takery) = (f, x(xo,-)). ThusT(f) = ||[{f, k(xo,)) — vo||-
This operator is non differentiable at arfy such thatf(x) = yo. The subgradients ¢f at f are given
below:

. { sen (f(e0) =) (oo S fleo) # 0 o
Ak(xg, ), forany —1 <A <1, if f: f(xo) = yo.
More on the subject can be found in [37], [38], [39], [40].

®In the literature the notatiofi” (x) is also used to refer to the gradient Bfat z.

"epi T denotes the epigraph @, i.e. the setf{(x,y) : x € H,y € R: T(x) < y}.



27

APPENDIX B

SUMS OF HILBERT SPACES

Another concept, that is used in key parts of the paper, isdhthe summation of Hilbert Spaces.
Here, we give a more rigorous analysis of this important ectbjNote, that there are two distinct cases

of Hilbert space’s summation: thdirect sumand theordinary sum

Definition B.1. Two Hilbert spacesH, (-,-)q,) and (H», (-, -)x,) can be combined into another Hilbert
space, called the (orthogonal) direct sum, and denoteddby H, & H,, consisting of the set of all

ordered pairs(x1,x2) Wherex; € H;, i = 1,2, and inner product defined by
((x1,22), (W1, v2)) HowH, = (T1, Y1) H, + (T2,Y2)H,- (28)
The direct sum can be generalized to infinite sums of Hilbgaices (see e.g. [38]).

Definition B.2. Consider two Hilbert spacedd;, (-,-)x,) and (H», (-,-)m,) subsets of the larger space
F. We may define the sufi = H, + Hy C F, as follows:

r € H, iff there arex; € H; andxy € Hy, such thatr = z1 + xs. (29)
Then H is a Hilbert space with inner product defined by

(@, y) 41, = min{(x1, y1)H, + (T2, y2)H,, for all z1,y1 € Hi,x9,y2 € Ho, (30)

such thatr = 21 + x2,y = y1 + ¥ }.

The sum of Hilbert spaces can be easily generalized to iectufinite number of Hilbert spaces (see
[13]). In contrast with the direct sum, this generalizatismot valid, if an infinite humber of spaces
is considered. Note that in the special case, where for each H there is a unique decomposition
x1 + 20, 1 € Hy, 29 € Ho, the two sums coincide (i.e. there is a 1-1 mapping betwéden- H, and
H, & H,). Moreover, it is easy to see that in both cases we can defadiegits and subgradients of
operators defined in the combined spdfe

In sections IlI-A and IlI-B the sum3{ + R and’H + ¥ + P were used in a rather superficial way.
However, in light of the information given before, one magigasee that each element &f+ R can be
uniquely decomposed int6+ g, wheref € H andg € R (in fact f lies in a finite dimensional subspace
of H) and thus to conclude that the suh+ R can be identified to the spa@é ® R. Hence, we don’t
have to use the cumbersome inner product (and respective) miven in (30) to compute the gradients.

Instead, we employ the more elegant inner product assddatthe direct sum definition in (28).
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With the same rationale, the spaket+ ¥ + P can be also identified to the spated ¥ & P. Indeed,
It is easy to see that if we select the functiafhs properly (i.e. so that they cannot be decomposed into
a finite sum of gaussian kernels and/or bivariate polynaélorder 1), then eacli € H+ U + P is

uniquely decomposed int + ¢ + p wheref € H, v € ¥, p € P.
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