LEARNING FROM OBSERVATIONS

Chapter 18, Sections 1–3

Chapter 18, Sections 1–3 1

Outline

- \diamond Learning agents
- \Diamond Inductive learning
- \diamondsuit Decision tree learning
- \diamond Measuring learning performance

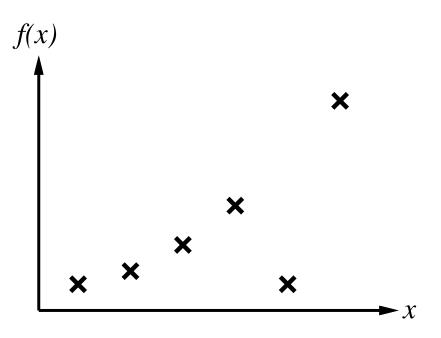
Learning

Learning is essential for unknown environments, i.e., when designer lacks omniscience

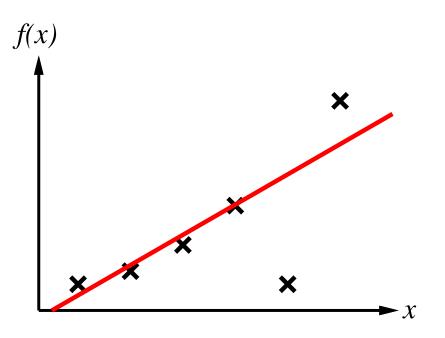
Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance

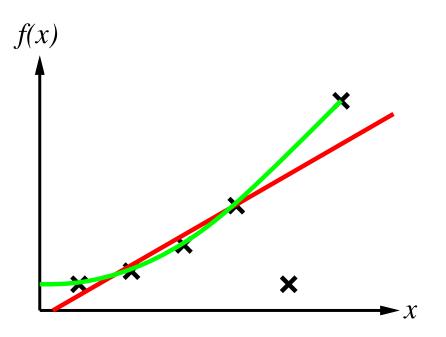
Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)



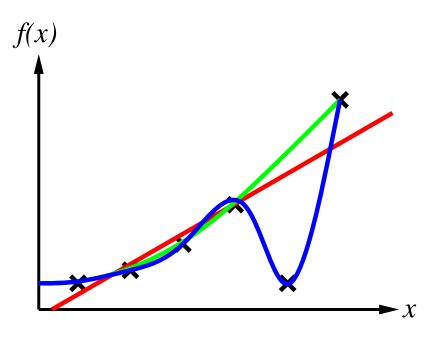
Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)



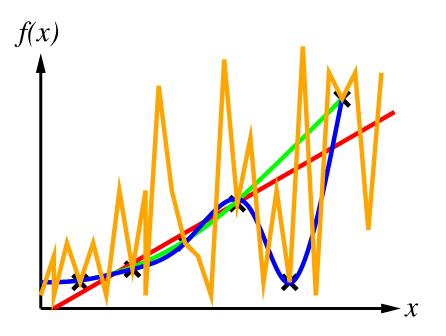
Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)



Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

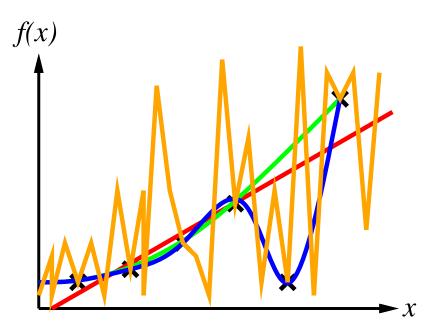


Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)



Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

E.g., curve fitting:



Ockham's razor: maximize a combination of consistency and simplicity

Attribute-based representations

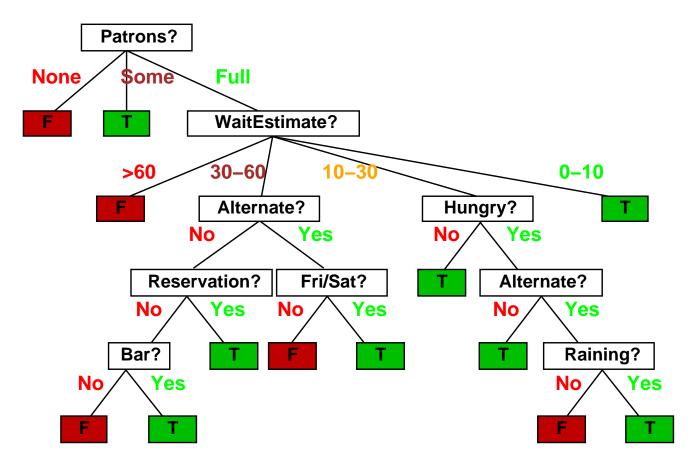
Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Attributes										Target
p_	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

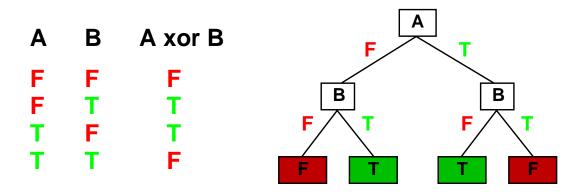
Decision trees

One possible representation for hypotheses E.g., here is the "true" tree for deciding whether to wait:



Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:



Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more **compact** decision trees

How many distinct decision trees with n Boolean attributes??

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

Each attribute can be in (positive), in (negative), or out

 \Rightarrow 3ⁿ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
 - \Rightarrow may get worse predictions (3)

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(examples)

else

best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)

tree \leftarrow a new decision tree with root test best

for each value v_i of best do

examples_i \leftarrow \{elements of examples with best = v_i\}

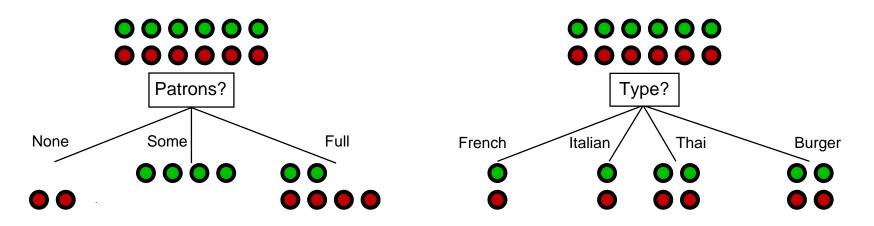
subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))

add a branch to tree with label v_i and subtree subtree

return tree
```

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Patrons? is a better choice—gives **information** about the classification

Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)

Information in an answer when prior is $\langle P_1, \ldots, P_n \rangle$ is

 $H(\langle P_1, \ldots, P_n \rangle) = \sum_{i=1}^n - P_i \log_2 P_i$

(also called entropy of the prior)

Information contd.

Suppose we have p positive and n negative examples at the root

 $\Rightarrow~H(\langle p/(p+n),n/(p+n)\rangle)$ bits needed to classify a new example E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples $\Rightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i) \rangle)$ bits needed to classify a new example \Rightarrow expected number of bits per example over all branches is

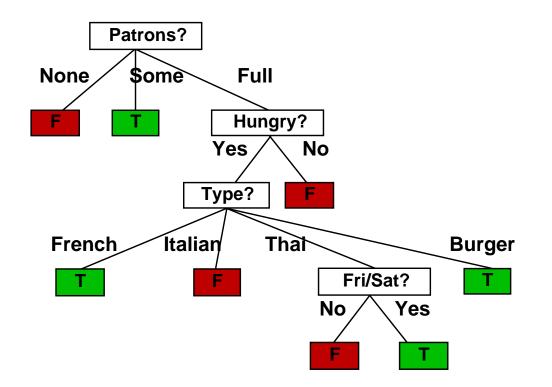
$$\Sigma_i \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

 $\Rightarrow~$ choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

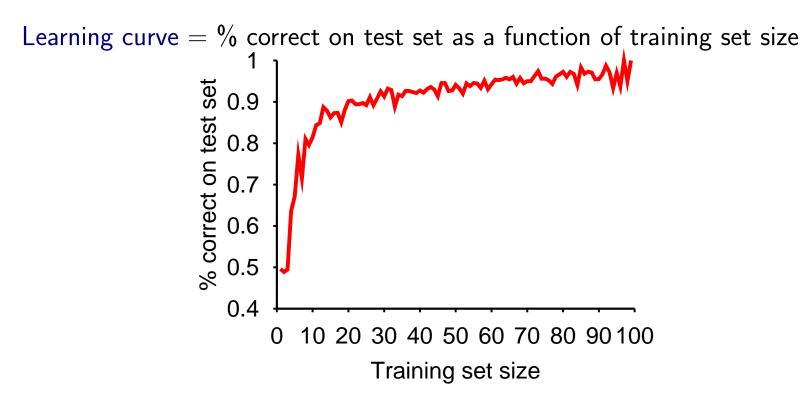


Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data

Performance measurement

How do we know that $h \approx f$? (Hume's **Problem of Induction**)

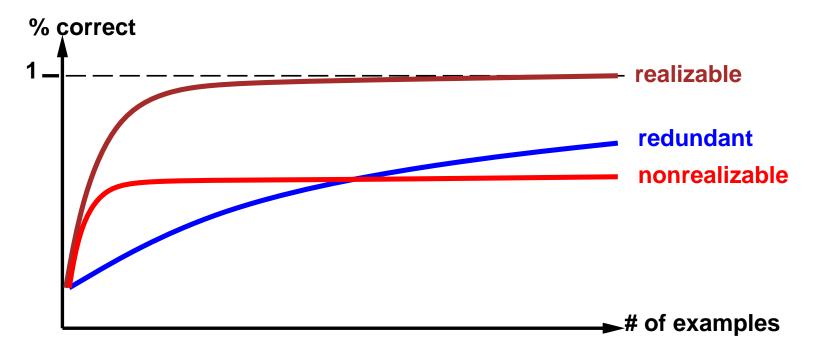
- 1) Use theorems of computational/statistical learning theory
- 2) Try h on a new test set of examples(use same distribution over example space as training set)



Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)



Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

NEURAL NETWORKS

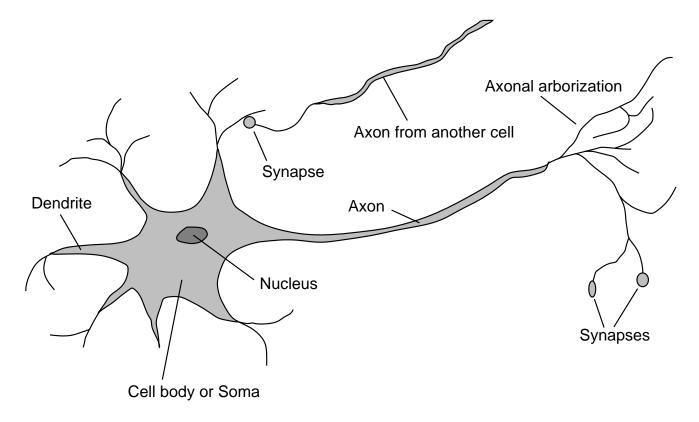
Chapter 20, Section 5

Outline

- \diamond Brains
- \diamond Neural networks
- \diamondsuit Perceptrons
- \diamond Multilayer perceptrons
- \diamondsuit Applications of neural networks

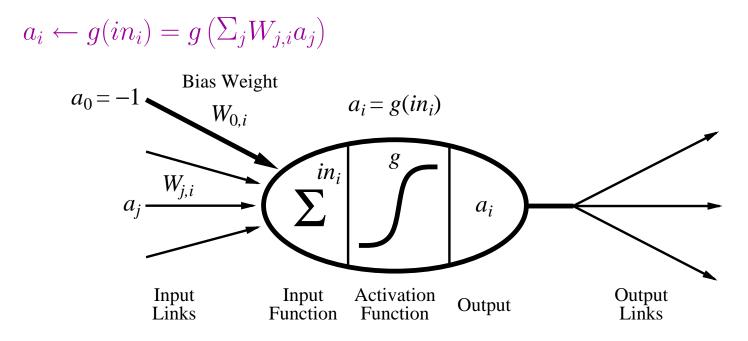
Brains

 10^{11} neurons of >20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential



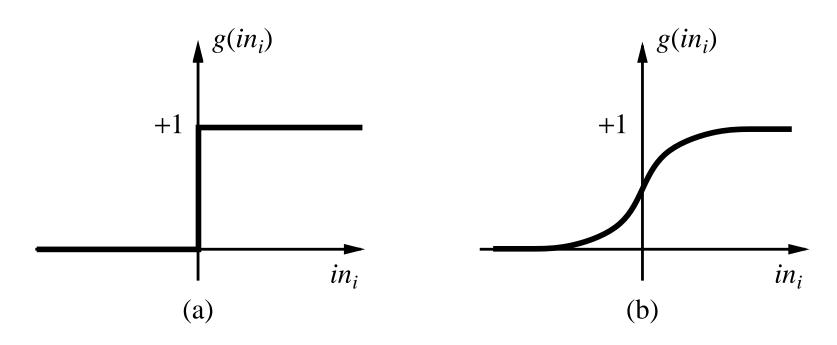
McCulloch–Pitts "unit"

Output is a "squashed" linear function of the inputs:



A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

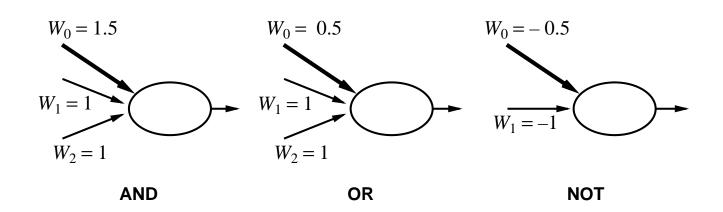


(a) is a step function or threshold function

(b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Implementing logical functions



McCulloch and Pitts: every Boolean function can be implemented

Network structures

Feed-forward networks:

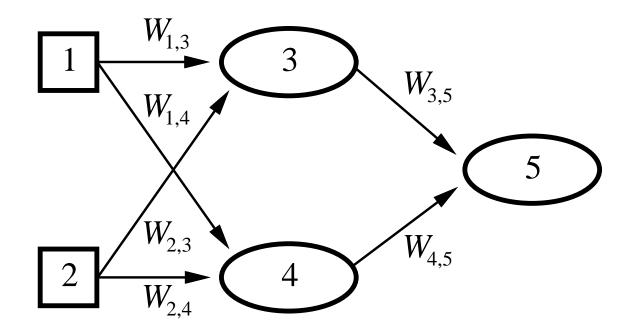
- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:

- Hopfield networks have symmetric weights ($W_{i,j} = W_{j,i}$)
 - $g(x) = \operatorname{sign}(x)$, $a_i = \pm 1$; holographic associative memory
- Boltzmann machines use stochastic activation functions,
 - \approx MCMC in Bayes nets
- recurrent neural nets have directed cycles with delays
 - \Rightarrow have internal state (like flip-flops), can oscillate etc.

Feed-forward example



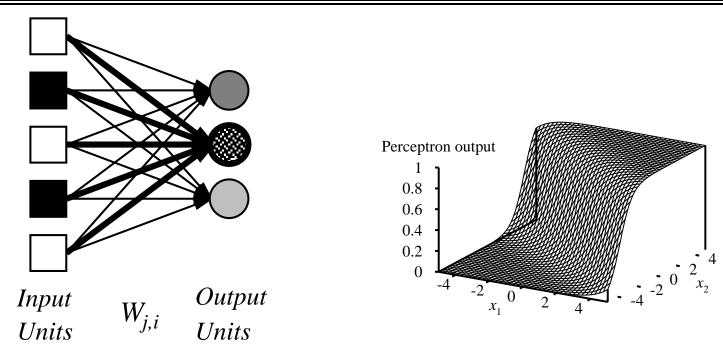
Feed-forward network = a parameterized family of nonlinear functions:

$$a_{5} = g(W_{3,5} \cdot a_{3} + W_{4,5} \cdot a_{4})$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1} + W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1} + W_{2,4} \cdot a_{2}))$

Adjusting weights changes the function: do learning this way!

Single-layer perceptrons



Output units all operate separately—no shared weights

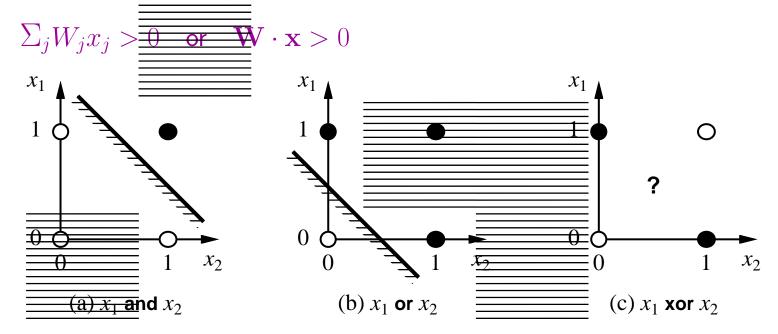
Adjusting weights moves the location, orientation, and steepness of cliff

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:



Minsky & Papert (1969) pricked the neural network balloon

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input \mathbf{x} and true output y is

$$E = \frac{1}{2} Err^2 \equiv \frac{1}{2} (y - h_{\mathbf{W}}(\mathbf{x}))^2 ,$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

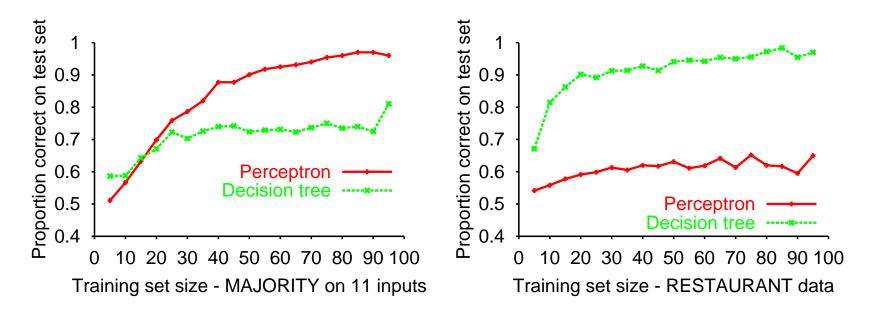
Simple weight update rule:

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$

E.g., +ve error \Rightarrow increase network output \Rightarrow increase weights on +ve inputs, decrease on -ve inputs

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set

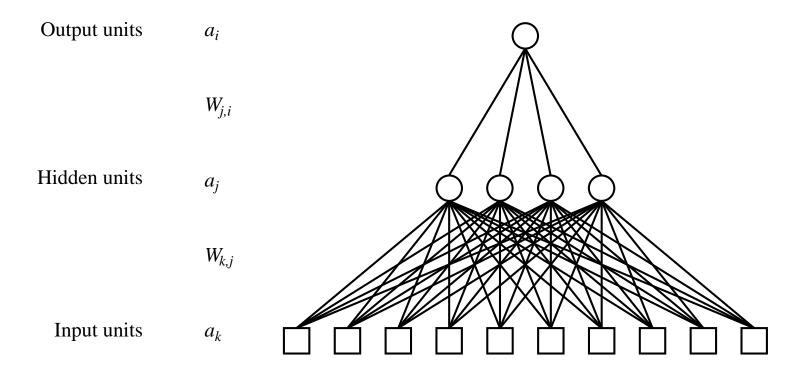


Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

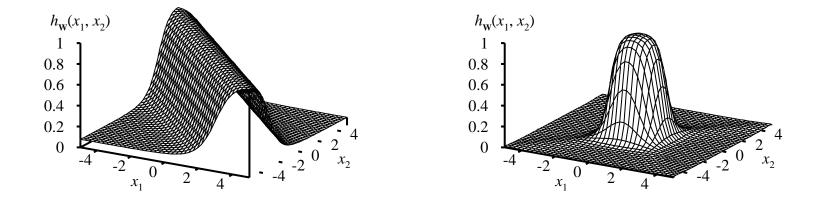
Multilayer perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand



Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers



Combine two opposite-facing threshold functions to make a ridge Combine two perpendicular ridges to make a bump Add bumps of various sizes and locations to fit any surface Proof requires exponentially many hidden units (cf DTL proof)

Back-propagation learning

Output layer: same as for single-layer perceptron,

 $W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$

where $\Delta_i = Err_i \times g'(in_i)$

Hidden layer: **back-propagate** the error from the output layer:

 $\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i \; .$

Update rule for weights in hidden layer:

 $W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$.

(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation derivation

The squared error on a single example is defined as

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

where the sum is over the nodes in the output layer.

$$\begin{aligned} \frac{\partial E}{\partial W_{j,i}} &= -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}} \\ &= -(y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i) g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_{j} W_{j,i} a_j \right) \\ &= -(y_i - a_i) g'(in_i) a_j = -a_j \Delta_i \end{aligned}$$

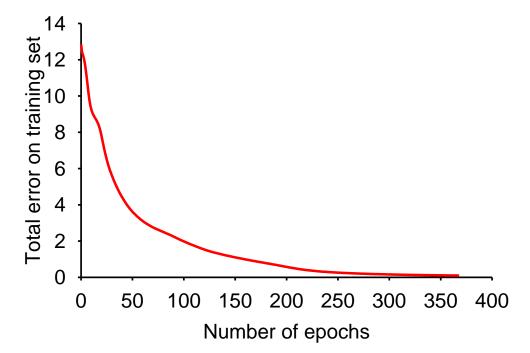
Back-propagation derivation contd.

$$\begin{aligned} \frac{\partial E}{\partial W_{k,j}} &= -\sum_{i} (y_{i} - a_{i}) \frac{\partial a_{i}}{\partial W_{k,j}} = -\sum_{i} (y_{i} - a_{i}) \frac{\partial g(in_{i})}{\partial W_{k,j}} \\ &= -\sum_{i} (y_{i} - a_{i}) g'(in_{i}) \frac{\partial in_{i}}{\partial W_{k,j}} = -\sum_{i} \Delta_{i} \frac{\partial}{\partial W_{k,j}} \left(\sum_{j} W_{j,i} a_{j} \right) \\ &= -\sum_{i} \Delta_{i} W_{j,i} \frac{\partial a_{j}}{\partial W_{k,j}} = -\sum_{i} \Delta_{i} W_{j,i} \frac{\partial g(in_{j})}{\partial W_{k,j}} \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) \frac{\partial in_{j}}{\partial W_{k,j}} \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) \frac{\partial}{\partial W_{k,j}} \left(\sum_{k} W_{k,j} a_{k} \right) \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) a_{k} = -a_{k} \Delta_{j} \end{aligned}$$

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit



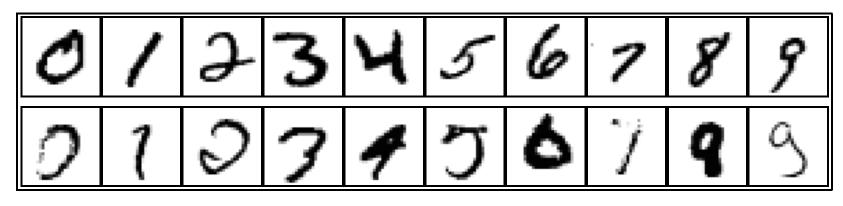
Typical problems: slow convergence, local minima

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

MLPs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily

Handwritten digit recognition



3-nearest-neighbor = 2.4% error 400-300-10 unit MLP = 1.6% error LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) pprox 0.6% error

Summary

Most brains have lots of neurons; each neuron \approx linear-threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling subfields have largely diverged