
Learning from Observations

Chapter 18, Sections 1–3

Chapter 18, Sections 1–3 1

Outline

♦ Learning agents

♦ Inductive learning

♦ Decision tree learning

♦ Measuring learning performance

Chapter 18, Sections 1–3 2

Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Chapter 18, Sections 1–3 3

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 7

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 8

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 9

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 10

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Chapter 18, Sections 1–3 11

Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity

Chapter 18, Sections 1–3 12

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13

Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Chapter 18, Sections 1–3 14

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees

Chapter 18, Sections 1–3 15

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

Chapter 18, Sections 1–3 16

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

Chapter 18, Sections 1–3 17

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows

Chapter 18, Sections 1–3 18

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

Chapter 18, Sections 1–3 19

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Chapter 18, Sections 1–3 20

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Chapter 18, Sections 1–3 21

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions

Chapter 18, Sections 1–3 22

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}

subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24

Information

Information answers questions

The more clueless I am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉

Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) = Σn
i =1
− Pi log2 Pi

(also called entropy of the prior)

Chapter 18, Sections 1–3 25

Information contd.

Suppose we have p positive and n negative examples at the root
⇒ H(〈p/(p+n), n/(p+n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope)
needs less information to complete the classification

Let Ei have pi positive and ni negative examples
⇒ H(〈pi/(pi+ni), ni/(pi+ni)〉) bits needed to classify a new example
⇒ expected number of bits per example over all branches is

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

⇒ choose the attribute that minimizes the remaining information needed

Chapter 18, Sections 1–3 26

Example contd.

Decision tree learned from the 12 examples:

No Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

Chapter 18, Sections 1–3 27

Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1) Use theorems of computational/statistical learning theory

2) Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

or
re

ct
 o

n
te

st
 s

et

Training set size

Chapter 18, Sections 1–3 28

Performance measurement contd.

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

of examples

1

nonrealizable

redundant

realizable

Chapter 18, Sections 1–3 29

Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set

Chapter 18, Sections 1–3 30

Neural networks

Chapter 20, Section 5

Chapter 20, Section 5 1

Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer perceptrons

♦ Applications of neural networks

Chapter 20, Section 5 2

Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 20, Section 5 3

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 20, Section 5 5

Implementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5 6

Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = ± 1; holographic associative memory

– Boltzmann machines use stochastic activation functions,
≈ MCMC in Bayes nets

– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.

Chapter 20, Section 5 7

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

Single-layer perceptrons

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Chapter 20, Section 5 9

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Minsky & Papert (1969) pricked the neural network balloon

Chapter 20, Section 5 10

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0

Wjxj)
)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - MAJORITY on 11 inputs

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Perceptron
Decision tree

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Chapter 20, Section 5 12

Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 20, Section 5 13

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5 14

Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layer: back-propagate the error from the output layer:

∆j = g′(inj)
∑

i
Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ← Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 20, Section 5 15

Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

∑

j
Wj,iaj

= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 20, Section 5 16

Back-propagation derivation contd.

∂E

∂Wk,j
= −

∑

i
(yi − ai)

∂ai

∂Wk,j
= −

∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j
= −

∑

i
∆i

∂

∂Wk,j

∑

j
Wj,iaj

= −
∑

i
∆iWj,i

∂aj

∂Wk,j
= −

∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j

∑

k
Wk,jak

= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j

Chapter 20, Section 5 17

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n

tr
ai

ni
ng

 s
et

Number of epochs

Typical problems: slow convergence, local minima

Chapter 20, Section 5 18

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Decision tree
Multilayer network

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Chapter 20, Section 5 19

Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Chapter 20, Section 5 20

Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

Chapter 20, Section 5 21

