


 First order predicate logic is a knowledge representation 
language 

 Description of the world via well-formed formulas 

 Transformation of formulas to conjunctive normal form 

 Inference via a deduction mechanism (resolution) 

 Constructing proofs by refutation 

 A subset of first order predicate logic has been implemented 
as a programming language (Prolog) 



 

Paul is a banker 

 

           predicate                     constant 

 

𝑏𝑎𝑛𝑘𝑒𝑟(𝑃𝑎𝑢𝑙) 
 

 

                          atomic sentence 



 Constants represent elementary entities, objects, abstract 
concepts, etc. of the world, e.g. 𝑃𝑎𝑢𝑙, 𝑡ℎ𝑖𝑠_𝑡𝑎𝑏𝑙𝑒, ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠, 
2562 

 Each predicate has a degree, that is the number of its 
arguments – the degree of the predicate 𝑏𝑎𝑛𝑘𝑒𝑟 is1 

 A predicate of degree1 represents a property of its argument, 
e.g. 𝑏𝑎𝑛𝑘𝑒𝑟(𝑃𝑎𝑢𝑙), as an atomic sentence 

 Atomic sentences are the simplest form of well-formed 
formulas (sentences) 

 A sentence has a truth value, that is true (T) or false (F), given 
a specific state of the world 



 Predicates with degree 2 or greater are used to describe 
relations among their arguments 

 Predicates with degree 0 represent a simple statement of the 
world 

 Examples: 

Ann is Paul’s mother 

𝑚𝑜𝑡ℎ𝑒𝑟(𝐴𝑛𝑛, 𝑃𝑎𝑢𝑙) 
          predicates                                                  constants 

It is hot 
𝑖𝑡_𝑖𝑠_ℎ𝑜𝑡 

 A specialization of first order logic, that is propositional logic, 
involves predicates of degree 0 only 

 



 More complex sentences (not atomic) are formed via logical 
connectives, which, in decreasing precedence, are: 

¬  negation 

∧  conjunction 

∨  disjunction 

⇒  implication 

⇔  equivalence 

 Examples: 
¬𝑏𝑎𝑛𝑘𝑒𝑟 𝐺𝑒𝑜𝑟𝑔𝑒  

𝑚𝑜𝑡ℎ𝑒𝑟 𝐴𝑛𝑛, 𝑃𝑎𝑢𝑙 ∧ ¬𝑓𝑎𝑡ℎ𝑒𝑟 𝑃𝑎𝑢𝑙, 𝐺𝑒𝑜𝑟𝑔𝑒  
𝑚𝑎𝑛 𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠 ⇒ 𝑚𝑜𝑟𝑡𝑎𝑙(𝑆𝑜𝑐𝑟𝑎𝑡𝑒𝑠) 

ℎ𝑎𝑝𝑝𝑦(𝑀𝑎𝑟𝑦) ⇔ ℎ𝑒𝑎𝑙𝑡ℎ𝑦(𝑀𝑎𝑟𝑦) ∧ ¬𝑝𝑜𝑜𝑟(𝑀𝑎𝑟𝑦) 

 

What is the meaning of the above sentences? 



 The truth values of non-atomic sentences are defined at the 
table below, according to the involved logical connectives and 
the truth values of the sentences they comprise 

 

 

 

 

 

 

 Note the truth value of implication – it is false only when the 
antecedent is true and the consequent is false 

𝒑 𝒒 ¬𝒑 𝒑 ∧ 𝒒 𝒑 ∨ 𝒒 𝒑 ⇒ 𝒒 𝒑 ⇔ 𝒒 

T T F T T T T 

T F F F T F F 

F T T F T T F 

F F T F F T T 



 Functions are used to construct terms, which represent 
compound entities, concepts, etc. 

 Examples of terms: 
𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓(𝑃𝑎𝑢𝑙) 

𝑛𝑒𝑥𝑡 0  
𝑑𝑎𝑡𝑒(13, 𝑛𝑜𝑣, 2018) 

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑙𝑒𝑔𝑠(𝑚𝑦_𝑡𝑎𝑏𝑙𝑒) 
𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑓𝑎𝑡ℎ𝑒𝑟_𝑜𝑓(𝐴𝑛𝑛)) 

 Functions have degrees as well, as is the case with predicates 

 Constants are special cases of functions with degree 0 

 Be careful: Functions ARE NOT predicates and terms ARE NOT 
atomic sentences 

 



 In first order predicate logic, we use variables to represent 
unknown entities, objects, etc. of the world 

 Variables are introduced in sentences through quantifiers: 

Universal quantifier: ∀ (for all) 

Existential quantifier: ∃ (exists) 

 Examples: 

Everything is mortal 
∀𝑥 𝑚𝑜𝑟𝑡𝑎𝑙 𝑥  

 

There is a man 
∃𝑥 [𝑚𝑎𝑛 𝑥 ] 

 



 It is very common to represent a general rule of the world by 
an implication, where we quantify universally all variables of 
the sentence 

 Examples: 

Men are mortal 
∀𝑥 [𝑚𝑎𝑛 𝑥 ⇒ 𝑚𝑜𝑟𝑡𝑎𝑙 𝑥 ] 

 

Bankers are rich 
∀𝑥 [𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ⇒ 𝑟𝑖𝑐ℎ 𝑥 ] 

 

The parents love their children 
∀𝑥 ∀𝑦 [𝑝𝑎𝑟𝑒𝑛𝑡 𝑥, 𝑦 ⇒ 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ] 

 



 It is applied, more or less, to a conjunction, in order to 
represent a statement that an entity, an object, etc. exists, 
where we quantify existentially all variables of the sentence 

 Examples: 

Some researchers are rich 
∃𝑥 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑥 ∧ 𝑟𝑖𝑐ℎ 𝑥  

 

Some countries border with Greece and with Romania 
∃𝑥 [𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑥 ∧ 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑥, 𝐺𝑟𝑒𝑒𝑐𝑒 ∧ 𝑏𝑜𝑟𝑑𝑒𝑟𝑠 𝑥, 𝑅𝑜𝑚𝑎𝑛𝑖𝑎 ] 

 

Every man has a mother who is older than him 
∀𝑥 [𝑚𝑎𝑛 𝑥 ⇒ ∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∧ 𝑜𝑙𝑑𝑒𝑟(𝑦, 𝑥) ] 



 In first order predicate logic, we often need the equality 
predicate =, or the inequality predicate ≠, which are usually 
used with an infix notation 

 Example: 

Every man has exactly one father 

∀𝑥 𝑚𝑎𝑛 𝑥 ⇒ ∃𝑦 𝑓𝑎𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∧ ∀𝑧 𝑓𝑎𝑡ℎ𝑒𝑟 𝑧, 𝑥 ⇒ 𝑧 = 𝑦  

 

There are at least two elephants 

∃𝑥 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑥 ∧ ∃𝑦 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡(𝑦) ∧ 𝑦 ≠ 𝑥  

 

There are exactly two cats 

∃𝑥 𝑐𝑎𝑡 𝑥 ∧ ∃𝑦 𝑐𝑎𝑡 𝑦 ∧ 𝑦 ≠ 𝑥 ∧ ∀𝑧 𝑐𝑎𝑡(𝑧) ⇒ 𝑧 = 𝑥 ∨ 𝑧 = 𝑦  

 



Paul is a banker 
𝑏𝑎𝑛𝑘𝑒𝑟 𝑃𝑎𝑢𝑙  

 

Bankers are rich 
∀𝑥 [𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ⇒ 𝑟𝑖𝑐ℎ 𝑥 ] 

 

Everybody has a mother 
∀𝑥 ∃𝑦 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ] 

 

The mothers of the rich people are happy 
∀𝑥 ∀𝑦 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∧ 𝑟𝑖𝑐ℎ 𝑥 ⇒ ℎ𝑎𝑝𝑝𝑦 𝑦 ] 

 

Happy mothers love their mothers 

∀𝑥 ℎ𝑎𝑝𝑝𝑦 𝑥 ∧ ∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ⇒ ∀𝑧 𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ⇒ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

 



 Atomic sentences and negations of atomic sentences are literals 

 A sentence in conjunctive normal form (CNF) is a conjunction of 
disjunctions of literals, where all variables are universally 
quantified at the beginning of the sentence, that is why the 
quantification is omitted 

 CNF is needed in order to be able to apply a deduction 
procedure, called resolution, for drawing conclusions 

 What we need to transform a sentence to CNF: 

¬(¬𝑝) ≡ 𝑝 ¬(𝑝 ∧ 𝑞) ≡ ¬𝑝 ∨ ¬𝑞 ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞 

𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞 ¬∃𝑥 𝑝 𝑥 ≡ ∀𝑥 ¬𝑝(𝑥)  ¬∀𝑥 𝑝 𝑥 ≡ ∃𝑥 ¬𝑝(𝑥)  

𝑝 ∨ (𝑞 ∧ 𝑟) ≡ (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟) 𝑝 ∧ (𝑞 ∨ 𝑟) ≡ (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) 



 𝑏𝑎𝑛𝑘𝑒𝑟 𝑃𝑎𝑢𝑙  is already in CNF 

 ∀𝑥 [𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ⇒ 𝑟𝑖𝑐ℎ 𝑥 ] is transformed to CNF: 
∀𝑥 [¬𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ∨ 𝑟𝑖𝑐ℎ 𝑥 ] 

¬𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ∨ 𝑟𝑖𝑐ℎ 𝑥  

 ∀𝑥 ∃𝑦 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ] needs Skolemization to get rid of the 
existential quantifier, so it is transformed to: 

∀𝑥 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑥), 𝑥 ] 
𝑚𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑢), 𝑢  

!!! Note the difference between predicate 𝑚𝑜𝑡ℎ𝑒𝑟 and function 
𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 !!! 

 ∀𝑥 ∀𝑦 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∧ 𝑟𝑖𝑐ℎ 𝑥 ⇒ ℎ𝑎𝑝𝑝𝑦 𝑦 ] is transformed to: 
∀𝑥 ∀𝑦 [¬(𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∧ 𝑟𝑖𝑐ℎ 𝑥 ) ∨ ℎ𝑎𝑝𝑝𝑦 𝑦 ] 
∀𝑥 ∀𝑦 [¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ∨ ¬𝑟𝑖𝑐ℎ 𝑥 ∨ ℎ𝑎𝑝𝑝𝑦 𝑦 ] 

¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑤 ∨ ¬𝑟𝑖𝑐ℎ 𝑤 ∨ ℎ𝑎𝑝𝑝𝑦 𝑦  

 



 And the last sentence: 

∀𝑥 ℎ𝑎𝑝𝑝𝑦 𝑥 ∧ ∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ⇒ ∀𝑧 𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ⇒ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

∀𝑥 ¬(ℎ𝑎𝑝𝑝𝑦 𝑥 ∧ ∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ) ∨ ∀𝑧 𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ⇒ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

∀𝑥 ¬(ℎ𝑎𝑝𝑝𝑦 𝑥 ∧ ∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ) ∨ ∀𝑧 ¬𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

∀𝑥 ¬ℎ𝑎𝑝𝑝𝑦 𝑥 ∨ ¬∃𝑦 𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ∨ ∀𝑧 ¬𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

∀𝑥 ¬ℎ𝑎𝑝𝑝𝑦 𝑥 ∨ ∀𝑦 ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ∨ ∀𝑧 ¬𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  
∀𝑥∀𝑦∀𝑧 ¬ℎ𝑎𝑝𝑝𝑦 𝑥 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦) ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟(𝑧, 𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑧)  

¬ℎ𝑎𝑝𝑝𝑦 𝑡 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑡, 𝑣 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑧, 𝑡 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑡, 𝑧  

 Finally, our knowledge in CNF is: 
𝑏𝑎𝑛𝑘𝑒𝑟 𝑃𝑎𝑢𝑙  

¬𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ∨ 𝑟𝑖𝑐ℎ 𝑥  
𝑚𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑢), 𝑢  

¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑤 ∨ ¬𝑟𝑖𝑐ℎ 𝑤 ∨ ℎ𝑎𝑝𝑝𝑦 𝑦  
¬ℎ𝑎𝑝𝑝𝑦 𝑡 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑡, 𝑣 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑧, 𝑡 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑡, 𝑧  

 

 

 



 What is the difference between the following? 
∀𝑥 ∃𝑦 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ] and  ∃𝑦 ∀𝑥 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑥 ] 

   After Skolemization they are transformed to, respectively: 
∀𝑥 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑥), 𝑥 ] and ∀𝑥 [𝑚𝑜𝑡ℎ𝑒𝑟 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙_𝑚𝑜𝑡ℎ𝑒𝑟, 𝑥 ] 

That is: 
«Everybody has a mother» (function of him/herself) 

«All have the same mother» (constant, the same for all) 

 
 When the result of a transformation to CNF is not a literal or a 

disjunction of literals, but a conjunction of disjunctions, we create 
one sentence for each conjunct, e.g.  

(¬𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧ (𝐴 ∨ 𝐵) ∧ (𝐵 ∨ ¬𝐶 ∨ ¬𝐷) 
 

 
¬𝐴 ∨ ¬𝐵 ∨ 𝐶 

𝐴 ∨ 𝐵 
𝐵 ∨ ¬𝐶 ∨ ¬𝐷 

 
 

 
 
 

 
 
 



 Assume we have the sentences: 

𝐴1 ∨ 𝐵          and          ¬𝐴2 ∨ 𝐶 

 If the atomic sentences 𝐴1 and 𝐴2 are unifiable, that is they might 
be the same after appropriate variable instantiations (let 𝜎 be the 
set of instantiations), then, according to the resolution inference 
rule, the following sentence is deduced: 

𝐵 ∨ 𝐶 𝜎 

 The above notation means that the set of instantiations 𝜎 is 
applied to the sentence 𝐵 ∨ 𝐶 

 Example: From the sentences 

¬𝑝(𝑥) ∨ 𝑞(𝑥)          and          𝑝 𝑎 ∨ 𝑟 𝑏  

   the sentence 𝑞(𝑎) ∨ 𝑟(𝑏) is deduced with 𝜎 = {𝑎/𝑥} 

 The notation 𝑎/𝑥 means that the variable 𝑥 is instantiated to the 
value 𝑎 



 Given knowledge in CNF: 
𝑏𝑎𝑛𝑘𝑒𝑟 𝑃𝑎𝑢𝑙  

¬𝑏𝑎𝑛𝑘𝑒𝑟 𝑥 ∨ 𝑟𝑖𝑐ℎ 𝑥  
𝑚𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑢), 𝑢  

¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑦, 𝑤 ∨ ¬𝑟𝑖𝑐ℎ 𝑤 ∨ ℎ𝑎𝑝𝑝𝑦 𝑦  
¬ℎ𝑎𝑝𝑝𝑦 𝑡 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑡, 𝑣 ∨ ¬𝑚𝑜𝑡ℎ𝑒𝑟 𝑧, 𝑡 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑡, 𝑧  

 Question: 

Is there anybody that loves somebody? 
∃𝑟∃𝑠 [𝑙𝑜𝑣𝑒𝑠 𝑟, 𝑠 ] 

 Refutation of the sentence to be proved in CNF: 
¬∃𝑟∃𝑠 [𝑙𝑜𝑣𝑒𝑠 𝑟, 𝑠 ] 

∀𝑟 ¬∃𝑠 𝑙𝑜𝑣𝑒𝑠(𝑟, 𝑠)  
∀𝑟∀𝑠 ¬𝑙𝑜𝑣𝑒𝑠(𝑟, 𝑠)  

¬𝑙𝑜𝑣𝑒𝑠(𝑟, 𝑠) 
 



 

 

 

 

 

 

 

 

 

 

 

 By combining the instantiations 𝑡/𝑟, 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑣)/𝑡, 𝑃𝑎𝑢𝑙/𝑣 και 𝑧/𝑠, 
𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 𝑣 )/𝑧, 𝑃𝑎𝑢𝑙/𝑣, we have 𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑃𝑎𝑢𝑙)/𝑟 and 
𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓(𝑚𝑜𝑡ℎ𝑒𝑟_𝑜𝑓 𝑃𝑎𝑢𝑙 )/𝑠, that is «Paul’s mother loves her 
mother» 



 All mushrooms are poisonous 
∀𝑥 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑥 ⇒ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠 𝑥 ] 

 At least one mushroom is poisonous 
∃𝑥 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑥 ∧ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠 𝑥 ] 

 All mushrooms except one are poisonous 

∃𝑥  𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑥 ∧ ¬𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠 𝑥

∧ ∀𝑦 𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑦 ∧ 𝑥 ≠ 𝑦 ⇒ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠 𝑦   

 There exists exactly one mushroom 
∃𝑥 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚(𝑥) ∧ ∀𝑦 𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑦 ⇒ 𝑥 = 𝑦 ] 

 There exist at least two mushrooms 
∃𝑥 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚(𝑥) ∧ ∃𝑦 𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚 𝑦 ∧ 𝑥 ≠ 𝑦 ] 

 There exist exactly two poisonous mushrooms 

∃𝑥 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚(𝑥) ∧ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠(𝑥) ∧ ∃𝑦 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚(𝑦) ∧ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠(𝑦) 
∧ 𝑥 ≠ 𝑦 ∧ ∀𝑧 [𝑚𝑢𝑠ℎ𝑟𝑜𝑜𝑚(𝑧) ∧ 𝑝𝑜𝑖𝑠𝑜𝑛𝑜𝑢𝑠(𝑧) ⇒ 𝑧 = 𝑥 ∨ 𝑧 = 𝑦]]] 



 A man loves every woman that hates Jim 

∃𝑥 [𝑚𝑎𝑛(𝑥) ∧ ∀𝑦 [𝑤𝑜𝑚𝑎𝑛(𝑦) ∧ ℎ𝑎𝑡𝑒𝑠(𝑦, Jim) ⇒ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑦)]] 

 

 Every man loves a woman that hates Jim 

∀𝑥 [𝑚𝑎𝑛(𝑥) ⇒ ∃𝑦 [𝑤𝑜𝑚𝑎𝑛(𝑦) ∧ ℎ𝑎𝑡𝑒𝑠(𝑦, Jim) ∧ 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝑦)]] 

 

 A set is empty if and only if it contains no elements 
∀𝑠 [𝑒𝑚𝑝𝑡𝑦 𝑠 ⇔ ¬∃𝑥 𝑖𝑛 𝑥, 𝑠 ] 

 

 An element belongs to the difference of two sets if and only if 
it belongs to the first set and it does not belong to the 
second set 

∀𝑥 ∀𝑠1∀𝑠2 [𝑖𝑛 𝑥, 𝑑𝑖𝑓𝑓 𝑠1, 𝑠2 ⇔ 𝑖𝑛 𝑥, 𝑠1 ∧ ¬𝑖𝑛 𝑥, 𝑠2 ] 



Sam, Clyde and Oscar are elephants. Sam is pink. Clyde is grey 
and likes Oscar. Oscar is pink or grey and likes Sam. Prove that 
a grey elephant likes a pink elephant. 

𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑆𝑎𝑚  
𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝐶𝑙𝑦𝑑𝑒  
𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑂𝑠𝑐𝑎𝑟  

𝑝𝑖𝑛𝑘 𝑆𝑎𝑚  
𝑔𝑟𝑒𝑦 𝐶𝑙𝑦𝑑𝑒 ∧ 𝑙𝑖𝑘𝑒𝑠 𝐶𝑙𝑦𝑑𝑒, 𝑂𝑠𝑐𝑎𝑟  

[𝑝𝑖𝑛𝑘 𝑂𝑠𝑐𝑎𝑟 ∨ 𝑔𝑟𝑒𝑦 𝑂𝑠𝑐𝑎𝑟 ] ∧ 𝑙𝑖𝑘𝑒𝑠(𝑂𝑠𝑐𝑎𝑟, 𝑆𝑎𝑚) 

 

To prove: 
∃𝑥 [𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑥 ∧ 𝑔𝑟𝑒𝑦 𝑥 ∧ ∃𝑦 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑦 ∧ 𝑝𝑖𝑛𝑘 𝑦 ∧ 𝑙𝑖𝑘𝑒𝑠 𝑥, 𝑦 ] 



Conjunctive normal form (CNF): 
𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑆𝑎𝑚  
𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝐶𝑙𝑦𝑑𝑒  
𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑂𝑠𝑐𝑎𝑟  

𝑝𝑖𝑛𝑘 𝑆𝑎𝑚  
𝑔𝑟𝑒𝑦 𝐶𝑙𝑦𝑑𝑒  

𝑙𝑖𝑘𝑒𝑠 𝐶𝑙𝑦𝑑𝑒, 𝑂𝑠𝑐𝑎𝑟  
𝑝𝑖𝑛𝑘 𝑂𝑠𝑐𝑎𝑟 ∨ 𝑔𝑟𝑒𝑦 𝑂𝑠𝑐𝑎𝑟  

𝑙𝑖𝑘𝑒𝑠(𝑂𝑠𝑐𝑎𝑟, 𝑆𝑎𝑚) 

 

Refutation of the query: 
¬𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 𝑥 ∨ ¬𝑔𝑟𝑒𝑦 𝑥 ∨ ¬𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡(𝑦) ∨ ¬𝑝𝑖𝑛𝑘(𝑦) ∨ ¬𝑙𝑖𝑘𝑒𝑠(𝑥, 𝑦) 





A murder was committed in town. Victor was the victim. The 
police arrested three suspects, Abbott, Babbitt and Cabot. 
Abbott claimed that Babbitt and Victor were friends and that 
Cabot hated Victor. Babbitt denied that he was in town at the 
day of the murder and said that he didn’t know Victor. Cabot 
testified that he saw Abbott and Babbitt with Victor just before 
the crime. The police is confident that exactly one of the three, 
Abbott, Babbitt and Cabot, is guilty and they assume that the 
other two are telling the truth. Who is the murderer? 



 
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 → 𝑓𝑟𝑖𝑒𝑛𝑑 𝐵, 𝑉  
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 → ℎ𝑎𝑡𝑒𝑠 𝐶, 𝑉  

 
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 → ¬𝑖𝑛_𝑡𝑜𝑤𝑛 𝐵  
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 → ¬𝑘𝑛𝑜𝑤𝑠 𝐵, 𝑉  

 
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶 → 𝑤𝑖𝑡ℎ 𝐴, 𝑉  
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶 → 𝑤𝑖𝑡ℎ 𝐵, 𝑉  

 
∀𝑥 [𝑤𝑖𝑡ℎ 𝑥, 𝑉 → 𝑖𝑛_𝑡𝑜𝑤𝑛 𝑥 ] 

∀𝑥 ∀𝑦 [𝑓𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 → 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦 ] 
∀𝑥 ∀𝑦 [ℎ𝑎𝑡𝑒𝑠 𝑥, 𝑦 → 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦 ] 

 
¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴  ∨ ¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝐵) ∨ ¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝐶) 

(𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∧  𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 ) ∨ (𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∧ 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝐶)) ∨ (𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 ∧ 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶 ) 

 

 

To prove: 
∃𝑥 [¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝑥)] 



¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∨ 𝑓𝑟𝑖𝑒𝑛𝑑 𝐵, 𝑉  
¬ 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∨ ℎ𝑎𝑡𝑒𝑠 𝐶, 𝑉  

 
¬ 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 ∨ ¬𝑖𝑛_𝑡𝑜𝑤𝑛 𝐵  
¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 ∨ ¬𝑘𝑛𝑜𝑤𝑠 𝐵, 𝑉  

 
¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶 ∨ 𝑤𝑖𝑡ℎ 𝐴, 𝑉  
¬ 𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶 ∨ 𝑤𝑖𝑡ℎ 𝐵, 𝑉  

 
¬ 𝑤𝑖𝑡ℎ 𝑥, 𝑉 ∨ 𝑖𝑛_𝑡𝑜𝑤𝑛 𝑥  

¬𝑓𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∨ 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦  
¬ ℎ𝑎𝑡𝑒𝑠 𝑥, 𝑦 ∨ 𝑘𝑛𝑜𝑤𝑠 𝑥, 𝑦  

 
¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴  ∨ ¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝐵) ∨ ¬𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝐶) 

𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∨  𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵  
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐴 ∨  𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶  
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐵 ∨  𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡 𝐶  

 

Refutation of the query: 
𝑖𝑛𝑛𝑜𝑐𝑒𝑛𝑡(𝑥) 



Thus, Babbitt is the murderer! 


