Problem solving And search

Chapter 3
\diamond Problem-solving agents
\diamond Problem types
\diamond Problem formulation
\diamond Example problems
\diamond Basic search algorithms

Problem-solving agents

Restricted form of general agent:
function Simple-Problem-Solving-Agent (percept) returns an action static: seq, an action sequence, initially empty
state, some description of the current world state goal, a goal, initially null
problem, a problem formulation
state \leftarrow Update-State(state, percept)
if $s e q$ is empty then
goal \leftarrow Formulate-Goal(state)
problem \leftarrow Formulate-Problem(state, goal)
seq $\leftarrow \operatorname{SeARCH}($ problem)
action \leftarrow Recommendation(seq, state)
$s e q \leftarrow \operatorname{REmAINDER}(s e q$, state)
return action

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest
Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Single-state problem formulation

A problem is defined by four items:
initial state e.g., "at Arad"
successor function $S(x)=$ set of action-state pairs
e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
goal test, can be
explicit, e.g., $x=$ "at Bucharest"
implicit, e.g., NoDirt(x)
path cost (additive)
e.g., sum of distances, number of actions executed, etc.
$c(x, a, y)$ is the step cost, assumed to be ≥ 0
A solution is a sequence of actions
leading from the initial state to a goal state

Example: The 8-puzzle

Start State

Goal State
states??
actions??
goal test??
path cost??

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??
goal test??
path cost??

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

Tree search algorithms

Basic idea: offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)
function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree
end

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SUCCESSORFN of the problem to create the corresponding states.

Implementation: general tree search

function TREE-SEARCH (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow REmove-FRont(fringe)
if Goal-TEST(problem, State(node)) then return node
fringe $\leftarrow \operatorname{INsERTALL}(E x P A N D(n o d e$, problem $)$, fringe)
function EXPAND(node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in SUCCESSOR-Fn(problem, STATE[node]) do
$s \leftarrow$ a new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node $]+\operatorname{Step}-\operatorname{Cost}($ node, action, $s)$
$\operatorname{DEPTh}[s] \leftarrow \operatorname{DEPth}[$ node $]+1$
add s to successors
return successors

Search strategies

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions: completeness-does it always find a solution if one exists? time complexity-number of nodes generated/expanded space complexity-maximum number of nodes in memory optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b-maximum branching factor of the search tree
d-depth of the least-cost solution
m-maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search
Complete??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., \exp. in d Space??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)

Optimal??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$ so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe $=$ queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution

Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Properties of depth-first search
Complete??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal?? No

Depth-limited search

$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search( problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem,limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? \leftarrowfalse
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in EXPAND(node, problem) do
        result}\leftarrow\mathrm{ Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? }\leftarrow\mathrm{ true
        else if result }\not=\mathrm{ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution inputs: problem, a problem
for depth $\leftarrow 0$ to ∞ do
result \leftarrow DEPTH-Limited-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result
end

Iterative deepening search $l=0$

Limit $=0$ 도

Iterative deepening search $l=1$

Iterative deepening search $l=2$

Iterative deepening search $l=3$

Properties of iterative deepening search
Complete??

Properties of iterative deepening search

Complete?? Yes

Time??

Properties of iterative deepening search

Complete?? Yes

Time? ? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space??

Properties of iterative deepening search

Complete?? Yes

Time? ? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal??

Properties of iterative deepening search

Complete?? Yes

Time? ? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree
Numerical comparison for $b=10$ and $d=5$, solution at far right leaf:

$$
\begin{aligned}
& N(\text { IDS })=50+400+3,000+20,000+100,000=123,450 \\
& N(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=1,111,100
\end{aligned}
$$

IDS does better because other nodes at depth d are not expanded
BFS can be modified to apply goal test when a node is generated

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes *	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	$b m$	$b l$	$b d$
Optimal?	Yes *	Yes	No	No	Yes *

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

function Graph-SEARCH (problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe $\leftarrow \operatorname{Insert}($ Make-Node $($ Initial-State[problem] $)$, fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test(problem, State[node]) then return node
if State[node] is not in closed then
add State[node] to closed
fringe $\leftarrow \operatorname{InsertAlL}(E x p a n d($ node, problem $)$, fringe)
end

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Informed search algorithms

Chapter 4, Sections 1-2

Outline

\diamond Best-first search

$\diamond A^{*}$ search
\diamond Heuristics

Review: Tree search

function Tree-SEARCH (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front (fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{InsertAlL}(E x p a n d(n o d e$, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node
Implementation:
fringe is a queue sorted in decreasing order of desirability
Special cases:
greedy search
A^{*} search

Romania with step costs in km

Greedy search

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to the closest goal
E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

Greedy search example

Timisoara
329

Greedy search example

Arad

Sibiu

Zerind
329
374

Greedy search example

Arad

Sibiu

$\frac{\text { Sibiu }}{253}>\frac{\text { Bucharest }}{0}$

Properties of greedy search
Complete??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement Space??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$-keeps all nodes in memory
Optimal??

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$ —keeps all nodes in memory
Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
E.g., $h_{\text {SLD }}(n)$ never overestimates the actual road distance

Theorem: A^{*} search is optimal

Timisoara
$447=118+329$

Zerind
$449=75+374$

\mathbf{A}^{*} search example

Arad

Sibiu

Arad Fagaras Oradea D Rimnicu Vilcea
$646=280+366 \quad 415=239+176 \quad 671=291+380 \quad 413=220+193$

Timisoara
$447=118+329$

Zerind
$449=75+374$

A* search example

Arad

A* search example

Arad

\mathbf{A}^{*} search example

Arad

Optimality of A* (standard proof)

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

$$
\begin{array}{rlr}
f\left(G_{2}\right) & =g\left(G_{2}\right) \quad \text { since } h\left(G_{2}\right)=0 \\
& >g\left(G_{1}\right) \quad \text { since } G_{2} \text { is suboptimal } \\
& \geq f(n) \quad \text { since } h \text { is admissible }
\end{array}
$$

Since $f\left(G_{2}\right)>f(n)$, \mathbf{A}^{*} will never select G_{2} for expansion

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Complete??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes-cannot expand f_{i+1} until f_{i} is finished
A* expands all nodes with $f(n)<C^{*}$
A* expands some nodes with $f(n)=C^{*}$
A* expands no nodes with $f(n)>C^{*}$

Proof of lemma: Consistency

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

I.e., $f(n)$ is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

1	2	3
4	5	6
7	8	
7		

Goal State
$h_{1}(S)=? ?$
$h_{2}(S)=? ?$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

1	2	3
4	5	6
7	8	

Goal State

$$
\begin{aligned}
& h_{1}(S)=? ? 6 \\
& h_{2}(S)=? ? 4+0+3+3+1+0+2+1=14
\end{aligned}
$$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \text { IDS } \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Given any admissible heuristics h_{a}, h_{b},

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

is also admissible and dominates h_{a}, h_{b}

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost
Greedy best-first search expands lowest h

- incomplete and not always optimal

A* search expands lowest $g+h$

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Game Playing

Chapter 6

Outline

\diamond Games
\diamond Perfect play

- minimax decisions
$-\alpha-\beta$ pruning
\diamond Resource limits and approximate evaluation
\diamond Games of chance
\diamond Games of imperfect information

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate
Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble nuclear war

Game tree (2-player, deterministic, turns)

Minimax

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value $=$ best achievable payoff against best play
E.g., 2-ply game:

Minimax algorithm

```
function Minimax-Decision(state) returns an action
    inputs: state, current state in game
    return the \(a\) in Actions(state) maximizing Min-Value(Result( \(a\), state))
function MAX-VALUE(state) returns a utility value
    if Terminal-TESt(state) then return Utility(state)
    \(v \leftarrow-\infty\)
    for \(a\), \(s\) in \(\operatorname{Successors}(\) state \()\) do \(v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))\)
    return \(v\)
function Min-VALUE(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    \(v \leftarrow \infty\)
    for \(a\), \(s\) in Successors \((\) state \()\) do \(v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))\)
    return \(v\)
```


Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this). NB a finite strategy can exist even in an infinite tree!

Optimal??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity??

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? $O\left(b^{m}\right)$
Space complexity?? $O(b m)$ (depth-first exploration)
For chess, $b \approx 35, m \approx 100$ for "reasonable" games
\Rightarrow exact solution completely infeasible
But do we need to explore every path?

$\alpha-\beta$ pruning example

$\alpha-\beta$ pruning example

$\alpha-\beta$ pruning example

Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it \Rightarrow prune that branch
Define β similarly for MIN

The $\alpha-\beta$ algorithm

function Alpha-Beta-DECision(state) returns an action return the a in Actions(state) maximizing Min-Value(Result(a, state))
function MAX-VALUE (state, α, β) returns a utility value inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility (state)
$v \leftarrow-\infty$
for a, s in $\operatorname{SUCCESSORS}($ state $)$ do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{ValuE}(s, \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{Max}(\alpha, v)$
return v
function Min-VALUE (state, α, β) returns a utility value same as MAX-VALUE but with roles of α, β reversed

Properties of $\alpha-\beta$

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$
\Rightarrow doubles solvable depth
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

Resource limits

Standard approach:

- Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)
- Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^{4} nodes/second
$\Rightarrow 10^{6}$ nodes per move $\approx 35^{8 / 2}$
$\Rightarrow \alpha-\beta$ reaches depth $8 \Rightarrow$ pretty good chess program

Evaluation functions

Black to move
White slightly better

White to move
Black winning

For chess, typically linear weighted sum of features

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

Digression: Exact values don't matter

MAX

MIN

Behaviour is preserved under any monotonic transformation of EvaL
Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a sixgame match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b>300$, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

MAX

Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
if state is a Max node then return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Nondeterministic games in practice

Dice rolls increase b : 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with $1-1$ roll)
depth $4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}$
As depth increases, probability of reaching a given node shrinks
\Rightarrow value of lookahead is diminished
$\alpha-\beta$ pruning is much less effective
TDGammon uses depth-2 search + very good Eval \approx world-champion level

Digression: Exact values DO matter

MAX

DICE

MIN

Behaviour is preserved only by positive linear transformation of EvaL
Hence Eval should be proportional to the expected payoff

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*
Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Local search algorithms

Chapter 4, Sections 3-4

Outline

\diamond Hill-climbing
\diamond Simulated annealing
\diamond Genetic algorithms (briefly)
\diamond Local search in continuous spaces (very briefly)

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space $=$ set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

$h=5$

$h=2$

$h=0$

Almost always solves n-queens problems almost instantaneously for very large n, e.g., $n=1$ million

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"
function Hill-Climbing(problem) returns a state that is a local maximum inputs: problem, a problem
local variables: current, a node
neighbor, a node
current \leftarrow Make-Node(Initial-State[problem])
loop do
neighbor \leftarrow a highest-valued successor of current
if VALUE[neighbor] \leq VALUE[current] then return STATE[current]
current \leftarrow neighbor
end

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima-trivially complete
Random sideways moves (3)escape from shoulders (2)loop on flat maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
function Simulated-Annealing(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{VALUE}[$ next $]$ - VALUE [current]
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Local beam search

Idea: keep k states instead of 1 ; choose top k of all their successors
Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them
Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones
Observe the close analogy to natural selection!

Genetic algorithms

$=$ stochastic local beam search + generate successors from pairs of states

Fitness Selection Pairs Cross-Over
Mutation

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

GAs \neq evolution: e.g., real genes encode replication machinery!

Constraint Satisfaction Problems

Chapter 5
\diamond CSP examples
\diamond Backtracking search for CSPs
\diamond Problem structure and problem decomposition
\diamond Local search for CSPs

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box" -any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables X_{i} with values from domain D_{i}
goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring

Variables $W A, N T, Q, N S W, V, S A, T$
Domains $D_{i}=\{$ red, green, blue $\}$
Constraints: adjacent regions must have different colors
e.g., $W A \neq N T$ (if the language allows this), or $(W A, N T) \in\{($ red, green $),($ red, blue $),($ green, red $),($ green, blue $), \ldots\}$

Example: Map-Coloring contd.

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
$\{W A=$ red, $N T=$ green, $Q=$ red,$N S W=$ green,$V=$ red, $S A=$ blue, $T=$ green $\}$

Constraint graph

Binary CSP: each constraint relates at most two variables
Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Varieties of CSPs

Discrete variables
finite domains; size $d \Rightarrow O\left(d^{n}\right)$ complete assignments
\diamond e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete) infinite domains (integers, strings, etc.)
\diamond e.g., job scheduling, variables are start/end days for each job
\diamond need a constraint language, e.g., StartJob $1+5 \leq \operatorname{StartJob}_{3}$
\diamond linear constraints solvable, nonlinear undecidable
Continuous variables
\diamond e.g., start/end times for Hubble Telescope observations
\diamond linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary constraints involve a single variable,
e.g., $S A \neq$ green

Binary constraints involve pairs of variables,
e.g., $S A \neq W A$

Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment
\rightarrow constrained optimization problems

Example: Cryptarithmetic

$\begin{array}{r}T W O \\ +\quad T W O \\ \hline F O \cup R\end{array}$

Variables: FTUWRO $X_{1} X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints
alddiff($F, T, U, W, R, O)$
$O+O=R+10 \cdot X_{1}$, etc.

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
\diamond Initial state: the empty assignment, $\}$
\diamond Successor function: assign a value to an unassigned variable that does not conflict with current assignment. \Rightarrow fail if no legal assignments (not fixable!)
\diamond Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

$$
\Rightarrow \text { use depth-first search }
$$

3) Path is irrelevant, so can also use complete-state formulation
4) $b=(n-\ell) d$ at depth ℓ, hence $n!d^{n}$ leaves!!!!

Backtracking search

Variable assignments are commutative, i.e.,

$$
[W A=\text { red then } N T=\text { green }] \text { same as }[N T=\text { green } \text { then } W A=\text { red }]
$$

Only need to consider assignments to a single variable at each node $\Rightarrow \quad b=d$ and there are d^{n} leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for $n \approx 25$

Backtracking search

function BACKTRACKING-SEARCH $(c s p)$ returns solution/failure return RECURSIVE-BACKTRACKING($\}, c s p$)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
$v a r \leftarrow \operatorname{Select-UnASSIGNED-VARIABLE}(V A R I A B L E S[c s p]$, assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then add $\{$ var $=$ value $\}$ to assignment
result \leftarrow RECURSIVE-BACKTRACKING $($ assignment, csp)
if result \neq failure then return result remove $\{$ var $=$ value $\}$ from assignment
return failure

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV): choose the variable with the fewest legal values

Degree heuristic

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

Least constraining value

Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

WA	NT	Q	NSW	V	SA	T

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

Forward checking

Idea: Keep track of remaining legal values for unassigned variables Terminate search when any variable has no legal values

WA	NT	Q				\checkmark							
-		[\square										
		-1	-	\square	\square	\square		1	-■				
		1	\square	\square	\square	\square			-ロ				
		1	$1 \square$						-■				

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

$N T$ and $S A$ cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency algorithm

function AC-3($c s p$) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

$$
\left(X_{i}, X_{j}\right) \leftarrow \text { Remove-First }(q u e u e)
$$

if Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ then for each X_{k} in Neighbors $\left[X_{i}\right]$ do add $\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff succeeds
removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$ then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed
$O\left(n^{2} d^{3}\right)$, can be reduced to $O\left(n^{2} d^{2}\right)$ (but detecting all is NP-hard)

Problem structure

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

Problem structure contd.

Suppose each subproblem has c variables out of n total
Worst-case solution cost is $n / c \cdot d^{c}$, linear in n
E.g., $n=80, d=2, c=20$
$2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
$4 \cdot 2^{20}=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O\left(n d^{2}\right)$ time

Compare to general CSPs, where worst-case time is $O\left(d^{n}\right)$
This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

2. For j from n down to 2, apply REmoveInconsistent $\left(\operatorname{Parent}\left(X_{j}\right), X_{j}\right)$
3. For j from 1 to n, assign X_{j} consistently with $\operatorname{Parent}\left(X_{j}\right)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

(T)

(T)

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size $c \Rightarrow$ runtime $O\left(d^{c} \cdot(n-c) d^{2}\right)$, very fast for small c

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints operators reassign variable values

Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic: choose value that violates the fewest constraints i.e., hillclimb with $h(n)=$ total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n)=$ number of attacks

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking $=$ depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
Iterative min-conflicts is usually effective in practice

