PROBLEM SOLVING AND SEARCH

CHAPTER 3

Chapter 3

1

Outline

S S OSSO

Problem-solving agents
Problem types
Problem formulation
Example problems

Basic search algorithms

Chapter 3

3

Problem-solving agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING- AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state < UPDATE-STATE(state, percept)

if seq is empty then
goal«+— FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq<— SEARCH(problem)

action«<— RECOMMENDATION(seq, state)

seq<— REMAINDER(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

Chapter 3 4

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 5

Example: Romania

] Oradea
Neamt
= 87
75 _
] lasi
o(‘
. 92
Sibiu oy Fagaras
118 -
] Vaslui
80
Timisoara lenlcu Vilcea
142
- - 211
111] Lugoj Pitesti
70 - 08 |
_ 5 R— Hirsova
IMehadia 101 e\ Urziceni
&) 86
& 190 138 Bucharest
Dobreta
- e 90
raijova Eforie

] Giurgiu

Chapter 3 6

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), . ..}

goal test, can be
explicit, e.g., © = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > (

A solution is a sequence of actions
leading from the initial state to a goal state

Chapter 3

12

Example: The 8-puzzle

7 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??

Chapter 3

19

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)

actions??
goal test??
path cost??

2 4 1 2

6 4 5

3 1 7 8
Start State Goal State

Chapter 3

20

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)

actions’?: move blank left, right, up, down (ignore unjamming etc.)
goal test??

path cost??

Chapter 3 21

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states?7: integer locations of tiles (ignore intermediate positions)
actions’?: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??

Chapter 3 22

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states?7: integer locations of tiles (ignore intermediate positions)
actions’?: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Chapter 3 23

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Chapter 3

25

Tree search example

Chapter 3

26

Tree search example

Chapter 3

27

Tree search example

Chapter 3

28

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(z)

States do not have parents, children, depth, or path cost!

parent, action
A

State || 5 ||| 4 Node depth =6
g=6
6 Il 11l s
= {ale
7l 3 |l 2 >

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORFE'N of the problem to create the corresponding states.

Chapter 3 29

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-FN(problem, STATE[node]) do
s<—a new NODE
PARENT-NODE[s] «— node; ACTION[s] < action; STATE[s] « result
PATH-COST[s] « PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «+— DEPTH[node] + 1
add s to successors

return successors

Chapter 3

30

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be)

Chapter 3

31

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

lterative deepening search

Chapter 3

32

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>®)

Chapter 3 33

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A,
D> (B, ©

Chapter 3 34

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Chapter 3 35

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A
(B O
>O & ® G

Chapter 3 36

Properties of breadth-first search

Complete??

Chapter 3

37

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 38

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+ 0>+ ...+ b1+ 00— 1) = O(*1), ie., exp. in d

Space??

Chapter 3 39

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+ 0>+ ...+ b1+ 00— 1) = O(*1), ie., exp. in d

Space?? O(b?"!) (keeps every node in memory)

Optimal??

Chapter 3 40

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+ 0>+ ...+ b1+ 00— 1) = O(*1), ie., exp. in d
Space?? O(b?"!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.

Chapter 3 41

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?? # of nodes with g < cost of optimal solution, ()(bWWd)
where (" is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(b(c*/d)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Chapter 3

42

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

>®

Chapter 3 43

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(A
>(®) ©

Chapter 3 44

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 46

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 47

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 48

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 49

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 50

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(&
(O

Chapter 3 51

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 52

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 53

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 54

Properties of depth-first search

Complete??

Chapter 3 55

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Chapter 3 56

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 57

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Chapter 3 58

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Chapter 3 59

Depth-limited search

= depth-first search with depth limit [,
i.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln /fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail /cutoff
cutoff-occurred? < false
if GoAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Chapter 3

60

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth<— 0 to oo do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Chapter 3 61

Iterative deepening search | =0

Limit=0

>®

Chapter 3

62

Iterative deepening search [=1

Limit=1

>®

>(B) © 20

o e

Chapter 3

63

Iterative deepening search [=2

Limit = 2 0 ©

Chapter 3 64

Iterative deepening search [=3

Limit=3

>®

>(B) ©

Chapter 3

65

Properties of iterative deepening search

Complete??

Chapter 3 66

Properties of iterative deepening search

Complete?? Yes

Time??

Chapter 3 67

Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)b° + db' + (d — Db + ... + b = O(b?)

Space??

Chapter 3 68

Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 10"+ db' + (d — 1)b* + ...+ b = O(b?)

Space?? O(bd)

Optimal??

Chapter 3 69

Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 1)b° + db' + (d — Db + ... + b = O(b?)
Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3,000 + 20, 000 + 100, 000 = 123, 450
N(BFS) = 10+ 100 4 1,000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Chapter 3 70

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time pitt plc /el b b b
Space b+l plC /el bm bl bd
Optimal? Yes* Yes No No Yes*

Chapter 3 71

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential

onel

Chapter 3

72

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GoAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end

Chapter 3

73

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

lterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Chapter 3 74

INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2

Chapter 4, Sections 1-2 1

Outline

> Best-first search
> A* search

> Heuristics

Chapter 4, Sections 1-2

2

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem] applied to STATE(node) succeeds return node
fringe < INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4, Sections 1-2 3

Best-first search

|dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Chapter 4, Sections 1-2

4

Romania

with step costs in km

] Oradea

Arad
Sibiu gg Fagaras
118
80
Timisoara . Rimnicu Vilcea
11 ; ;
M Lugoj Pitesti
70 =
"] Mehadia 10
75 138
Dobreta [] 120
L Craiova

211

Neamt
u 87
] lasi
92
[} Vaslui
142
98
85 [[] Hirsova
Urziceni
] 86
Bucharest
90]
. . Eforie
] Giurgiu

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
las 226
L ugoj 244
M ehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vadui 199
Zerind 374

Chapter 4, Sections 1-2 5

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1-2 6

Greedy search example

366

Chapter 4, Sections 1-2

7

Greedy search example

374

Chapter 4, Sections 1-2

8

Greedy search example

176

Chapter 4, Sections 1-2

9

Greedy search example

Chapter 4, Sections 1-2

10

Properties of greedy search

Complete??

Chapter 4, Sections 1-2

11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time??

Chapter 4, Sections 1-2 12

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,

lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1-2

13

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b")—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

14

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b")—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1-2

15

A* search

ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

(n) = cost so far to reach n
n) = estimated cost to goal from n

g
h(
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1-2

16

A" search example

366=0+366

Chapter 4, Sections 1-2

17

A" search example

393=140+253 447=118+329 449=75+374

Chapter 4, Sections 1-2 18

A" search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Chapter 4, Sections 1-2 19

A" search example

_Aad
. sbu_ imisoara) C zerind >

447=118+329 449=75+374

Carad D PCragaras>y COradea > @imnion Vieed

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > _Sibiu_3

526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 20

A" search example

_Arad
. sbu_ Cimisoara) C zerind >

447=118+329 449=75+374

Carad > Fagaras> COradea> @mes Ve

646=280+366 671=291+380

C_Sibiu > Qucharesd CCraiova DD Pitesti D C_Sibiu_2

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 21

A" search example

. sbu_ Cimisoara) C zerind >

447=118+329 449=75+374

Carad > agaras> COradea> @mies Vs>

646=280+366 671=291+380

C_Sibiu_> Pitest
591=338+253 450=450+0 526=366+160 553=300+253

>

{Eﬂﬂﬁiﬂﬁb» C Craiova)

418=418+0 615=455+160 607=414+193

Chapter 4, Sections 1-2 22

Optimality of A* (standard proof)

Suppose some suboptimal goal (5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal GG;.
Sart

N

G@® G,

=
G2
D
[
=2
D
S

since h(G) =0
q(Gh) since Gy is suboptimal

AVARY,
P
3

since h 1s admissible

Since f(G5) > f(n), A* will never select (&, for expansion

Chapter 4, Sections 1-2 23

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour 7 has all nodes with f = f;, where [, < f; 1

Chapter 4, Sections 1-2

24

Properties of A*

Complete??

Chapter 4, Sections 1-2

25

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(()

Time??

Chapter 4, Sections 1-2

26

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(()

Time?? Exponential in [relative error in i X length of soln.]

Space??

Chapter 4, Sections 1-2

27

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(()

Time?? Exponential in [relative error in i X length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

28

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(()

Time?? Exponential in [relative error in i X length of soln.]
Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f;. until f; is finished

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-2 29

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c¢(n,a,n’) + h(n')
If 1, is consistent, we have c(n,a,n’

f(n') = g(n) + h(n)
g(n) + c(n,a,n’) + h(n')
(n) +

h(n)

n

g
f(n)

l.e., f(n) is nondecreasing along any path.

v

S

Chapter 4, Sections 1-2 30

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4

5 6

8 3 1
Start State

1 2 3
4 5 6
7 8

Goal State

Chapter 4, Sections 1-2

31

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =77 6
ho(S) =77 44043+3+1+0+2+1 = 14

Chapter 4, Sections 1-2

Dominance

If ho(n) > hy(n) for all n (both admissible)
then ho dominates /1 and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hsy) = 1,641 nodes

Given any admissible heuristics h,, hy,
h(n) = max(hy(n), hy(n))

is also admissible and dominates h,, h;

Chapter 4, Sections 1-2 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then hy(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1-2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1-2

35

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1-2 36

(GAME PLAYING

CHAPTER 6

Chapter 6

1

Outline

> Games

> Perfect play
— minimax decisions

— a— pruning
{> Resource limits and approximate evaluation

{»> Games of chance

> Games of imperfect information

Chapter 6 2

Games vs. search problems

“Unpredictable” opponent =- solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 19438;
Shannon, 1950)

e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Chapter 6

3

Types of games

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Chapter 6 4

Game tree (2-player, deterministic, turns)

MAX (X)
X X X
MIN (O) X X X
X X X
x|o x| |o| [x
MAX (X) o
x|lo[x| [|x|o x|o
MIN (O) X X
x|lo[x| [x|o|[x| [x]o]|x
TERMINAL o[x] [o]o]x X
0 x| x[o| [x]o]o
Utility -1 0 +1

Chapter 6 5

Minimax

Perfect play for deterministic, perfect-information games

|dea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN

Chapter 6

6

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, sin SUCCESSORS(state) do v« MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V4 00
for a, sin SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Chapter 6

Properties of minimax

Complete??

Chapter 6

8

Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??

Chapter 6

9

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Chapter 6

10

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity??

Chapter 6

11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ~ 35, m ~ 100 for “reasonable” games
= exact solution completely infeasible

But do we need to explore every path?

Chapter 6

12

o—3 pruning example

MAX 23

MIN 3

Chapter 6 13

o—3 pruning example

MAX 23
MIN 3 /§2
X X

Chapter 6 14

o—3 pruning example

MAX

MIN

IN

14

Chapter 6

15

o—3 pruning example

MAX

MIN

Chapter 6

16

o—3 pruning example

MAX

MIN

Chapter 6

17

Why is it called o—p7

MAX

MIN

MAX

MIN V

v is the best value (to MAX) found so far off the current path
If V' is worse than o, MAX will avoid it = prune that branch

Define 5 similarly for MIN

Chapter 6

18

The o—3 algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the ¢ in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state, «v,) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
(3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
V= —00
for a, sin SUCCESSORS(state) do
v+ MAX(v, MIN-VALUE(s, o, 3))
if v > (G then return v
a«— Max(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
same as MAX-VALUE but with roles of «, 3 reversed

Chapter 6

19

Properties of o—3

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b"/?)
= doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

550

Unfortunately, 35°7 is still impossible!

Chapter 6 20

Resource limits

Standard approach:

e Use CUTOFF-TEST instead of TERMINAL-TEST
e.g., depth limit (perhaps add quiescence search)

e Use EVAL instead of UTILITY
I.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10" nodes/second
= 10° nodes per move = 355/2
= a—(3 reaches depth 8 = pretty good chess program

Chapter 6 21

Evaluation functions

Black to move White to move

White slightly better Black winning
For chess, typically linear weighted sum of features
Eval(s) = wifi(s) + wafo(s) + ... + wyfuls)

e.g., wy = 9 with
fi(s) = (number of white queens) — (number of black queens), etc.

Digression: Exact values don’t matter

MAX
MIN X 2 1 20
1 2 4 1 20 2 400

Behaviour is preserved under any monotonic transformation of EE-VAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

Chapter 6 24

Nondeterministic games: backgammon

0O 1 2 4 5 6 /7 8 9 1011 12
OO)

4»4»4‘»4‘ "

| =<l
25 24 23 22 21 20 19 18 17 16 15 14 13

I <‘> =

it

Chapter 6

25

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MAX

CHANCE

MIN

Chapter 6 26

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MIINIMAX, except we must also handle chance nodes:

if state is a M AX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Chapter 6 27

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon == 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)% ~ 1.2 x 10"

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—(3 pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL
~ world-champion level

Chapter 6

28

Digression: Exact values DO matter

MAX

DICE

MIN 20

2 3 3 4 20 20 30 30 1 400 400

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff

Chapter 6 29

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game®

ldea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

*

Special case: if an action is optimal for all deals, it's optimal.”

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 6

30

LOCAL SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 3—4

Chapter 4, Sections 3—4 1

Outline

¢ Hill-climbing
> Simulated annealing
¢ Genetic algorithms (briefly)

{> Local search in continuous spaces (very briefly)

Chapter 4, Sections 3—4 2

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Chapter 4, Sections 3—4

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

- ® ®
/

Y, $
/7
p |

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities

Chapter 4, Sections 3—4 4

Example: n-queens

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

W

Move a queen to reduce number of conflicts
i’ =

h=5 h=2 h=0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1mallion

Chapter 4, Sections 3—4 5

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor«— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current| then return STATE[current]
current «— neighbor

end

Chapter 4, Sections 3—4 6

Hill-climbing contd.

Useful to consider state space landscape

objecti\‘e function lobal maximum

shoulder

local maximum

"flat" local maximum

»state space
current

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (&)escape from shoulders (Z)loop on flat maxima

Chapter 4, Sections 3—4 7

Simulated annealing

|dea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <— MAKE-NODE(INITIAL-STATE[problem])
for t+— 1to oo do
T« schedulelf]
if T'= 0 then return current
next «— a randomly selected successor of current
AFE«— VALUE[nezt] — VALUE[current]
if AE > 0 then current < next

else current« next only with probability e /T

Chapter 4, Sections 3—4

Local beam search

|dea: keep k states instead of 1; choose top £ of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all £ states end up on same local hill
ldea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Chapter 4, Sections 3—4

10

Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

>~
>~

24748552 | 24 31% , | 32752411
32752411 [23 29% | 24748552
24415124 | 20 26% | 32752411
32543213 | 11 14% ~[24415124
Fithness Selection Pairs

32748552

327491p2

24752411

24752411

32752124

322p2124

24415411

Cross—Qver

24415417

Chapter 4, Sections 3—4 11

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

W

W

W

W

GAs =# evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 3—4

12

CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 5

Chapter 5

1

Outline

{» CSP examples

> Backtracking search for CSPs

{> Problem structure and problem decomposition

> Local search for CSPs

Chapter 5 2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables X; with values from domain D),

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Chapter 5

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
Australia
New South Wales

Tasmania

Variables WA, NT, Q, NSW,V, SA, T
Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 5 4

Example: Map-Coloring contd.

\/\/—

Tasmvia

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT = green,QQ =red, NSW = green,V =red, SA=blue, T = green}

Chapter 5 5

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
Q

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5

6

Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob, +5 < Start.Job;
> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
{> linear constraints solvable in poly time by LP methods

Chapter 5

7

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA #£ green

Binary constraints involve pairs of variables,

e.g., SAWA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Chapter 5

Example: Cryptarithmetic

o4 -

W
W
U

O[O O

|+

g X X

Variables: ' T'U W R O X; Xy X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints

alldiff B, T, U, W, R, O)

O+ 0=R+10-X,, etc.

Chapter 5 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with 7 variables

= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — ()d at depth /, hence n!d" leaves!!!!

Chapter 5 11

Backtracking search

Variable assignments are commutative, i.e.,
[WA=redthen NT = green] sameas [NT = greenthen WA =red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

Chapter 5 12

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var+<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Chapter 5

13

Backtracking example

NS

Chapter 5 14

Backtracking example

SO

—]

o o

Backtracking example

Backtracking example

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 5 18

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

\.\

.

=

—
= =

g5 gh

\.\

Chapter 5

19

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

R R R

Chapter 5 20

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

\ S
l? ‘_LE_»‘_L):< ‘ Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 5 21

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

NS

WA NT Q NSW Vv SA T

Chapter 5 22

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSE S

WA NT Q NSW v SA T
ENEENEENEENEENE NN RN
I | ITErirerniren i HEN N

Chapter 5 23

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSE Sl Se

WA

NT

Q NSW V SA T

Chapter 5

24

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S o E

WA NT Q NSW V SA T
EEECE[EEE[EEE[EEE[EE N[
s CE[ErEErE[EEE] TE[E
| N B E[EEE] H[E
I | H] | | E— |

Chapter 5 25

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-

ables, but doesn’t provide early detection for all failures:

WA NT Q NSW \% SA

NT and S A cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 5

26

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed v

SO SSha Se

WA NT Q NSW \% SA

Chapter 5

27

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed v

SO SSha Se

WA NT Q NSW \% SA

Chapter 5

28

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed v

SO SSha Se

WA NT Q N

SW \%
I O 1 o H[EEE

\«

If X loses a value, neighbors of X need to be rechecked

SA T

Chapter 5 29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed v

SO SSha Se

WA NT Q N

1 B ISV;I:EI[VI) (L

— ‘< —
If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5

30

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { Xy, X,, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;)«— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X} in NEIGHBORS[X;| do
add (Xj, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each z in DoMAIN[X}] do
if no value y in DOMAIN[X|] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X;]; removed < true
return removed

O(n*d?), can be reduced to O(n*d*) (but detecting all is NP-hard)

Chapter 5

31

Problem structure

O
Q

Tasmania and mainland are independent subproblems

|dentifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has ¢ variables out of n total

Worst-case solution cost is n/c - d°, linear in n

E.g., n=280, d=2, ¢c=20
2%0 = 4 billion years at 10 million nodes/sec
42?2V = 0.4 seconds at 10 million nodes/sec

Chapter 5 33

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d?) time

Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

2e e§

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. For j from 1 to n, assign X consistently with Parent(X))

Chapter 5 35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O —@ O—@
c P NG
O O
O, O,

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d° - (n — c)d*), very fast for small ¢

Chapter 5

36

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with A (n) = total number of violated constraints

Chapter 5

37

Example: 4-Queens

States: 4 queens in 4 columns (4" = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

= vl ™ vl B

Chapter 5

38

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., » = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R —

number of variables

CPU
time

.

- .I
cr|t|c_aI
ratio

Chapter 5 39

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

Chapter 5

40

