
Logic as Vehicle for Real Life ApplicationsPanagiotis Stamatopoulos Isambo KaraliUniversity of Athens, Department of InformaticsPanepistimiopolis, 157 71 Athens, GreeceE-mail: ftakis,izambog@di.uoa.grAbstractReal life applications involve entities and algorithms that are complex to model andimplement. Logic programming, the most practical approach of logic, facilitates thedevelopment procedure for these applications. However, its declarativeness does notseem su�cient to provide the means for the implementation of fully usable systems. Inthis paper, we discuss the applicability of logic programming in combinatorial searchreal life applications. We consider also some extensions of logic programming, such asconstraints and parallelism. The addressed problems come from a variety of domainssuch as personalized tour construction, university course timetabling and airline crewscheduling.1 IntroductionA large variety of real life applications involve the need of carrying out some kind of \intelligentaction" [5]. The term \intelligent action" refers to a behavior that simulates the way humansact when they face di�cult problems. A problem may be both di�cult to model and di�cultto solve. In most cases, an arti�cial system may act intelligently if it is able to i) access therequired knowledge and ii) draw inferences on it. For the purposes of knowledge representationand deduction of new knowledge from existing pieces of knowledge, a tool that has beenextensively used by the Arti�cial Intelligence (AI) community is logic.In a logic-based framework, the world is modelled as a set of holding formulas which playthe role of the axioms that support the proof of theorems. Actually, a theorem correspondsto a problem that has to be solved and the way the existing knowledge has to be combined inorder to produce the desired result is nothing else but a search problem, at most cases a verydi�cult one.In this paper, we discuss the use of logic for tackling real life applications that cope with aspeci�c class of problems, the combinatorial search problems, with or without the requirementfor optimization. More precisely, we are going to talk about �rst order logic and its specializa-tion to a \computing machine", namely logic programming. The focus will be on the way thiscomputational framework and some extensions of it are applied to the problems under con-sideration. Various real life applications are used to demonstrate the presented ideas, rangingfrom planning tourists' visits to interesting places and automatic timetable construction toairline crew scheduling. We comment on the introduction of constraints in logic programmingand the exploitation of parallelism for speeding up search. Next, we give our assessment forthe technology under discussion and, �nally, we present our opinion about the usefulness of1

developing intelligent heuristics to guide the search to more promising alternatives, or goingto a direction of applying specialized algorithms hidden behind a declarative interface. Mostof the results derive from our working experience in Esprit projects as well as internal researchin the Department of Informatics of the University of Athens.2 From Logic to Logic ProgrammingLogic �nds its roots back to Aristotle's era and a lot of mathematicians, such as Frege, Skolem,G�odel, Herbrand, Tarski, Church and Turing, to mention some of them, starting from the lastquarter of the 19th century, formalized it on a concrete basis. However, it was only duringthe 1970's that Alain Colmerauer and Robert Kowalski realized that a subset of logic mightbe used as a programming language appropriate for tackling problems in an entirely new way.The story begins with the resolution principle, an elegant proof mechanism augmentedwith a uni�cation capability, introduced by J.A. Robinson. Resolution was applicable to theso called �rst order logic for the purpose of deducing theorems from axioms. Unfortunately,this methodology was too general to be e�cient. At early 70's though, Colmerauer andKowalski independently concluded that by specializing �rst order logic to deal just with Hornclauses, i.e. implications that do not deduce disjunctive results, the emerging tool might be ofsigni�cant importance.The above gave rise to logic programming [8, 11], a problem solving approach that is stillactive, more than 20 years after its birth. Logic programming provides a declarative way ofstating what the properties of a problem are but not how this should be solved. The latteris hidden into the procedural meaning of a program which is proved to be equivalent to itsdeclarative meaning [14]. The most famous instantiation of the ideas of logic programming isthe Prolog language. Despite the fact that in Prolog the equivalence between the declarativeand the procedural semantics of a program is lost, many Prolog systems have been imple-mented and a lot of them have been extended in various promising ways. Nowadays, it is notuncommon for an application developer to commit to a Prolog-based approach for solving areal life problem.3 Combinatorial Search ProblemsThere is a very broad class of problems which fall under the general areas of planning, schedul-ing and resource allocation and which are di�cult to model but even more di�cult to solve.The solution of such a problem consists of an appropriate assignment of values to the variablesthat model the problem's domain in such a way that various constraints are respected. Theseproblems are often referred to as combinatorial search problems, in the sense that what wehave to search for is a feasible combination of values for the incorporated variables.In a combinatorial search problem, someone might look for one, some or all feasible solu-tions. Depending on the solution density of the search space, �nding one or a few solutionsmight equally be a quite easy or an extremely di�cult task. On the other hand, �ndingall feasible solutions might be out of the question, or even out of usefulness, in case thereis a huge number of them. However, what is actually required in most cases is to �nd theoptimal solution according to a given objective function. Then, we are talking about opti-mization problems, which is the kind of problems that the Operations Research (OR) peopleare attacking for many years now. 2

In the following, the presented ideas have emerged from the authors' involvement to thedevelopment of a variety of real life applications that faced combinatorial search problems.Among them, we mention:Personalized tour construction: Given a set of available places with all possible activities thata tourist may visit as well as all relevant data (distances, costs, active periods, etc.),plan tours that �t better to speci�c tourist's interests and constraints.University course timetabling: Given a set of university courses with their respective prop-erties, schedule them in time and place in a way that does not violate any requiredconstraint and satis�es all involved parties (teachers, students, etc.)Airline crew scheduling: Given a set of
ight legs that an airline company has to carry out,organize them into trips from home base to home base, called pairings, and allocatecrew members to pairings in a way that respects all legal, contractual, union, etc. rulesand optimizes some measure of schedule quality, such as fair assignment, satisfaction ofpreferences, seniority consideration, etc.4 The MethodologiesIn this section, we discuss how combinatorial search problems can be tackled in a logic-basedenvironment and comment on the possibilities to achieve the desired results, especially whenthe overall application comes from and is going to work in the real world. Firstly, we considera pure logic programming approach. Next, we deal with the introduction of constraints and,then, we augment it with the exploitation of parallelism as well. Finally, we comment on theemployed tools and we conclude that signi�cant e�ort has to be put for inventing intelligentheuristics that might guide the search to the most promising parts of the search space or,alternatively, enrich the high level logical approach with computation engines, that workbehind the scenes, based on existing specialized algorithms.4.1 Logic ProgrammingLogic programming provides a declarative way of modelling combinatorial search problemsas well as a proof mechanism that might reach, at least theoretically, the desired solutions.The straightforward approach is to follow a generate-and-test methodology which consistsof the exhaustive enumeration of all possible solutions and checking about their feasibility.Unfortunately, this procedure cannot behave e�ciently, unless we are facing a \toy" problemor we are looking for a single solution in a search space very dense in solutions.At least for prototyping purposes, somebody might start from a generate-and-test methodor, perhaps, an improvement of it called test-and-generate. The latter approach is not thatine�cient as the former is, since the feasibility tests are stated at the beginning and getsuspended before the generation phase starts. In the generation phase, the appropriate testsare waken as soon as they can be checked during the construction of a candidate solution,which results in avoiding the complete generation of solutions whose part has been proved tobe infeasible. However, neither of the two is su�cient to support the implementation of a reallife working system. 3

4.2 Logic Programming + ConstraintsThe test-and-generate method described brie
y in the previous paragraph led to the idea of amore active exploitation of the involved tests. A test, called constraint hereafter, may be usedto prune inconsistent values of the involved variables, before getting to the point of choosingvalues for these variables. The e�ect of this pruning may be propagated then, through anotherconstraint, to the possible values of other variables, leading in this way to a data-driven formof ensuring consistency. The overall result may be a signi�cant reduction of the search space,depending, of course, on the nature of the involved constraints.The above method, called constrain-and-generate, is based on the pioneering work of Pascalvan Hentenryck [15], who designed, formalized and implemented the exploitation of constraintsinto logic programming, introducing, in this way, the Constraint Logic Programming (CLP)technology. Since then, a lot of CLP systems have been developed, most of which have beenused for the implementation of applications dealing with combinatorial search problems. Un-fortunately, this methodology has its limits as well and cannot give results when the problemstend to grow up in size [2].4.3 Logic Programming + Constraints + ParallelismAn improvement of CLP that has been proposed and used in practice is to speed up the searchby exploring alternative choices in parallel. There exist CLP systems that, instead of followinga sequential depth-�rst traversal of the search tree with chronological backtracking, exploitparallel computing to examine simultaneously di�erent values of a single variable. Dependingon the nature of the problem, this approach may result up to linear speedup when looking forall solutions, or even to superlinear speedups, which, however, is a matter of good luck, whenlooking for one or the optimal solution.Performing a parallel search is, certainly, better than a sequential approach, but even thisdoes not solve the problem. When we face combinatorial search problems coming from thereal world, the usage of constraints may prune signi�cantly the search space and the moreprocessing elements we have the more e�cient is our search. However, even if we have atour disposal extremely powerful massively parallel machines, examining all the alternativesexhaustively is still out of the question, as the number of alternatives in a real life problem isincomparably greater than the number of processing elements used. So, are we hopeless? Theanswer is \No".4.4 Intelligent Heuristics and Specialized AlgorithmsWhen searching for the optimal solution of a combinatorial search problem, even a near optimalone might be satisfactory. In any case, the de�nition of the optimum is based on an objectivefunction which may quantify some subjective criteria to some extent. Thus, it is not veryeasy to discriminate the quality of approximately equivalent solutions. So, we might be happyif we could guide the search by using problem dependent heuristics to satisfactory solutions,avoiding, in this way, computationally intensive enumerations. Certainly, �nding out whichheuristics to employ is a di�cult task that might require extensive experimentation. In anycase, this is something that people do in their every day life. We face combinatorial searchproblems and we manage to solve them without spending that much computing power, simplyby taking the appropriate decisions at the right points. Actually, inventing and applyingintelligent heuristic rules is an AI issue. 4

An alternative to the application of problem speci�c heuristics is to \steal" specializedmethods from the OR area that have been applied successfully in the past for solving problemsof the considered kind. The drawback of these methods might be that they are not very
exibleand they do not contribute to a declarative formulation of the problem at hand. However,they can be coupled in an elegant way with a logic-based environment, by letting them workas constraint manipulating entities, while keeping the top-level framework highly declarative[9]. Then, the results might be very good both from the modelling and the e�ciency pointsof view.5 The ResultsThe methodologies of the previous section served as the implementation platforms for thedevelopment of the already mentioned applications.As far as the personalized tour construction problem is concerned, it seemed that theparallel constraint logic programming technology was su�cient to cope with the encounteredcomplexity [13], although, in some cases, the computation was driven to hardly acceptablee�ciency [12]. This was due to the depth of the search space, the number of alternatives andthe distribution of solutions.The other two problems, i.e. the university course timetabling and the airline crew schedul-ing, were more complicated. The pure parallel CLP approach provided by the ECLiPSelanguage [3], which is also enriched with a built-in branch-and-bound method for tackling op-timization problems, was followed for the timetable construction [4]. However, it was provedthat the e�ciency was very sensitive to the input data, thus, intelligent heuristic rules wereemployed as well for guiding the search, in order to build a usable system. The obtainedresults were absolutely satisfactory.The crew scheduling problem was tackled both in a logic-based platform [10] and in anobject-oriented one [6], i.e. a C++ library for parallel constraint programming, named IlogSolver [7]. This library merges ideas coming from the logic programming area within animperative programming approach, resulting to a possibility of doing more e�cient searches.This was proved in practice, since for the crew scheduling problem, the logic approach mightbe used just for prototyping purposes, while the one that was based on Ilog Solver tended tobe quite acceptable for a real world system. In addition, for the more di�cult subproblems ofcrew scheduling, intelligent heuristics were applied as well, but, despite the very good resultsobtained, the conclusion was that something more is needed to attack the complexity. What isgoing to be applied for the rostering (assignment) subproblem of crew scheduling is to combineparallelism, constraint programming and OR methods with the aim to pro�t from all thesetechnologies. This will be done in the context of the European Union Parrot Esprit project,which will start soon and where the University of Athens participates.6 ConclusionsIn this paper, we presented logic-based approaches for dealing with a special class of di�cultproblems, the combinatorial search problems. We explained why the declarativeness o�eredby logic is desirable for modelling such problems, but for solving them e�ciently somethingmore powerful than the blind application of resolution is needed. We shouldn't be afraid ofcoupling the advantages o�ered by logic with other technologies, provided we know what weare doing. As a hint of the direction that the researchers tend to follow in this area for the5

future, someone might look to a very recent work of a key person of the logic programmingcommunity, Krzysztof Apt [1].AcknowledgmentsThe authors would like to thank their colleagues in the EDS, APPLAUSE and PARACHUTEprojects for all fruitful discussions they had for eight years on the topics covered in thispaper and, especially, Prof. Constantin Halatsis who led the involvement of the group in theseprojects.References[1] K. R. Apt and A. Schaerf. Search and imperative programming. In Proceedings of the 24thACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 67{79,1997.[2] Y. Cras. Using constraint logic programming in services: A few short tales. In M. Bruynooghe,editor, Proceedings of the 1994 International Symposium in Logic Programming, pages 3{16,1994.[3] ECLiPSe 3.5: User Manual, February 1995.[4] H. Frangouli, V. Harmandas, and P. Stamatopoulos. UTSE: Construction of optimum timetablesfor university courses | A CLP based approach. In Proceedings of the Third InternationalConference on the Practical Application of Prolog, pages 225{243, 1995.[5] M. Ginsberg. Essentials of Arti�cial Intelligence. Morgan Kaufmann Publishers, 1993.[6] C. Halatsis, P. Stamatopoulos, I. Karali, T. Bitsikas, G. Fessakis, C. Fouskakis, T. Schizas,and S. Sfakianakis. CREM integration and testing. PARACHUTE Project Deliverable DD39,University of Athens, 1996.[7] ILOG Solver: User's Manual | Version 3.2, 1996.[8] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.[9] K. McAloon and C. Tretko�. 2LP: Linear programming and logic programming. In V. Saraswatand P. van Hentenryck, editors, Principles and Practice of Constraint Programming, pages 101{116, 1993.[10] C. Pavlopoulou, A. Gionis, P. Stamatopoulos, and C. Halatsis. Crew pairinig optimization basedon CLP. In Proceedings of the Practical Application of Constraint Technology Conference, pages191{210, 1996.[11] J. A. Robinson. Logic and logic programming. Communications of the ACM, 35(3):40{65, 1992.[12] P. Stamatopoulos and I. Karali. A tourist advisory system for Greece. In A. Herold, editor, TheHandbook of Parallel Constraint Logic Programming Applications, chapter 7, pages 186{203.APPLAUSE Project Deliverable D.WP4.ECRC.4B, 1995.[13] P. Stamatopoulos, I. Karali, and C. Halatsis. A tour advisory system using a logic programmingapproach. Applied Computing Review, 1(1):18{25, 1993.[14] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programminglanguage. Journal of the ACM, 23(4):733{742, 1976.[15] P. van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, 1989.6

