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Abstract—Constraint Programming constitutes a prominent
paradigm for solving time-consuming Constraint Satisfacton
Problems (CSPs). In this work, at first we model a generic
course scheduling problem as a CSP, that complies with
the International Timetabling Competition (ITC) standards.
Constraint Programming allowed us to search for a solution
via several state-of-the-art methodologies and compare &m.
For the stochastic search methods, we propose new hybrid
semi-random heuristics. Second, we chose to maintain bouad
consistency during search to prune ‘no-good’ branches of th
search tree. We theoretically define new lightweight congiency
types, namely k-bounds-consistency, in order to speed up the
overall search procedure. Eventually, we process real wal
data and show the efficiency of our proposal: While plain
backtracking produces poor results, constraint propagaton
dramatically boosts the solutions quality, and can be ‘fine-
tuned’ in our adjustable schema to make it even faster.

Keywords-timetabling; bounds consistency; search.

I. INTRODUCTION

Scheduling activities which depend on resources is

common problem addressed for almost half a century [1]

A wide spectrum of techniques to cope with it have bee
evolved so far[[2].

A. Multidisciplinary Contributions to Timetabling

a

n

Search techniques have been recently evolved to produce
near optimal solutions [11].

A common way to implement applications in Atrtificial
Intelligence is to define the constraints of the problem in a
Constraint Programming framework with a solver that uses
Logic Programming([12],[T13], or other environmentsi[14].
To unify all these variations, common criteria have been
suggested to measure the efficiency of automated timetablin
applications|[[15].

There has been made great effort towards reducing the
computational time needed to construct a timetable. Nev-
ertheless, today the main obstacle for the spreading of
timetabling systems is lack of flexibility; in many cases
they cannot adapt to the different requirements of each ed-
ucational institute and the complicated constraints thay m
exist. So, the main contribution of Constraint Programming
in this direction is the separation of the statement of the
problem and the mechanism that solves it/ [16]. This is the
key feature that made this Artificial Intelligence paradigm
popular to the programmers’ community and this is how
we faced automated timetabling in this work: We defined
explicitly the entities of the problem and we simplified the
constraints that connect them. Their simplicity makes the
whole problem portable to many solvers that use Constraint
Programming (CP)[[17], as well as Constraint Logic Pro-

Automated timetabling is a common scheduling problemgramming (CLP) [[1B]. Besides, this framework makes it
that occurs in every educational institute. There have beesasy to add new constraints or to modify existing ones,
developed a lot of ways to solve [tI[3]. The similarities to without affecting the search implementation.
the problem of graph coloring were used to invent common Our first contribution is the statement of the course

procedures to solve them bothl| [4]. Timetabling was alscscheduling as a CSP. After the CSP has been defined—
correlated with the general class of network flow problemsncluding all of its variables and the optimization criger-
[5]. Other methods include clustering of the problem toseveral direct search methods are combined with other
smaller sub-problems_[6]. The application of case-basegropagation techniques and well-aimed heuristics to solve
reasoning to timetabling also gives promising results [7]. it. In this context, we also propose new hybrid semi-random
Because of the hardness of finding an optimum solutiorheuristics and compare them with the systematic ones.
to the problem, a lot ometaheuristicmethods have been  The Constraint Programming paradigm is ideal for ‘plug-
used. In general, these methods begin from a state of thging’ into our course scheduling CSP many different generic
variables of the problem, and try iteratively to reach aroth search methods and heuristics, because the statement and
state that is closer to a solution, i.e. that is better tharotike  solution phases are completely independent, and we do not
already found, if any. The disadvantage of these methodkave to declare the problem and its constraints from scratch
is ‘sticking’ in local optima, but there are a lot of ways This philosophy allowed us not only to make comparisons
to override them. Methods widely used in Artificial Intelli- between many search procedures on this demanding CSP,
gence, such as simulated annealing [8], genetic algorithmisut also to propose and test a new constraint propagation
[Q], and tabu search [10], were applied in this problem. lLocaschema.
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B. Constraint Propagation and Related Work

Roughly speaking, constraint propagation is a proces¥! academia:
used to transfer the modifications of the variables of a 1) Usually, a student attends a specific group of courses.
CSP across the constraint network, in order to make all the For example courses are grouped according to the
variables and their assignments compatible to each other. semester they belong to, or the general direction they

hierarchy supports the following conditions that oftenurcc

Intuitively, domino game is a mechanical equivalent to this
technigue, where the tiles falling in turn symbolize theioha
variable assignments fired by constraint propagation.

In this context, a propagation algorithms series have been

serve; e.g. we may have the groups®‘Bemester
Courses,’ ‘Courses of Mathematical Science,’ etc. Two
courses that are members of the same group shmild

be scheduled at the same time. The best thing that one

could do is to schedule the corresponding lectures of
each group as close as possible, so that the personal
timetables of most students have no idle periods.
Normally, each course is broken up into lectures, that
should be spread during the week. For each cogrse
there is a minimum desired number of days on which
the lectures will be distributed over the week, namely

evolved, such as AC-3, AC-5, AC-2001, etc., where ‘AC’
stands for ‘arc-consistency! [19]. There exists a plethora

of ways to make one variable of a problem consistent to
another, as there are many consistency levels, with the most 2)
prominent ones elaborated in Sectioh V.

Propagation methods incorporate awentqueue, con-
taining all the previous assignments/modifications to the
variables [[20]. Each event in the queue is propagated to ~ mwd(c;), where mwd stands forminimum working
the variables, in order to make them consistent to the days.
current assignments. For contemporary CSPs—like course 3) The number of the lectures for a course is predefined
timetabling—with too many variables, this ‘communication and given by the propertyur(c;). There is also
between all the variables becomes inefficient and may result @ function named course’ that mapsL to C, i.e.
into thrashing. course(?) is the course that lecturebelongs to.

Related work leverages on limiting the queue itself, bylt is noted that each course has the properdyc;) C P
preventing the insertion of events, when either the digtancwhich contains the periods when its lectures cannot been
from the previous event is above a threshold, or the evengiven; ‘na’ stands for ‘unavailable.’ E.gna(cz) = {1,5}
had limited impact on the variable that created it, i.e. witen means that course, will not be taught during periods$
did not remove a certain proportion of possible values fromand 5.
its domain [21]. The last given property for a course is the number of the

So, the second contribution of this work targets towardsstudents that attend it, namedyudents(c;).
adjusting constraint propagation, in order to make it adapt
able to search methods. We focused on the ‘tug of war
between different consistency levels, and we proposed a Certainly, each course should be provided a teacher/
compromise. Instead of tampering with the event queugrofessor and a (class)room. LEtbe the set ofeachersand
itself and the propagation algorithms, we introduced a new? the set ofrooms;each room is represented by a different
consistency level. The algebraic evidence was verified innteger. The propertyeach(c;) gives the responsible teacher
practice in the very challenging timetabling problem. t € T for each course; € C. The capacity of a classroom

r € R is denotedcapacity(r).

C. Teachers and Rooms

Il. TIMETABLING: ENTITIES, PROPERTIES RELATIONS

First of all, we typically define the critical entities in- D The Solution to the Problem
volved in course timetabling, and we elaborate on their For each lectur¢; ¢ L, we ask to find the necessary
properties and the relations between them. timeslot and room. Conclusively, solutionto the problem
) . refers to the full definition of a functiosol : L — P x R,
A. Days, Timeslots, and Periods which maps each lecture to a period and a classroom.

Let D be the number oflaysof the timetable; each day
has H timeslots. P defines a se{0,1,....D - H — 1} I1l. FORMULATING COURSETIMETABLING AS A CSP
that includes all the teachingeriods. The actual duration We are now going to state the problem described above
of a teaching period is of no interest for the timetablingas aConstraint Satisfaction Probler(CSP) [22]. A CSP

application. A teaching period cannot be divided. includes a set otonstrained variableshat may be simply
calledvariables;each of them corresponds to a set of values

B. Courses and Curricula called domain; we say that a constrained variablehas a

Let C be the set otourses,L the set oflecturesand G
the set ofgroupsof courses, also known asirricula. Each
groupg € G consists of courses/§, ¢ C C), and each
coursec € C consists of one or more lecturéss L. This

domain D,. Constrained variables are connected to each
other through a set ofonstraints.In general, a constraint

which refers to specific constrained variables is the setlof a
valid combinations of values that can be assigned to them.



E.g., for the variables;; and zo with domainsD,, = t
D,, ={0,1,2,3}, the constraint of equality can be declared 0
as C({z1,z2},{(0,0),(1,1),(2,2),(3,3)}). Although this T3
notation is as general as possible, in practice, i.e. in Con- 1 f
straint Programming, we use simple relations to describe 7
constraint networks. In the above example, the constraint 9
can be simply written as; = 2. In this work, we will only f 1
use the constraint types implemented in many CSP solvers. 3| o )
Finally, a solutionto a CSP is a valid assignment of a f
value to each variable, that does not violate the consgaint 4| o

A. Variables and Domains

The set2" of constrained variables refers to the teaching Figure 1. Teachet; as a resource

period of each lecture:

2 ={z;| Dy, = P\na(course(¢;)), ¢; € L}. (1) ¢5. The corresponding constrained variables must not be

. . . . assigned same values, in other words,
The other critical set# of constrained variables for this g

timetabling problem includes the classrooms where the AllDifferent(2;), Ve T ®)
lectures are given: ’ ;

# ={cli | Dat; = R, {; € L} . 2) AlDifferent(2,), Vg€ G. 7)

The rest of the constrained variables that will be used are

auxiliary. On the other hand, we have only one set of constrained

variables for the whole set of classrool's We define
B. Constraints for Lectures

As we have already stated all critical variables and their

domains, we are now going to build up the®nstraint Everv member of2 represents the i d wher
network.When we are interested in finding more than one ery member ote ; represents e timendspace where a
Jecture will take place. Expressian-+D- H -cl; is the linear

solution, the solver may output the same solution more tharr1e resentation ofz. ¢.). as . cannot exceed - H. In

once, if the problem has symmetries. One symmetry is th%rger to avoid haE/aiJ;], Ct:/\)/é)—dinf;nsional constrainéd v.aeiabl

‘swapping’ of two lectureg; and/;, when they belong to the . g e .
n our problem—which are more difficult to use—we did

same course. To avoid this situation, we add the constraint' . . . N .
his ‘trick’ of linearization. So we add another constraint

2r=Ayilyi=xi+D-H-clj, z; € ', cls € Z}. (8)

T, < Ty, V&',&'GL,

AllDifferent(ZR) . 9
with ¢ < j andcourse(¢;) = course(¢;). (3) ifferent(27) ©

C. Resources and Constraints To better understand the above constraint, see[Fig. 2. We
have a two-dimensional representation of resource ‘class-
rooms,’ because one lecture can be assigned one period
fdm P and one classroom fronR. In this figure, we
Shave time and space assignments for lectédre® ¢5; also,
D-H = |P| =5 and|R| = 3. Any two lectures cannot

2 = {x; | x; € 2, t = teach(course((;))}  (4)  share the same perigthd classroom.

To understand our approach to the problem, we will
look upon teachers, classrooms, and groups of courses
resources.Every resource is connected to a set of lesson
In particular, for each teacherc T' we have

and for each group of coursgse G,

Zg=Azi |z € 2, course(ly) € g} ) In many solvers, a constrained variable is used to describe

The global constraint that has to be stated for all sets abovée objective function. Thebjective variableas we call it,
is theall-different,a constraint that is imposed over a set of represents the cost, or, better, the quality of the timetabl
variables and is satisfied only if the variables are assigneth the International Timetabling CompetitidifC-2007/08
different values. four quality criteriaq:, g2, q3, andqs were mixed [[23].

So, each resource can be supplied to at most one activity/ 1) Room CapacityVariableg; quantifies the first quality
lecture during a teaching period. For example, Figure Ifactor. It concerns the students that attend a lecture {g.g.
displays a teacher; that gives three lectureg,, ¢, and  when their number exceeds the capacity of the classroom

D. Objective Variable for Quality Criteria



R the week. Hence, we try to minimize
L | T2 T3

——
0 ] (w3, cla) qs = Z mwd(c) — Z (bool( day >0 )) . (13)
1 ceC day€Days,,
> (5,cls5) . iy . .
) : > (14, cly) The elemenbays,[d] is positive only if there exists a lecture

| of ¢ that is given on dayd. It is produced through the
3 / following intermediate constraint:
|

I — (1'1, Cll>

Daysc = Inverse{d | d= \‘%J , T € %, COUI’SG(@Z‘) = C}.

(14)

4) Isolated Lectures:We also need a metric for the
lectures belonging to a group of courses that are not adjacen
to any other lecture of the same group. The more adjacent
lectures we have, the better students’ personal timetables
will be constructed.

For each group, an auxiliary two-dimensional array of
n=y ((StUdentS(Course(&)) — capacity(r))- boolean constrained variables nanBacsy will be built. If

Liel reR _ Busy,[d][h] = 1, then a lecture of group is given at hour
students(course(£:)) > capacity(r) h on dayd. Before creating this array, we construct another
bool(cl; = r)) (10) array for each group of courses using again the ‘Inverse’
constraint:

4 o | |3 (x2,cl)

Figure 2. Two-dimensional resource for the classroom&in

(cl;) that hosts this lecture. This factor is expressed as

and should baminimized—as every quality factog;. Note
that we take into account the terms withpacity(r) being Timetable, = Inverse(.Zy) . (15)
strictly less tharstudents(course(¢;)), otherwise the term is
not inserted into the sum. The expressibndl(condition)’ The abovelnverse constraint implies that the domain of
is a constrained variable with doma{, 1}. If condition =~ Timetabley|d- H + h] contains a positive number, if there
is true, the variable equals g otherwise it equals. exists ar; € 2y, with (d- H +h) € D,,. Therefore, we
2) Room Stability:I TC-2007/08 specifies that every lec- dd the following constraint for each dayand hourh
ture ¢; of the same course should be hosted at the same
classroom; thus one student can easily remember whereF%SYg
to attend a specific course. For each different classroom—
except for the first—used for the course, one penalty poin
is added tog.. In order to state this criterion, an auxiliary
constraint is first declared for every course

[d][h] = bool( Timetabley[d- H+ h] >0). (16)

e observe that the two-dimensional arraysy, is a
timetable’ specific forg, that displays the hours it occupies.
WhenBusy, [d|[h] = 1 and the next and previous timeslots
are0, we have an isolated lectufle:

Rooms, = Inverse{R.},

R = {cl; | cls € %. course(ty) ¢} . (11) Isolatedgy[d][h] = —Busy, [d][h — 1] A Busyg[d] [A] A

—Busy,[d][h +1]. (17)
The above constraint implies that the domairRebms..[r]

contains a positive number, if there existglae R., with
r € Dg,, elseRooms.[r] = —10 Therefore,q, is easily D1 H1

defined as =Y > Y TIsolated,[d|[h]. (18)

g€G d=0 h=0
= 1 > —-1]. 12 o . .
42 Z( Z (boo (room > 0)) ) (12) Now, we can add the four criteria defined—possibly
ceC \roome&Rooms. .. . . .
giving them appropriate weights—to construct the final

3) Distribution of Lectures During the WeelkAnother  objective variable, i.e.
goal is to evenly distribute the lectures of each coursenguri

So, the following sum gives the number of gaps for all teams.

=@ +@+5¢+2-q. (19)

Ipractically, thelnverseconstraint is applied over arrays. If we see the
setR. as an array, theRooms[r] will contain the indexes of altl; € R. 2We assum@usy ,[d][h] = 0 whenh is out of range, e.g. when it equals
with 7 € Dy, . —lorH. )



5) Optimization for School Timetablesthe criteria de- level of randomness, calledand. While rand approaches
scribed are focused agroups of coursesthe ‘objective’ is  zero, the heuristic becomes more random, but whiled
to schedule the lectures of each of them as evenly (duringrows, the heuristic approximates the above two ones, in
the week) and continuously (during every day) as possibleSection TV-Al.
This optimization goal is common in academic institutes. More specifically, we use the metrig; in (20), and we
When it comes to schools, the objective variable getdransform it toh; = k7", in order to give it more or less
different. Specifically, it is constructed in the same way bu strength, ifrand — oo or rand — 0 respectively. Then we
it is focused on teacher3hat is, all the formulae presented construct the following sequence:
above in this section will remain the same, except that every

‘g (¢ G)' should be replaced byt‘(e T)'. It is obvious 0=0, ,
that all the effort is now given in optimizing the personal H; = 7,1}% +Hiy, 1<i<n.
timetables of every teacher. Zj:l h;
IV. SEARCH From this sequence, we can producenutually exclusive
ranges:
Having defined the CSP, we should now choose a way to g L=[Hi_1.H), 1<i<n.

solve it. In general, we assign values to the variablegof
andZ and check whether they satisfy the constraints. FirsfThe union of all of these sets [§,1). EachI; is propor-
of all, heuristics are used to guide search towards a solutio tionally wide to h;.
Almost every computer platform can provide us with
a random number uniformly selected froj, 1). Conse-
Search methods ‘consult’ with heuristics in order toquently, if we generate at random a value[inl), we can
explore as soon as possible the most promising brancheake the corresponding, i.e. the corresponding;. While
of the search tree. When a search method has to choosend falls, the selection becomes more arbitrary.
the next variable to instantiate and the value to assign to it 3) Value Ordering HeuristicsHaving found an uninstan-
it uses respectivelyariable ordering heuristicand value tiated variabler; € 27, using one of the above heuristics,
ordering heuristics. we should assign to it a value from its domain. To do so, we
1) Variable Ordering Heuristics\We construct a heuristic choose the value that, when assigned, it will provoke the les
function that chooses the next uninstantiated constrainegeduction to the domains of the other values, than the rest
variable z; € 2, that corresponds to lecturg. We use  of the possible assignments. We also favour the assignment
various ways to distinguish variables. of values that will reduce the solution cost/objective.

. We choose the variable t_hat has thenini_mumdomain B. Search Methods and ‘Naxos' Solver
size|D,,|; so variables with small domains are favored, _ ]
according to the first-fail heuristi¢ [24]. The CSP defined took shape in our CSP solver, called
« When we have a ‘tie’ i.e. when the above criterion NAXOS' [25]. NAxOs is a library for an object-oriented
gives two or more variables with same domain size, weProgramming environment, implemented in C++. It allows
use another heuristic &ig-breakerjnstead of choosing the statement of CSPs having constrained variables with
a variable among them at random. In this case, wdinite domains containing integers.
choose the variable that is involved in theaximum The search engine incorporated imRbS is based on
number of constraints, in line with trdegreecriterion.  the propagation of the modifications of the domains over
We denoteE,, as the number of constraints involving the constraint network. For example, the assignment of a
z;, ande as the maximum number of constraints. value to a constrained variable should make other variables
connected to it consistent with that value.
Moreover, the application developer that uses<Ns can
create custom goals to be satisfied, and thus, he/she can
h; = (D CH— |Dwi|) e+ 1)+ E,, . (20) make search goal-driven and control it in the way he/she
likes. Special goals, namelR-goals,definechoice points
|D,,| takes precedence ovét,,, because the latter cannot in search trees, i.e. they generate two branches: one kéft an
exceeck. We negatedD,,, |, because we seek fomainimum  one right branch. If the left branch leads to a dead-end,
value; note that it cannot exceddl- H, so(D - H —|D,,|)  NAXOs backtracksto the choice point and continues to the
is always positive. right branch. A dead-end is reached when the domain of
2) A New Semi-random Variable Ordering Heuristic: any variable becomes empty, e.g. when we have no time
Stochastic search methods require to choose the next vasiot available for a lecture, due to current assignments.
able at random, so we designed the corresponding random Hence, MXxos supports a plethora of search methods
heuristic. Actually, we went one step further by providing asuch as Depth First Search, Limited Discrepancy Search

A. Heuristics

If we combine the above two heuristics, we will produce the
expression



[26], etc. In this work, we mainly use ®epth-bounded
Backtrack SearcliDBS) method[[2]7].

V. CONSISTENCYTYPES. ANALYSIS AND
IMPROVEMENTS

It has been shown that for many problerosnstraint 7400
propagation procedure gives better results than ordinary gggg
backtracking search methods [28]. This methodology sug- g 100
gests that when we assign a value to a constrained variable,” ;§
or, generally, when we shrink its domain, we should enforce
some type of consistency to the constraint network, in order

to a priori prune ‘no-good’ branches of the search-tree.

A. Arc-Consistency

Arc-Consistency is the most well-known and older con-
sistency type. Figure 3. Time needed to solve fourteen ITC datasets

Definition 1. We say that an ar¢X, Y')—connecting vari-
ables of the constraint network—ésc-consisteniff for all
valuesz € Dy, there exists a valug € Dy such that the
constraint that connects the two variables is satisfied. Whe
every arc of the constraint network is arc-consistent, we sa An assignmentX < v designates the restriction of the
that the constraint network iarc-consistentoo. domainDx to contain only the value, i.e. Dx = {v}.
Example2. Let X and Y be constrained variables with
domainsDx = {5,6,8} and Dy = {1,2,3}, and, again,
the constraintX =Y + 5. There isno bounds-consistency,
as there is no paifmin Dy, y), i.e. (5,y), with 5 = y + 5,
becausd) ¢ Dy.

But if the domain ofX is shrunk toD;, = {6,8}, then
we do have bounds-consistency enforcement. It is worth
mentioning that in this case we amt have arc-consistency,
because € Dy does not have any supparte Dx, with
r=2+45.

such that the assignmen{X < min Dx, Y + y;) and
(X + maxDy, Y < y2) do not violate the constraints.

Examplel. Let the constrained variable¥ and Y have
the domainsDx = {5,6,8} and Dy = {0,1,2,3}. Say
that we have the constrai¥ = Y + 5. The arc(X,Y) is
consistentbecause for eachh € Dy, there is ay € Dy,
with z =y + 5.

However, the ar¢Y’, X) is inconsistentbecause foy = 2
there is nosupportz € Dx, withz =y+5=2+5=7.
In this case, in order t@nforcearc-consistency, we must
remove2 out of Dy.

Lemma 1. Arc-consistency check and enforcement, also
calledrevision,for an arc(X,Y"), has worst time complexity
O(|Dx| - |Dy|) = O(d?), whered is the maximum domain
size in the CSP in question. Proof: Again, therevisionof an arc/constraint includes
The proof is somehow trivial, as for each values Dx the checkfor support valuesand the consistencyenforce-
ment To check for the consistency we neéy?2 - |Dy|)

we seek a suppoit € Dy. !
Arc-consistency does not lead necessarily to a solution—Steps. as for each one of the tdixy bounds, we try to find

but if there is no arc-consistency, we are sure that we hav8 Support valug; € Dy.

no solution—unless we combine it with a search method. It%BUI we must also consider what happens whei) 2

Lemma 2. Bounds-consistency revision @K, Y') has worst
time complexityO(d?).

und is found inconsistent. In this case we sharibrce

ounds-consistency by removing the inconsistent bound out
of Dx and by repeating the aboebeckfor the new bound.

B. Bounds-Consistency We may haveO(|Dx|) removals.

Bounds-consistency is a weaker type of consistency that As a result, the overall revision complexity @3(| Dx|) -
requires that only theoundsof the domain of each variable O(2|Dy|) = O(d?), as in arc-consistency. u
should have a support value in the domains of the variables What makes bounds-consistency a strategic choice in re-
it is connected to via constrainis [29]. lation to arc-consistency for CSPs with many variableshsuc
as common course scheduling, is the Ispacecomplexity.
While arc-consistency may modify/remove any value in
Dx, bounds-consistency affects only the domamunds.

3This definition of bounds-consistency appears in the hiliphy as In the first case wenecessarilyneed an array to store the
bounds(D)-consistencpo. domain, but in the latter one, only two values are modified

usefulness has to do with the reduction of the search spa
that the search method explores.

Definition 2. A constrained variableX is bound—consistelﬁt
with regard to variableY’, iff there exist valueg;, y» € Dy,



VI. EMPIRICAL RESULTS

To verify the algebraic formulations, we had to state the
problem in our generic CSP solver. All the source code is
freely available at http://di.uoa.gwpothitos/ictai2012 with
the fourteen ITC-2007/08 real-world datasets included too
The experiments were conducted on an HP computer with
an Intel dual-core E6750 processor at 2.66 GHz and 2GB
of memory, running Ubuntu Linux 8.04. In accordance with
ITC standards, we have only 334 seconds in this machine in

0 order to find a solution.

6000

4000

Solution Cost

2000

60
k50403020 " o A. Fine-Tuning Consistency Levels in Practice
0,12 © The lightweight consistency proposed seems in theory
to ease the burden of the necessary revisions. But is it
competitive in demanding problems such as real-life course
timetabling, in relation to other consistency levels?
Figurel3 illustrates the time it took to construct a solution
in memory, i.e. the bounds. and improve it as much as possible, for each of the fourteen
. problem instances. It is obvious that for each one of them
C. The Newk-Bounds-Consistency there is a specifid:, for which the Maintainingk-Bounds
We propose a looser consistency type, which enforcegonsistency methodology gives the best results. Fot
bounds-consistency only to the variables with domain sizeg, the methodology actually uses no constraint propagation;
less or equal td. it is a plain backtracking method, so the results are poor.
On the other hand, whilé approximates infinity, i.e. while
k-bounds-consistency approaches plain bounds-consjstenc
the results are not so poor, but are apparently worse than
using the ‘golden mear¥ value, which usually lies around
Example3. As in Example[2, letX, Y be constrained 25,
variables with the corresponding domaifs = {5,6,8} Figure[4 displays the corresponding costs of the solutions
andDy = {1, 2,3}, and it holdsX = Y +5. The constraint  found for each one of the fourteen datasets. Conclusivatly, f
is not 5-bounds-consistent, becaudex| < 5 and there is  very smallk values we not only found low quality solutions,
not any support inDy for 5 € Dx. However, we do have i.e. with high cost, but we consumed a lot of time to find

Figure 4. The objective/cost function value for the soluidound

Definition 3. The arc/constraint(X,Y) connecting the
variables X and Y is k-bounds-consisteniff (X,Y) is
bounds-consisterdr |Dx| > k.

2-bounds-consistency, a® x| > 2. them. On the contrary, ak increases above the ‘golden
Lemma 3. k-bounds-consistency enforcement on an ard"¢2": the solution q;allt%/ remamsdalmost the same, Eu_t’
(X,Y) requires at mosO(kd) steps. again, as we saw in Fi@l , we need more time to reach it.
_ . Every methodology we applied spent all the available time,
Proof: Following the Lemmal2 proof, it takeS(|Dx |- but constructed its own best solution at different time, as

|Dy|) time to enforce bounds-consistency. Neverthelessshown in Fig[3B.

remember thak-bounds-consistency is enforced only when ) )

IDx| < k. As a consequencé;bounds-consistency has a B. Employing Several Search Methods: Comparisons

O(k - d) worst case cost. [ ] Finally, it is time to exploit the many different generic
As k grows and approaches infinity, which is as a mattersearch methods available together with our CSP solver, in

of fact equivalent tal, k-bounds-consistency becomes evi- a library called AMoRrRGos In Figures[5 and16, we see

dently identical to bounds-consistency. For léwaluesk- how the solution costs are improved during the available

bounds-consistency approximates a simple constrainkchectime. We present the results for the first two ITC dataset
Maintaining 1-Bounds-Consistency during search is iden-instances, with the corresponding nameiss0506- 1’ and

tical with a plain backtracking method, and no constraint'| ng0203- 2.

propagation is done. In this cagebounds-consistency de-  Except for theDepth-bounded Backtrack Sear¢bBS)

generates into a way to check if a constraint is satisfiedmethod [27], we also utilizedterative Broadenind31], as

We search to find a support value for the unique boundivell as the classi®epth First SearchDFS), along with

value of X; if no support is found, the unique value is its stochastic variations that used the random heuristics i

removed, and an ultimate inconsistency signal is broadcasBection 1V-A2, for differentrand values.

This particular consistency type may also appear in ‘lazy’ First of all, asrand increases, stochastic DFS may give

propagation schemas, e.g. in local search contéxis [30]. better results than normal DFS, and this is achieved by our
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Figure 5. Objective optimization progress for tfiest ITC instance Figure 6. Objective optimization during time for tisecondinstance
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instances. supports the search methods we used and is freely available
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