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Abstract—In order to navigate rugged, sloped, slippery, or,
in general, challenging terrains, a robot needs to occasionally
adapt its path plan in order to accommodate particular circum-
stances. Steep inclines are a prime example of situations where
a non-shortest path plan can dramatically increase a mobile
platform’s ability to operate. In this paper, we present a path
planning method that produces smooth curves that are longer
than a straight line to the goal, but are designed to be optimal
(not longer than necessary) for a given maximum inclination
that the robot platform is capable of, while simultaneously
taking into consideration the obstacles in the field.
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I. INTRODUCTION

Traversing challenging terrains is one of the core goals

of field robotics research and can greatly improve the scope

of application of outdoors rovers. Traversing steep inclines

is well suited to research in robot autonomy and intelligent

behavior: improving path planning can offer a great increase

in the maximum inclination that can be navigated without

modifying the underlying mechatronics and motor control.

Traversing steep inclines has received considerable re-

search attention regarding the hardware design of wheeled

[1], [2], legged [3] and crawling [4] platforms, and the

motor control [5]–[7]. To the best of our knowledge, there

is no literature on path planning that is more sophisticated

than shortest-path optimization for increased steep incline

traversability. Non-shortest path planning has only been

explored for skid-steered rovers traversing loose or slippery

terrain, where paths constructed from circular arcs have been

proven more energy-efficient than the shortest path [8], [9].

We explore the idea of using Bézier curves to construct

paths that follow the zig-zag pattern that is characteristic of

mountain roads. Being constructed by concatenating curves,

these paths avoid sharp turns that exceed skid-steered rovers’

capabilities. At the same time, these paths are optimized

for a given field configuration, taking into account both the

inclination and the obstacles present in the field. In this

paper, we first provide the background on path optimization
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and on using Bézier curves for path planning (Section II),

and then we present our method (Section III), experimental

results (Section IV), and conclusions (Section V).

II. BACKGROUND

A. Optimization algorithms

In path planning, the area between the current position and

the goal is typically seen as a graph of waypoints (vertices)

connected with edges labelled with the cost of moving

between these two waypoints. This graph can derive from

the grid map typically used to represent traversability: first

connect adjacent grid cells when not occupied by obstacles,

then weight the connection using the traversability value of

the landing cell. To plan a path from its current position to

the goal, the robot needs to find a path through this graph

that minimizes the total cost of the edges along the path.

Steepest Ascent Hill Climbing (SAHC) algorithms are

widely used to reach a goal state from an initial state due

to their simplicity and computational efficiency. As pure

SAHC may be unable to backtrack from solutions that lead

to collision with an obstacle, we also experiment with its

N-Best variant. N-Best is able to plan paths around smaller

obstacles, but may fail for large obstacles where it cannot

backtrack deep enough.

Obstacles are discontinuities in the cost heuristic that

SAHC algorithms do not take into account, until they are

forced to backtrack. So, a natural choice for an algorithm

to compare against SAHC is Evolutionary Algorithms (EA)
that evaluate and iteratively improve complete solutions.

Mapping EA strengths and limitations [10] to our specific

problem, we note that the crossover and mutation operations

often produce paths that are impossible to realise for a given

platform’s dynamics and their detection and elimination adds

a computational overhead by comparison to SAHC. EAs also

evaluate a far larger set of candidates than SAHC; although

this is mitigated by the fact that in out setup candidate

solutions are very efficiently computed.

B. Producing smooth curves

Our path planning problem is similar to the problem of

designing a smooth curve between two endpoints, such that

it balances between being smooth and closely following a
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given list of control points that outline the curve. The most

prominent approach in the computer graphics literature is to

use Bézier curves [11].

Complex multi-control point curves can be produced

either by higher-order curves, or by stitching together lower-

order curve segments. The robot motion planning literature

has explored their behavior, although not very extensively.

Miller et al. [12] use cubic Bézier curves in a sensorimotor

loop, in order to generate paths that are consistent with a ve-

hicle’s dynamics. Choi et al. [13] present two path planning

algorithms, leveraging cubic Bézier curve properties in order

to efficiently generate optimized smooth paths satisfying cor-

ridor constraints. They also discuss the further optimization

of the resulting paths for user-defined cost functions. Lau

et al. [14] showcase quintic Bézier splines effectiveness for

time-optimal motion planning in an environment populated

with obstacles, through the optimization of a straight-line

path. Qian et al. [15] adopt a path-velocity decomposition

approach and present a motion planning pipeline in which

quintic Bézier curves are used to smoothen a collision-

free piecewise linear path. Velocity planning follows path

planning to accommodate user preferences and task-specific

requirements. Tharwat et al. [16] recognise the influence of

Bézier curve control points in the overall optimally of a path

planning model based on Bézier curves. Assuming a two-

dimensional static environment, they propose two variants

of the Chaotic Particle Swarm Optimization evolutionary

algorithm in order to search for an optimal path from a start

to a goal position, avoiding lethal obstacles along the way.

In the work described here, we explore stitching quadratic
Bézier curves, the simplest Bézier curves that are defined

by their endpoints and a single control point. By doing

this, we aim at a behavior that is more appropriate for

physical motion: high-order Bézier curves require a larger

number of more abrupt changes in direction, which is very

impractical when planning the motion of robot platforms.

Our approach explores moving the burden of optimization

from configuring fewer, longer, and more complex segments

to stitching a larger number of shorter and simpler segments.

Our approach also makes the application of EA viable, as

the low cost for computing candidate solutions mitigates the

larger number of candidates needed by these algorithms.

III. OPTIMIZING CURVE PARAMETERS

A. Assumptions and Representation

We consider a robot able to estimate the inclination,

an ability well-established in the traversability estimation

literature [17], and to identify and localize obstacles. We

also assume that these obstacles are static, so the full path is

decided before the robot starts moving. Should new obstacles

appear or become visible, the path will need to be re-

computed. Finally, we assume a standard navigation system

that implements paths represented as series of waypoints

and that, by nature, any quadratic Bézier segment can be

implemented by skid-steered rovers.

In this setup, our method processes a representation of the

terrain and the obstacles in it, an admissible initial state, and

an admissible goal state; and produces a path (i.e., a series

of waypoints) starting from the initial state and leading to

the goal state.

We diverge from the path planning literature by not

searching for an optimal series of waypoints, but rather for

an optimal series of Bézier segments, each defined by the

endpoints and the control point. That is, the search space is

the space of the parameters of Bézier segments and not the

space of waypoints. The actual path passed to the navigation

system is then computed from the quadratic Bézier formula.

B. Path Cost

Regarding the heuristic that guides the search for an

optimal solution:

Bias towards shorter paths: We include a term that

depends on the distance dx between point x and the straight

line connecting the initial position and the goal, normalized

to the length of this straight line. Steeper slopes should

tolerate greater deviations from the shortest path, so the term

is k1dx/s, where k1 is a constant and s is the overall slope.

Bias towards smooth paths: We prefer solutions that make

smooth transitions between curves, minimize abrupt changes

of direction when changing from one curve into the next,

and also minimize the number of zig-zags needed to reach

the goal. For each waypoint, this can be expressed as max-

imizing the angle formed by connecting three consecutive

waypoints, so that it is as close as possible to 180◦. However,

this is risky for steeper slopes, so the term expressing this

bias is k2s/ax where k2 is a constant and ax is the angle

formed by connecting x with the two previous waypoints.

Pitch and roll: Note how higher pitch values make a

path riskier, while higher roll values make it safer: When

a wheeled platform moves in an incline terrain, higher

pitch values translate into moving straight towards the top,

whereas high roll values translates into moving along a

horizontal traverse. Bias towards low-pitch high-roll routes

is necessary to balance the shortest-path bias above. We

express the above reasoning as k3(px − rx), where k3 is

a constant and px, rx the pitch and roll at x.

Summing the above over all points in a path P , we define:

cost(P ) =
∑

x∈P

k1
dx
s

+ k2
s

ax
+ k3(px − rx)

We have empirically found k1 = 157.5, k2 = 0.1, k3 = 10
to behave well with s, ax, px, rx expressed in degrees. The

summation can be made over denser or sparser point sam-

ples. We have experimentally found that as few as 5 points

per Bézier curve converge to a cost value that is practically

identical to what a denser calculation would yield.
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C. Optimal path generation

As discussed in Section II, generating a path can be

formulated as searching for the optimal traversal of the graph

that connects the cells of the grid map that are reachable

from each other. The start position is P0 of the first local

Bézier curve. We search the incline area’s grid by taking two

rows at each step. In the SAHC generator, we greedily try

to place the control point Pc, which is not part of the local

path, in the first row and the end point P1 in the second

row. First, we calculate each local Bézier curve’s total cost.

Then, we examine all the possible local Bézier curves, we

select the locally optimal Bézier curve and we add it to the

global Bézier path. In the next step, we assign the P1 of the

latest local Bézier curve to be the P0 of the next local Bézier

curve and we repeat the same process. When we reach the

last row of the grid, we assign P1 to the goal position. This

way, we efficiently create a globally “good-enough” Bézier

path, by combining locally optimal decisions.

We expect SAHC generator to be the most time efficient

of our three generators, but also the most naive, as it fails

in the presence of a lethal obstacle in a locally optimal

solution. N-Best’s time efficiency is expected to be close

to the SAHC. However, the N-Best generator is less naive,

as it can successfully handle simple lethal obstacles. Our EA

generator terminates either when our search has reached a

designated threshold of examined generations, or when our

search has succeeded in producing an admissible path from

start to goal, or when a designated threshold of consecutive

stagnated generations has been reached. A valid smooth

curved path from start to goal is an individual, and each

path’s waypoints are the individual’s chromosomes.

In Figure 1, we see the logic level results of using the N-

Best and EA optimization methods for producing a path in

order to climb a 45◦ and a 43◦ - 45m long slope respectively.

The colored lines represent the paths that each algorithm

considered. Some of them were deemed inadmissible be-

cause they coincide with an obstacle, others because they

are not locally optimal. The path that our method finally

selected is annotated with small yellow spheres. Each one

of these yellow spheres is a waypoint of the selected path.

IV. VALIDATION AND DEMONSTRATION

A. Experimental setup

For the experimental validation of our work we used the

Clearpath Husky UGV in simulation and we created three

simulation environments: A 5.9m-long ramp at an inclination

of 35◦, a 5.8m/45◦ ramp (Figure 2), and a 45m/43◦ ramp.1

The 35◦ slope has a reduced (< 1) friction coefficient in

order to represent slippery terrain conditions, whereas the

43◦ and 45◦ slopes have a friction coefficient of 1.0. The 35◦

slope demonstrates in simulation, whether our method can

1The complete experimental setup is available at https://github.com/
yorgosk/ugv navigation goals

Figure 1: Candidates and selected path (dotted) for a 45◦

slope (left) and a longer 43◦ slope (right).

Figure 2: 35◦ (left) and 45◦ (right) slopes set-up.

currently help a UGV in a challenging real-world scenario to

go further than it would have gone if it was climbing straight

upward. The 45◦ slope is ideal for testing our methods, being

steep enough for a wheeled UGV with no special equipment

to be unable to traverse it in a straight path without tipping

over, while not too steep so that the UGV will be unable

to manoeuvre on it. The 45m/43◦ slope environment was

created having in mind a maximum range of about 25m for

the localization sensors available in the market at the time

of writing this; in this context, this environment tests our

method in cases where the goal (and some of the obstacles)

are beyond the robot’s perception range.

For each slope, three scenarios have been created: one

without obstacles, one with point obstacles, and one with

sizeable obstacle formations. We expect (a) SAHC to be the

most efficient method in the first scenario and often fail to

find a solution in the other two; (b) N-Best to be able to

backtrack out of the point obstacles in the second scenario

but not all of the obstacles in the third scenario; and (c) EA

will be able to find a path in all scenarios.

The search resolution or search step is kept at 1.5 meters
for all the simulation scenarios. This resolution was exper-

imentally determined to be the best for our generators to

search for a solution in our simulation scenarios, which are

characterized by the narrowness of the area in which our

robot can move. It is a small resolution considering that our

reference UGV has a length of 0.3 meters.
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Table I: Generated paths details.

Slope and Gene- Visited Path
∑

dx Cost
distance rator States Length
35◦, 5.9m SAHC 7 8.03m 3.68m 6627

N-Best 7 8.03m 3.68m 6627
EA 13 7.52m 2.74m 6649

45◦, 5.8m SAHC 7 7.00m 3.28m 11107
N-Best 7 7.00m 3.28m 10437

EA 208 6.15m 2.30m 9575
43◦, 45.0m SAHC 85 57.08m 17.93m 79481

N-Best 85 56.31m 21.69m 81581
EA 1508 53.27m 28.32m 60279

B. Simulation results

The robot fails to traverse the 35◦ slope in a straight

upward path, never reaching its goal due to wheel slippage.

The robot fails to traverse the 45◦ and 45m/43◦ slopes

going straight upward as it tips over. Now, we will present

the results of simulations, demonstrating our generators’

capabilities in helping a UGV traverse these slopes.

1) Generated paths quality: Table I presents sample

details of the paths generated by our SAHC, N-Best and

EA Bézier path generators for each simulation scenario. The∑
dx column presents the values of the total deviation of a

planned path from its respective straight upward path.

The robot’s effort to climb the 35◦ slope with a SAHC

generated path is not successful compared to climbing

straight upward. While the robot is manoeuvering to follow

the curved path, it loses a substantial part of its achieved

progress. From the attempt with an EA generated path, we

further understand that the success of the robot traversing a

slippery incline terrain will depend on the amount of time

that it spends turning and moving away from a straight

upward path. Too much turning will cause our robot to lose

a substantial part of its progress and provide us with a result

much worse than desired.

In the 45◦ slope environment, in all cases the robot

manages to climb the incline terrain following a relatively

smooth path, while maintaining high stability and showing

no wheel slippage. It is also evident that in a logic level

the robot manages to escape the obstacles on its way.

However, we also see an error accumulating and creating

a loss of precision when it comes to the actual obstacle

avoidance. This is a localization error created by improper

odometry whenever the UGV’s front wheels, momentarily

loose contact with the terrain. An EA generator’s path can

have almost thirty times the visited states compared to the

SAHC and the N-Best generators (Table I). This is expected,

as the crossovers that take place between generations are

considered as visiting a new state. The path length is smaller

than the length of our other two generators paths and its cost

is considerably improved. The path’s size can be smaller

than the SAHC or N-Best generators or larger, depending

on the route that will derive from the evolutionary process.

In each 45m/43◦ slope scenario, the robot manages to

Table II: EA consistency in path production for the 45◦ slope

scenario under different configurations (Limited, Modest and

Extensive search).

Configuration Limited Modest Extensive
Init. Gen. Size 25 50 100

Max. Generations 50 100 800
Similarity 9/20 14/20 18/20

Consistency 45% 70% 90%

Table III: Comparison of SAHC’s, N-Best’s and EA’s av-

erage execution times under the same conditions, with no

obstacles (no obst.), simple point obstacles (pnt. obst.), or

complex obstacle formations (obst. for.), and in the case of

EA for modest (mod.) and extensive (ext.) search.

Slope & Length 35◦, 5.9m 45◦, 5.8m 43◦, 45.0m

Start-Goal Distance 5.80m 5.71m 44.0m
SAHC 0.71ms 0.88ms 57.52ms

EA mod. no obst. 5.33ms 5.24ms 20.85ms
EA ext. no obst. 28.08ms 29.15ms 48.73ms

N-Best 0.70ms 0.75ms 31.17ms
EA mod. pnt. obst. 5.37ms 5.56ms 22.17ms
EA ext. pnt. obst. 27.51ms 28.48ms 33.12ms
EA mod. obst. for. 6.18ms 6.22ms 29.76ms
EA ext. obst. for 34.12ms 58.38ms 79.47ms

climb the slope with its overall generated path quality

prevailing over the accumulating localization error. Again, in

a logic level, the robot avoids every lethal obstacle, however

this is not visible while observing the plan’s execution

because of the accumulating localization error. As desired,

there are no signs of wheel slippage. For the N-Best and

EA generated paths the observations made for the 45◦ slope

scenario, still hold true.

2) EA performance: A common issue of the EAs is

their instability. Being probabilistic by nature, EAs may be

inconsistent in their output when run given a certain input.

However, Tables II and III demonstrate that a well-designed

EA can have configurations for which it performs steadily

while being time efficient. It does so by producing Similarly
“viable” paths Consistently, i.e. for a high percentage of

consecutive runs. In all three configurations, the two Best Fit
paths of each generation survive to the next one. The evo-

lutionary process is also set to terminate after six Stagnated
Generations. We consider a generation to be stagnated if its

fittest individual, which is its minimum-cost path, represents

a Stagnation Rate of 0.01, meaning a ≤ 1% improvement

compared to the fittest individual of the previous generation.

3) Time efficiency: Table III presents the average exe-

cution times recorded by sample runs of our three path

generators under certain conditions. All runs were executed

on an Intel© Core™ i7-4710MQ CPU at 2.50GHz, 5.7 GiB

RAM and 64-bit Ubuntu 16.04 LTS with ROS Kinetic.

We run the SAHC generator considering the absence

of lethal obstacles, the N-Best considering the existence

of simple obstacles and the EA considering the existence
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of complex obstacles. The EA generator can also be run

with no obstacles and with simple obstacles and, being our

most advanced generator, it is useful to examine how it

performs under such conditions. Furthermore, as the EA is

probabilistic, it is important to examine its performance both

for a modest intensity and for an extensive search.

Evidently, each path generator’s execution time is de-

termined by the combination of the straight-line distance

between start and goal with the presence of obstacles and the

algorithm’s search configurations. For the N-Best generator,

the presence of obstacles can indirectly result to the “trim-

ming” of the search space, reducing the execution time. The

EA’s execution time depends on its probabilistic evolutionary

process and the size of the search space. However, its

execution time remains stable for similar scenarios. Lastly,

we understand that the EA scales up much better than

the Hill Climbing and N-Best algorithms, because, as the

complexity of its task grows, the computing time required

grows in a decreasing rate. Moreover, if safety is not an

immediate concern, bounding the size of the EA’s search

space can result in an even faster path generation, which, for

complex problems, can be much faster than the generation

process of a SAHC or an N-Best algorithm.

In sum, for less complex scenarios the greedy SAHC

and N-Best generators are recommended, because of their

precision and efficiency. As the complexity of the scenarios

grows, the probabilistic EA generator becomes increasingly

preferable, because it scales up better. This can be attributed

to the EA’s probabilistic nature, which, in large scales, is

much more efficient than exhaustive searches.

V. CONCLUSION

Our main contribution is proposing quadratic Bézier

curves as the building component of a smooth path for a

three-dimensional path planning problem, like traversing in-

cline terrains. Following the state of the art in path planning

with Bézier curves [16], we propose that the optimization

algorithm is not applied to the path waypoints, but to the

search space of the Bézier lines’ control points, which

determine the line’s curvature. This search space exploits

the inherent properties of Bézier curves, ensuring that all

candidate paths are implementable by skid-steered rovers,

and avoid obstacles while progressing towards the goal. A

further contribution is testing prominent algorithms from the

optimization literature, and providing results which strongly

suggest that the EAs operate best in this search space.

As further research, we plan to explore the interaction

between inclination and other characteristics of challenging

terrains: rugged and uneven terrains might capsize a platform

even when the inclination is relatively small. To address

this, we will involve all three traversability parameters that

can be remotely sensed (slope, height, ruggedness) and not

only slope, so that the planned path is safe with respect to

the overall traversability [17]. We also plan to extend the

scope of planning to output the speed of the movement, so

a shorter/slower path is more accurately compared against a

longer/faster one.
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Bézier curve for autonomous ground vehicles,” in Advances
in Electrical and Electronics Engineering-IAENG Special
Edition of the World Congress on Engineering and Computer
Science 2008. IEEE, 2008, pp. 158–166.

[14] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion
planning for mobile robots using splines,” in IEEE/RSJ Intl
Conference on Intelligent Robots and Systems. IEEE, 2009.

[15] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde,
“Motion planning for urban autonomous driving using Bézier
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