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The problem that needs to be solved is the automation of the crew scheduling procedure.The input to this problem is the published 
ight schedule of the company comprising thedeparture and arrival airports, the departure and arrival times as well as the aircraft typesfor all 
ights (or 
ight legs, or just legs) which have to be carried out during a prede�nedperiod of time. This period is usually one month. A 
ight leg is an elementary non-stoptransportation between two speci�c sites. What has to be computed is a feasible allocationof the required cockpit and cabin crew personnel to every 
ight leg. This computation isextremely di�cult since there is a huge search space to be explored and a lot of constraintsto be respected (e.g. governmental and international regulations, contractual obligations,company restrictions etc.). It is even more di�cult when there is a requirement for theoptimum solution, with respect to a given well-de�ned cost function. The optimum solutionis the one which minimizes the cost function, so as to achieve the lowest possible crewoperating cost or, equivalently, the highest possible crew utilization.Although the whole crew scheduling process might be formulated as a single, but quitecomplex, constraint satisfaction problem, it is normally tackled in two phases for reasonsof management of its combinatorial nature. The �rst phase is usually referred to as theanonymous crew scheduling and the second as the crew rostering. The output of the anony-mous crew scheduling is a set of pairings, i.e. sequences of 
ight legs that cover exactly the
ight schedule of the company. Each pairing has the property that can be 
own by a singlecrew, however the speci�c crew members which are to be assigned to the pairing will becomputed during the next phase, the crew rostering [BBM+92, Rya92, KG94]. The set ofpairings computed by the anonymous crew scheduling phase has to be the optimum one,therefore this phase is also referred to as crew pairing optimization.In this paper, the crew pairing optimization problem is considered and a speci�c method-ology is described for tackling it in a Constraint Logic Programming (CLP) [vH89, FHK+92]environment. An appropriate representation of the problem is proposed together with therequired mathematical formulation of the involved constraints. The whole approach hasbeen realized using the ECLiPSe language [ECL95], an instance of the CLP class of lan-guages which provides, among other facilities, constraint satisfaction techniques over �nitedomains.Various approaches taken from the Operations Research (OR) area have been followedso far for the solution of the crew pairing optimization problem [LMO88, AGPT91]. Moreprecisely, the �nal stage of this problem is an instance of the set partitioning (covering1)problem which has been extensively studied and tackled via OR methods in the past[Mar74, FK90, BJ92]. In addition, an application of OR methods in a CLP environment1Set covering is used when deadheading (or positioning) is allowed, i.e. transportation of crew membersas passengers to another place, in order to commence or continue work.



for tackling the same problem is reported in [GC95]. However, although these methodsmight be sometimes quite e�cient for speci�c cases of input data, they lack a general andelegant way of describing what is needed to be computed and which constraints are in-volved. Moreover, OR methods are not 
exible enough to cater for possible changes of theproblem's input data, thus they cannot be easily adapted to various needs.On the other side, what is achieved by a pure CLP approach is a declarative way ofdescribing a constraint satisfaction problem which is combined, by taking into considera-tion the procedural point of view, with an a priori pruning of the search space through aconstraint propagation mechanism. At each step, the constraints are exploited as much aspossible, and then a choice is made which triggers more propagation. Choices are madenon-deterministically. In this way, the resolution mechanism of a logic programming lan-guage is combined with constraint satisfaction techniques resulting in a very powerful andelegant scheme of computation.The purpose of this paper is to exhibit the appropriateness of pure CLP for masteringthe combinatorial nature of the crew pairing optimization problem. Firstly, this problemis introduced and CLP as well as ECLiPSe are brie
y described. Then, the approachemployed to work on the crew pairing optimization is presented and the way this is handledin ECLiPSe is highlighted. Next, the resulting system is outlined and, �nally, the adoptedapproach is discussed.2 Crew Pairing OptimizationThe usual approach to the crew pairing optimization is to divide it into two subproblems.First, all legal pairings are built (pairing construction) and then a subset of pairings thatcovers all legs exactly once is selected (set partitioning problem).The input to the pairing construction phase is the set of legs the airline company hasto carry out. All legs are combined in sequences that respect the imposed constraints and,thus, they can be performed by a single crew. A pairing can last several days provided thatthere is the necessary rest time for the crew that carries it out. A basic constraint is thata pairing should start and end at the same airport. This airport is called base airport andit is at the place where the crew members employed by the airline company live. Otherregulations and constraints that must be satis�ed by each crew pairing are the following[CM92]:� Temporal constraintsThere must be enough time between consecutive legs, so that every leg starts afterthe previous one has �nished.



� Local constraintsThe arrival airport of a leg must be the same with the departure airport of thesucceeding leg.� Flight Duty Time (FDT)FDT is the time during which a crew member operates on an aircraft as a memberof its crew. This parameter must not exceed a certain number of hours.� Number of legs per working day and number of legs per pairingUpper bounds exist for both these factors.The phase responsible for the set partitioning problem accepts the created pairingswhich have been also assigned a cost. The cost is usually related with the crew utilization.The system selects those pairings that cover all 
ight legs with the minimum cost.It should be noted that each leg must belong to only one pairing and each pairing mustcontain every leg at most once. Pairings last several days, although legs may be performedonce every day. If, for example, daily legs are considered, which is true in the context of thispaper, then the question is how the set of produced pairings can be combined in such a waythat each leg is carried out once every day during a long period of time, such as a month.The answer is simple: each pairing must start every day. This idea is better illustratedin the example given in Table 1. Each of the legs in this example is performed every day.Given a set of regulations and constraints, a possible solution is shown in Table 2. Theresults proposed there contain two crew pairings spanning over a period of �ve days. Sincethe legs occur every day, 7 � 5 = 35 working days per week are needed to cover the givenset of legs.3 CLP and ECLiPSeCLP is a novel programming framework that enhances logic programming with constraintsatisfaction techniques. While preserving the declarative nature of logic programming, itexhibits surprising e�ciency for solving a certain class of combinatorial problems. Whilethe straightforward solution of such problems might be done through a generate-and-testapproach, CLP introduces a new method of computation, the constrain-and-generate one.In case of large scale combinatorial problems, the former method cannot lead to resultswithin �nite time.CLP is often referred to as CLP (X) where X stands for the set over which the prob-lem constraints are stated. There exist languages where X is the set of real numbers <[JMSY92], the set of rational numbers, a set of boolean values etc. A very interesting case



Flight Departure Arrival Departure Leg AircraftNumber Airport Airport Time Duration Id242 ath mic 08:15 60 1245 mic ath 10:15 60 1214 ath her 12:15 45 1217 her ath 13:45 45 1160 ath kav 15:35 90 1169 kav ath 17:55 85 1058 ath rod 07:25 50 2066 rod ath 10:00 45 2120 ath tri 12:05 45 2174 tri ath 13:40 45 2Table 1: Example of a 
ight plan for two speci�c aircrafts. The three letter codes stand forthe departure and arrival airports of each leg. The 
ight number, the departure time, theleg duration and the aircraft id also appear.
Pairing Day Flights1 1 160 169ath 15:35-17:05 kav 17:55-19:20 ath2 214 217ath 12:15-13:00 her 13:45-14:30 ath3 120 174ath 12:05-12:50 tri 13:40-14:25 ath4 242 245ath 08:15-09:15 mic 10:15-11:15 ath2 1 058 066ath 07:25-08:15 rod 10:00-10:45 athTable 2: A possible solution for crew pairings. The 
ight number appears above therespective leg. The solution consists of a set of two pairings. The �rst pairing endures fourdays and the second one.



is the one where a problem is described via constraints which involve variables that rangeover �nite domains. Then, the corresponding instance of CLP (X) is called CLP (FD).The �rst representative of the CLP (FD) scheme of computation is the CHIP language[DvHS+88]. CHIP was developed at the European Computer-Industry Research Centre(ECRC). The constraint facilities of CHIP have now been integrated with ECRC's Sepiaand Megalog systems, resulting into the ECLiPSe language.ECLiPSe is a Prolog system whose aim is to serve as a platform for integrating variouslogic programming extensions. Many interesting extensions of ECLiPSe are based on aspecial data type, which is called metaterm. Various constraint related libraries are sup-ported, which have been built on the metaterm facility, namely the �nite domains library,the generalized propagation library etc. The �rst is the one which brings to ECLiPSe theconstraints functionality of CHIP for �nite domains.The �nite domains library of ECLiPSe implements constraints that involve integer aswell as atomic data. The concept of domain variables is used which range over �nite do-mains. These are de�ned through the built-in predicate ::/2. For example, the sequenceof goals X :: 1..5, Y :: [red, green, blue], Z :: [3, 7..9, 12] de�ne the domainvariables X, Y and Z ranging over the domains f1, 2, 3, 4, 5g, fred, green, blueg andf3, 7, 8, 9, 12g respectively. Constraints are either arithmetic or symbolic. An arithmeticconstraint is an equality (#=/2) or inequality (##/2, #</2, #<=/2, #>/2, #>=/2) relationbetween two linear terms, where a linear term is composed of domain variables and integersin a way respecting its linearity. For example, 2*X-Z ## X+3 is an arithmetic constraintstating that the involved linear terms should be di�erent, for some values of the variablesX and Z. An example of a symbolic constraint is element(I, [red, green, blue], W)which states that W (a domain variable) should be the I-th (also a domain variable) ele-ment of the list [red, green, blue]. Enumeration (indomain/1) as well as optimization(min_max/2, min_max/5) predicates are also provided by ECLiPSe.The procedure for solving a constraint satisfaction problem using the �nite domainslibrary of ECLiPSe is to de�ne a set of domain variables, together with their domains,that model the problem concepts. Then, the constraints that de�ne the relations amongthese variables have to be stated. Actually, these constraints de�ne the subset of the searchspace that contains the solutions of the problem. The last step is to trigger an enumerationprocedure, which cooperates with the internal constraint propagation mechanism and withthe backtracking mechanism of the Prolog engine, leading �nally to the required solutions, ifthey exist. In case of an optimality problem, ECLiPSe provides a branch-and-bound methodthat computes the optimum solution of the enumeration procedure, with respect to a givencost function. An example that demonstrates most of the �nite domains functionality ofECLiPSe is the following:



?- X :: 1..5, Y :: 3..8, X+Y #> 9, 5*X-Y #<= 12,min_max((indomain(X), indomain(Y)), Y-X).Found a solution with cost 6Found a solution with cost 4Y = 7X = 3yes.In this example, X and Y are de�ned as domain variables with values from 1 to 5and from 3 to 8 respectively, their sum is stated to be greater than 9, then the linearterm 5*X-Y is stated to be less than or equal to 12 and, �nally, the branch-and-boundmechanism of ECLiPSe is activated, through the min_max/2 goal, which is asked to computethe appropriate values of X and Y, i.e. ones that satisfy indomain(X) and indomain(Y),which minimize the linear term Y-X.4 Crew Pairing Optimization under ECLiPSeBesides the concept of pairings, it is useful to de�ne jobs as well. A job (or duty period)practically corresponds to the 
ights performed in a day. More precisely, the continuousperiod of time during which a crew is on duty is a job. Thus, a crew pairing is a sequenceof jobs. Consecutive legs within a job must satisfy a number of regulations and constraints.Usually a job doesn't last more than 24 hours, although this is not forbidden. Moreover,the rest time between two consecutive legs within the same job doesn't exceed a certainamount of hours.Before the construction of pairings, all the legal, possible and \good" jobs are found.Good are those jobs that would lead to the construction of pairings with low cost. Theinput of this process is the set of all 
ight legs. The jobs created in this phase are used toform legal pairings. The pairing construction phase is akin to the job construction phaseas both entities are subject to similar constraints. Because the number of all legal pairingsis large, heuristic techniques that produce the good pairings are implemented, that is, thepairings that would lead to a solution with small cost. The last phase of the crew pairingoptimization is a case of the set partitioning problem. From the set of all pairings producedin the previous phase, the subset that covers all 
ight legs at minimum cost has to bechosen.In the context of this paper, daily legs are considered, that is each leg is performed oncein a day, although a pairing lasts several days. The airline company has only one baseairport. Therefore, all pairings start and end at this base airport.



4.1 Job ConstructionA leg is represented by the following ECLiPSe fact:leg(Key;Departure Airport;Destination Airport;Departure T ime;Duration;Aircraft Id):where Key is a number that identi�es uniquely a leg and has the property: if one leg isidenti�ed by Key1 and another leg by Key2 and Key1 < Key2, then Departure T ime1 �Departure T ime2. Aircraft Id is the identifying number of the aircraft which carries outthe 
ight.4.1.1 Job Representation Using Domain VariablesA job is represented by a list of lists with 0/1 domain variables, each of which correspondsto a 
ight leg. A variable has the value 1 when the corresponding leg is part of the job andit has the value 0 otherwise.The maximum duration of a job is considered to be 24 hours. If a list corresponds to adiary day, then a job can be represented by two lists, since a 24-hour job may span in twodiary days at most. If the following group of legs is availableleg(1, ath, lgw, deptime(7, 45), 60, 1).leg(2, ath, lhr, deptime(7, 45), 90, 1).leg(3, lgw, ath, deptime(12, 45), 60, 1).leg(4, lhr, ath, deptime(18, 0), 90, 1).then a job would be represented by the following list:[[x11; x12; x13; x14]; [x21; x22; x23; x24]]Generally, the following list represents a 24-hour job:[[x11; x12; : : : ; x1n]; [x21; x22; : : : ; x2n]]where the �rst list (x1i variables) stands for the �rst day and the second list (x2i variables)stands for the second day. The index i refers to the leg with key i.The above representation apart from being suitable for expressing all constraints hasone more advantage: it is general. Practically no change would be required to the programcode if it was decided that a job might last more than 24 hours, but certainly less thansome other limit, e.g. 72 hours, and, thus, more sublists would be needed.



4.1.2 Job ConstraintsIt is quite di�cult to describe with linear equations and inequations a real life constraintsatisfaction problem. The success of the description depends highly on the representationof the problem as well as on the way the constraints are set. Sometimes, instead of thinkingwhat should be true, it is easier trying to express what is forbidden.For two 0/1 variables y and z, the operation y NAND z may be de�ned, which isfalse only when both y and z are true. This operation expresses the fact that two eventscannot occur simultaneously. The boolean operation NAND corresponds to the arithmeticinequality y + z � 1.The above remark is quite useful in creating the constraint expressions. Suppose thattwo legs with corresponding domain variables y and z cannot occur in the same job. Thearithmetic expression for that constraint is then y + z � 1.In job construction, three kinds of constraints can be distinguished: the constraints thatdepend on the nature of the problem and are obligatory, the constraints that are dictatedby the representation used and are useful for the e�cient and quick solution of the linearsystem of constraints and, �nally, the heuristic constraints. These constraints are not partof the airline company's regulations; they are invented and are used to reduce the numberof jobs produced.Suppose now that A = [[x11; x12; : : : ; x1n]; [x21; x22; : : : ; x2n]]. The way constraint ex-pressions are built is explained in detail next.I. Constraints imposed by the problem� Maximum number of legs per jobEach job must contain a limited number of legs. This constraint expression canbe constructed easily if all the domain variables of a list are added and thentheir sum is bound by the maximum number of legs, called Max.nXi=1(x1i + x2i) �Maxwhere n is the number of variables contained in each day sublist.� Maximum 
ight duty time per jobThis constraint expression is similar to the above. Each sublist member is multi-plied by the duration of the corresponding leg, called Ti. The sum is then boundby MaxFDT , the maximum 
ight duty time allowed:nXi=1(x1i + x2i) � Ti �MaxFDT



� Local constraintsThe arrival airport of each leg in a job must be the same with the departureairport of the following leg in the same job. This is a complicated case of theNAND constraints mentioned above.Suppose that two domain variables y and z are adjacent in list A and representlegs for which the arrival airport of leg y is di�erent from the departure airportof z. Then, these variables should not have simultaneously the value 1. Theconstraint y + z � 1 should be set. It has to be noted here that in this paperdeadheading is not allowed. If now y and z are not adjacent in A and w is theonly element between them, then y and z cannot have the value 1 at the sametime if w = 0 and, thus, y+ z � 1+w should be true. In general, if y and z areseparated by k elements (for example A = [[: : : ; y; w1; : : :]; [: : : ; wk; z; : : :]]), thenthe constraint expression needed to be set is:y + z � 1 + kXi=1wifor all possible pairs of y and z in list A, such that the arrival airport of y isdi�erent from the departure airport of z.� Time constraints{ There should be su�cient time between legs for brie�ng and debrie�ng. So,if two legs do not satisfy this condition, they should not belong to the samejob. If y and z are the domain variables that correspond to such legs, thenthe following should hold: y + z � 1{ Furthermore, adjacent legs in a job should be relatively close one another:the time period between the arrival time of the �rst and the departure timeof the second should be less than 10 hours. This constraint is expressed inthe same way as the local constraints. That is, for two domain variables yand z that cannot have simultaneously the value 1 and are separated by kdomain variables the following should be true:y + z � 1 + kXi=1wiThis constraint has to be stated for all possible pairs of y and z in list A,such that the distance between the arrival time of y and the departure timeof z is greater than Max, where Max is the maximum rest time between



two legs in the job.� Job durationThe duration of a job must be at most 24 hours. If the di�erence between thedeparture time of a leg and the arrival time of the following leg is more than 24hours, then the two legs should not belong to the same job. Thus, if y is thedomain variable for the �rst leg and z is the domain variable for the followingleg, then: y + z � 1This constraint has to be stated for all possible pairs of y and z in list A, suchthat the departure time of y and the arrival time of z have a distance greaterthan 24 hours.II. Constraints imposed by the representation� Beginning of a jobEach job must start at the �rst day, because otherwise the representation withtwo lists would be meaningless. Therefore, the following constraint must besatis�ed: nXi=1 x1i � 1where x1i are the domain variables of the �rst sublist and n is their total number.III. Heuristic constraints� Minimum number of legs per jobIt is useless to construct jobs with very few legs, for example 0 or 1. Therefore,the number of legs each job comprises must be greater thanMin. The expressionfor this constraint follows: nXi=1(x1i + x2i) �Minwhere n is the number of variables contained in the sublists of list A.� Departure airport of a jobA job should start from the base of the airline company. This is not obligatory,but it reduces the number of jobs, since it keeps those which lead to the con-struction of good pairings (pairings with small cost). If the departure airportof a leg is other than the base airport, then a job should not start with that



leg. Let y be the domain variable for the speci�c leg and suppose k variables wiprecede y in list A (A = [[w1; : : : ; wk; y; : : :]; [: : :]]). Then it should be true that:y < 1 + kXi=1wiThe above constraint should be set for every y in the �rst sublist of A whosedeparture airport is di�erent from the base airport.� Arrival airport of a jobFor the same reasons a job should end at the base airport. If the number oftimes that the base airport appears in the job as the departure airport is equalto the number of times it appears in the job as the arrival airport, then thisrequirement is satis�ed. That is:Xdepi=base(x1i + x2i) = Xarri=base(x1i + x2i)where depi and arri are the departure and arrival airports of the leg i respectively.� Flight legs in the second diary dayOnly a certain number of 
ight legs (strictly less than n) can be realized in thesecond diary day. Therefore, after a speci�c leg, no other leg is comprised in ajob, that is nXi=k+1 x2i = 0where k is the key of the last leg permitted in a job, x2i the variables in thesecond sublist of list A and n their total number.4.2 Pairing ConstructionThe jobs created in the previous stage are used for the construction of the pairings. Itshould be mentioned that the representation of the jobs is similar to the representation ofthe legs described in the previous paragraph.A job is represented by the following ECLiPSe fact:job(Key;Departure Airport;Destination Airport;Departure T ime;F light Duration; Job Duration; F lights;Number Of F lights):whereKey is a number that identi�es uniquely a job and it has the following property: if onejob is identi�ed by Key1 and another job is identi�ed by Key2, then Departure T ime1 �Departure T ime2. Departure Airport and Destination Airport are the departure airport



of the �rst leg and the destination airport of the last leg respectively and Departure T imeis the departure time of the �rst leg contained in the job. Flight Duration is the sum of theduration of 
ights, while Job Duration is the di�erence between the arrival time of the lastleg contained in the job and the departure time of the �rst leg. Furthermore, Flights is alist containing the leg keys that correspond to the legs of the job and Number Of F lightsis the length of this list.4.2.1 Pairing Representation Using Domain VariablesA pairing is represented by a list of lists (sublists), each of which represents a day. Eachsublist contains 0/1 domain variables, each of which corresponds to a job. A variable hasthe value 1, when the corresponding job takes place the speci�c day of the speci�c pairingand it has the value 0 otherwise. The purpose is to build such lists of domain variables thatwill be subject to the constraints. Suppose that the following set of jobs is created fromthe previous stage:job(1, ath, ath, deptime(7, 45), 120, 360, [1, 3], 2).job(2, ath, ath, deptime(7, 45), 180, 705, [2, 4], 2).If a pairing is allowed to last at most three days, then the following list that contains threesublists represents a pairing: [[x11; x12]; [x21; x22]; [x31; x32]]The variables x1i correspond to the �rst day, the variables x2i correspond to the secondday and so on. The index i corresponds to the job with key i. Generally, the following listrepresents a pairing that lasts k days (k-day pairing)[[x11; x12; : : : ; x1n]; [x21; x22; : : : ; x2n]; : : : ; [xk1; xk2; : : : ; xkn]]where n is the number of all jobs.4.2.2 Pairing ConstraintsThe pairing constraints are similar to the job constraints and their construction is made inthe same way. Suppose thatB = [[x11; x12; : : : ; x1n]; [x21; x22; : : : ; x2n]; : : : ; [xk1; xk2; : : : ; xkn]]is the representation of a k-day pairing when n jobs are available. xij stands for the domainvariable that corresponds to the job with key j on the i-th day.



I. Constraints imposed by the problem� Maximum number of legs per pairingIf the j-th job comprises Nj legs, thenkXi=1 nXj=1Nj � xij �Maxwhere Max is the maximum number of legs per pairing.� Maximum number of legs per pairing during three, four and �ve daysThis constraint ensures that the 
ights are distributed uniformly to the daysof the pairing. The inequation is constructed in the same way as in the aboveconstraint, for every three, four and �ve consecutive days in the pairing, settingthe appropriate upper limits for the corresponding sums.� Rest timeThere should be enough time between two jobs in a pairing so that the crewmembers can rest. In order to ensure this requirement, the following is done:for every two domain variables y and z that represent jobs in the pairing list, itis checked whether these jobs can belong to the same pairing, that is if there issu�cient time between the arrival time of the �rst job and the departure timeof the second job. If not, then y + z � 1Since a job lasts 24 hours maximum, not all possible couples of jobs need to bechecked. It is necessary to check only these couples of domain variables thatbelong to adjacent days.� Local constraintsThese constraints are similar to the local constraints of the jobs. They ensurethat the departure airport and the arrival airport of a pairing are the same withthe base airport of the airline company. It is reminded that in this paper, itis assumed that an airline company has only one base airport. Because everyjob starts and ends at the base airport (heuristic constraint), always the arrivalairport of a job is the same with the departure airport of the following job. Ifan airline company has more than one base airport, a speci�c constraint whichensures the identity of the arrival and departure airports of adjacent jobs mustbe de�ned.II. Constraints imposed by the representation



� Beginning of a pairingA pairing should start at the �rst day, because if not, then the �rst sublist wouldbe empty. So: nXj=1x1j � 1� Unique legs in a pairingA leg may belong to more than one job. Therefore a pairing may contain thesame leg more than once, which is forbidden. In order to solve this problem,the pairing list is searched and all the jobs that contain the same leg are found.Suppose that these jobs correspond to the domain variables y, z and w. Theirsum must be less than or equal to 1, that is: y+z+w � 1. The above procedureis repeated for every leg.4.3 Set Partitioning ProblemIn the previous section, the way pairings are created was described. From these pairings aset must be selected that covers all legs and at the same time minimizes a cost function.This problem is called set partitioning. Suppose that m legs must be carried out and lpairings have been constructed. If the problem is formulated mathematically, the functionthat must be minimized is: lXj=1 cj � xjwhen: A � x = e; xj = 0 or 1;8j : 1 � j � lwhere cj is the cost assigned to xj, A is an m�l matrix containing 0 and 1, e = (1; 1; : : : ; 1),i.e. e is an m-dimensional vector with all its elements equal to 1.4.3.1 Cost FunctionThe cost function is very important in solving the set partitioning problem. As it is notspeci�c, its selection depends on the airline company's regulations and ideas about coste�ective crew schedules. The cost function used in this paper is the total pairing duration,that is the sum of the job durations. So, trying to minimize the cost function meanschoosing pairings that have the smallest duration. If there are n jobs and Job Durationiis the duration of the job with key i then the cost C of a pairing is equal to:C = nXi=1 Job Durationi



4.3.2 Set Partitioning ConstraintsSuppose that A = [P1; P2; : : : ; Pl] is a list containing all the pairings created during thepairing construction stage, where Pi is the i-th pairing. Moreover, consider a list X =[X1;X2; : : : ;Xl] where Xj is a 0/1 domain variable, which corresponds to pairing Pj . Ifthe domain variable Xj has the value 1, then the pairing Pj is contained in the solution,otherwise it isn't.� Basic constraintThe basic constraint imposed by the set partitioning problem is that each leg mustbe contained exactly once in the �nal solution. If there are m legs to be covered, thenfor each leg with key i the following constraint is set:X1�j�l;i2Pj Xj = 1That is, the sum of the domain variables, which correspond to pairings that containthe leg with key i must be equal to 1.� Maximum number of pairingsThe �nal solution must contain a maximum number of pairings. This constraint,which is actually a heuristic one, is expressed by the following equation:lXi=1Xi �Maxwhere Max is the maximum number of pairings permitted in the �nal solution.5 A Prototype SystemA prototype implementation of the system has been carried out in ECLiPSe and it is basedon the constraint equations and inequations described in the previous paragraphs. Theuser can communicate with the system through a graphical user interface, which providesvarious facilities. This interface is based on the PCE extension of ECLiPSe. The mainwindow consists of some buttons responsible for selecting the system operations and oftwo windows; the message window and the graphics window. In the �rst window, variousmessages appear that inform the user about operations selected and performed. In thesecond window, the graphical representation of the solution appears after the execution ofthe program.The input of the system is a �le containing information about the 
ights that have tobe scheduled. Each line of this �le represents a leg, and contains all information needed for



Figure 1: Sample of program execution: A 
ights �le has been asserted. Dialog boxes forthe customization of constraints also appear.this leg in a quite obvious format. Once the user has speci�ed the 
ights �le, the systemtransforms the leg information into ECLiPSe facts (e.g. the ones in paragraph 4.1.1). Ifthe user inserts another 
ights �le, besides the initial one, the new legs are appended.Therefore, the user has the opportunity to combine as many 
ights �les as he/she wishesin one program execution. These �les can be created and modi�ed by any system editor.Furthermore, the system itself provides a friendly way for creating such 
ights �les.Apart from the leg information, the user can assign values to the constraint parametersinvolved in most constraint equations. A dialog box appears for each type of constraints (jobconstraints, pairing constraints and set partitioning constraints) as it is shown in Figure 1.The parameters have a default value with which the constraints will be set, if no changeis made. The user can customize the constraints and his/her choice may depend on theconstraints imposed by the airline company or on the desirable execution time, since thevalues of the constraint parameters a�ect the number of jobs or pairings produced. Forexample, one can de�ne the maximum number of legs per day, the 
ight duty time or thebase airport.When the execution of the program module has �nished, the solution appears in themessage window. A graphical representation of the solution is also shown in the graphicswindow (Figure 2). Other facilities available to the user are the retraction of legs, therestarting of the program and the windows clearing.



Figure 2: Sample of program execution: An optimal solution has been found and appearsin both the message and the graphics windows.6 ConclusionsThe crew pairing optimization is a crucial operation for an airline company. As the cost ofthe crews is very high, a good solution of the problem that maximizes the crew utilizationor other factors is desirable.In this paper, an approach for the crew pairing optimization problem, based on pureCLP, is presented, which seems to suit the particularities of crew pairing optimizationquite well. CLP has helped in expressing clearly and comprehensively the constraints ofthe problem. A simple working system has been also built in ECLiPSe. This system ischaracterized by good prototyping, which is combined with other positive aspects, like
exibility and maintainability. The code is simple, can be read and understood easily andthe modules responsible for the setting of various constraints are independent. Therefore, itcan be expanded easily, as only the new constraints have to be programmed, and no otherchanges to the rest of the system are required. The problem is that while low cost resultsare produced for small 
eets, the developed system becomes ine�cient when tested withmore than a certain number of daily 
ights. This generally depends on the characteristicsof these 
ights and the speci�c constraint parameters. However, we aspire that the basiccontribution of this work is to provide a mathematically precise and easy to implementformulation for a crucial problem, as the crew pairing optimization. Our experience fromvarious projects that made use of constraint programming has shown that usually modelingproblem constraints in a straightforward way through \built-in" language constraints might
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