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Abstract

The crew pairing optimization problem is faced by airline companies as an intensive
part of the crew scheduling process. Crew scheduling is the assignment of cockpit and
cabin crews to the flight legs that a company has to carry out during a predefined
period of time. Due to the significant contribution of the crew cost to the overall
operating cost of an airline company, the automation of the crew scheduling proce-
dure is highly desirable. However, the crew pairing optimization subproblem of crew
scheduling is extremely difficult and combinatorial in nature due to the large number
and complexity of the involved constraints. The requirement for optimality makes it
even more difficult. Many attempts have been made in the past 40 years to tackle
the crew pairing optimization problem using methods from Operations Research. In
this paper, an approach based on pure Constraint Logic Programming is presented,
which leads to an elegant and flexible modeling of the problem. The whole process
is divided into three distinct phases, the job construction, the pairing construction
and a set partitioning problem. All three phases are viewed as constraint satisfac-
tion problems. A prototype system that has been built using the Constraint Logic
Programming language ECL'PSC is also presented.

1 Introduction

The cost for flying crews is very high for all airline companies and is second only to fuel
cost. However, while for the fuel cost there is no much potential for reductions, the crew
cost can be controlled through better crew utilization. This is the reason why most carriers
have invested a lot of money, even since the early 60s, to this direction [Spi6l, AFST69,
Rub73, MMK79, MS81, Ger89, HP93].
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The problem that needs to be solved is the automation of the crew scheduling procedure.
The input to this problem is the published flight schedule of the company comprising the
departure and arrival airports, the departure and arrival times as well as the aircraft types
for all flights (or flight legs, or just legs) which have to be carried out during a predefined
period of time. This period is usually one month. A flight leg is an elementary non-stop
transportation between two specific sites. What has to be computed is a feasible allocation
of the required cockpit and cabin crew personnel to every flight leg. This computation is
extremely difficult since there is a huge search space to be explored and a lot of constraints
to be respected (e.g. governmental and international regulations, contractual obligations,
company restrictions etc.). It is even more difficult when there is a requirement for the
optimum solution, with respect to a given well-defined cost function. The optimum solution
is the one which minimizes the cost function, so as to achieve the lowest possible crew
operating cost or, equivalently, the highest possible crew utilization.

Although the whole crew scheduling process might be formulated as a single, but quite
complex, constraint satisfaction problem, it is normally tackled in two phases for reasons
of management of its combinatorial nature. The first phase is usually referred to as the
anonymous crew scheduling and the second as the crew rostering. The output of the anony-
mous crew scheduling is a set of pairings, i.e. sequences of flight legs that cover exactly the
flight schedule of the company. Each pairing has the property that can be flown by a single
crew, however the specific crew members which are to be assigned to the pairing will be
computed during the next phase, the crew rostering [BBM*92, Rya92, KG94]. The set of
pairings computed by the anonymous crew scheduling phase has to be the optimum one,
therefore this phase is also referred to as crew pairing optimization.

In this paper, the crew pairing optimization problem is considered and a specific method-
ology is described for tackling it in a Constraint Logic Programming (CLP) [vH89, FHK*92]
environment. An appropriate representation of the problem is proposed together with the
required mathematical formulation of the involved constraints. The whole approach has
been realized using the ECL'PS® language [ECL95], an instance of the CLP class of lan-
guages which provides, among other facilities, constraint satisfaction techniques over finite
domains.

Various approaches taken from the Operations Research (OR) area have been followed
so far for the solution of the crew pairing optimization problem [LMO88, AGPT91]. More
precisely, the final stage of this problem is an instance of the set partitioning (covering")
problem which has been extensively studied and tackled via OR methods in the past
[Mar74, FK90, BJ92]. In addition, an application of OR methods in a CLP environment

Set covering is used when deadheading (or positioning) is allowed, i.e. transportation of crew members
as passengers to another place, in order to commence or continue work.



for tackling the same problem is reported in [GC95]. However, although these methods
might be sometimes quite efficient for specific cases of input data, they lack a general and
elegant way of describing what is needed to be computed and which constraints are in-
volved. Moreover, OR methods are not flexible enough to cater for possible changes of the
problem’s input data, thus they cannot be easily adapted to various needs.

On the other side, what is achieved by a pure CLP approach is a declarative way of
describing a constraint satisfaction problem which is combined, by taking into considera-
tion the procedural point of view, with an a priori pruning of the search space through a
constraint propagation mechanism. At each step, the constraints are exploited as much as
possible, and then a choice is made which triggers more propagation. Choices are made
non-deterministically. In this way, the resolution mechanism of a logic programming lan-
guage is combined with constraint satisfaction techniques resulting in a very powerful and
elegant scheme of computation.

The purpose of this paper is to exhibit the appropriateness of pure CLP for mastering
the combinatorial nature of the crew pairing optimization problem. Firstly, this problem
is introduced and CLP as well as ECL'PS® are briefly described. Then, the approach
employed to work on the crew pairing optimization is presented and the way this is handled
in ECL'PS® is highlighted. Next, the resulting system is outlined and, finally, the adopted

approach is discussed.

2 Crew Pairing Optimization

The usual approach to the crew pairing optimization is to divide it into two subproblems.
First, all legal pairings are built (pairing construction) and then a subset of pairings that
covers all legs exactly once is selected (set partitioning problem).

The input to the pairing construction phase is the set of legs the airline company has
to carry out. All legs are combined in sequences that respect the imposed constraints and,
thus, they can be performed by a single crew. A pairing can last several days provided that
there is the necessary rest time for the crew that carries it out. A basic constraint is that
a pairing should start and end at the same airport. This airport is called base airport and
it is at the place where the crew members employed by the airline company live. Other

regulations and constraints that must be satisfied by each crew pairing are the following
[CM92]:
e Temporal constraints

There must be enough time between consecutive legs, so that every leg starts after

the previous one has finished.



e Local constraints

The arrival airport of a leg must be the same with the departure airport of the

succeeding leg.

e Flight Duty Time (FDT)

FDT is the time during which a crew member operates on an aircraft as a member

of its crew. This parameter must not exceed a certain number of hours.

e Number of legs per working day and number of legs per pairing

Upper bounds exist for both these factors.

The phase responsible for the set partitioning problem accepts the created pairings
which have been also assigned a cost. The cost is usually related with the crew utilization.
The system selects those pairings that cover all flight legs with the minimum cost.

It should be noted that each leg must belong to only one pairing and each pairing must
contain every leg at most once. Pairings last several days, although legs may be performed
once every day. If, for example, daily legs are considered, which is true in the context of this
paper, then the question is how the set of produced pairings can be combined in such a way
that each leg is carried out once every day during a long period of time, such as a month.
The answer is simple: each pairing must start every day. This idea is better illustrated
in the example given in Table 1. Each of the legs in this example is performed every day.
Given a set of regulations and constraints, a possible solution is shown in Table 2. The
results proposed there contain two crew pairings spanning over a period of five days. Since
the legs occur every day, 7 x 5 = 35 working days per week are needed to cover the given

set of legs.

3 CLP and ECL'PS®

CLP is a novel programming framework that enhances logic programming with constraint
satisfaction techniques. While preserving the declarative nature of logic programming, it
exhibits surprising efficiency for solving a certain class of combinatorial problems. While
the straightforward solution of such problems might be done through a generate-and-test
approach, CLP introduces a new method of computation, the constrain-and-generate one.
In case of large scale combinatorial problems, the former method cannot lead to results
within finite time.

CLP is often referred to as C'LP(X) where X stands for the set over which the prob-
lem constraints are stated. There exist languages where X is the set of real numbers R

[JMSY92], the set of rational numbers, a set of boolean values etc. A very interesting case



Flight  Departure Arrival Departure Leg Atreraft
Number  Airport  Airport Time Duration 1d

242 ath mic 08:15 60 1
245 mic ath 10:15 60 1
214 ath her 12:15 45 1
217 her ath 13:45 45 1
160 ath kav 15:35 90 1
169 kav ath 17:55 85 1
058 ath rod 07:25 50 2
066 rod ath 10:00 45 2
120 ath tri 12:05 45 2
174 tri ath 13:40 45 2

Table 1: Example of a flight plan for two specific aircrafts. The three letter codes stand for
the departure and arrival airports of each leg. The flight number, the departure time, the
leg duration and the aircraft id also appear.

Pairing ‘ Day ‘ Flights ‘
1 1 160 169
ath 15:35-17:05 kav  17:55-19:20 ath
2 214 217
ath 12:15-13:00 her 13:45-14:30 ath
3 120 174
ath  12:05-12:50 tr1 13:40-14:25 ath
4 242 245
ath  08:15-09:15 mic 10:15-11:15 ath
2 1 058 066
ath 07:25-08:15 rod 10:00-10:45 ath

Table 2: A possible solution for crew pairings. The flight number appears above the
respective leg. The solution consists of a set of two pairings. The first pairing endures four
days and the second one.



is the one where a problem is described via constraints which involve variables that range
over finite domains. Then, the corresponding instance of CLP(X) is called CLP(F D).
The first representative of the C'LP(F D) scheme of computation is the CHIP language
[DvHS*88]. CHIP was developed at the European Computer-Industry Research Centre
(ECRC). The constraint facilities of CHIP have now been integrated with ECRC’s Sepia
and Megalog systems, resulting into the ECL{PS® language.

ECL'PSe is a Prolog system whose aim is to serve as a platform for integrating various
logic programming extensions. Many interesting extensions of ECL'PS¢ are based on a
special data type, which is called metaterm. Various constraint related libraries are sup-
ported, which have been built on the metaterm facility, namely the finite domains library,
the generalized propagation library etc. The first is the one which brings to ECL'PS® the
constraints functionality of CHIP for finite domains.

The finite domains library of ECL‘PS® implements constraints that involve integer as
well as atomic data. The concept of domain variables is used which range over finite do-
mains. These are defined through the built-in predicate ::/2. For example, the sequence
of goalsX :: 1..5,Y :: [red, green, bluel,Z :: [3, 7..9, 12] define the domain
variables X, Y and Z ranging over the domains {1, 2, 3, 4, 5}, {red, green, blue} and
{3, 7, 8,9, 12} respectively. Constraints are either arithmetic or symbolic. An arithmetic
constraint is an equality (#=/2) or inequality (##/2, #</2, #<=/2, #>/2, #>=/2) relation
between two linear terms, where a linear term is composed of domain variables and integers
in a way respecting its linearity. For example, 2*xX-Z ## X+3 is an arithmetic constraint
stating that the involved linear terms should be different, for some values of the variables
X and Z. An example of a symbolic constraint is element(I, [red, green, bluel, W)
which states that W (a domain variable) should be the I-th (also a domain variable) ele-
ment of the list [red, green, blue]. Enumeration (indomain/1) as well as optimization
(min_max/2, min_max/5) predicates are also provided by ECL'PSe.

The procedure for solving a constraint satisfaction problem using the finite domains
library of ECL'PS® is to define a set of domain variables, together with their domains,
that model the problem concepts. Then, the constraints that define the relations among
these variables have to be stated. Actually, these constraints define the subset of the search
space that contains the solutions of the problem. The last step is to trigger an enumeration
procedure, which cooperates with the internal constraint propagation mechanism and with
the backtracking mechanism of the Prolog engine, leading finally to the required solutions, if
they exist. In case of an optimality problem, ECL'PS® provides a branch-and-bound method
that computes the optimum solution of the enumeration procedure, with respect to a given

cost function. An example that demonstrates most of the finite domains functionality of

ECL‘PSe is the following:



7- X 1.5, Y :: 3..8, X+4Y #> 9, HxX-Y #<= 12,
min_max((indomain(X), indomain(Y)), Y-X).
Found a solution with cost 6

Found a solution with cost 4

yes.

In this example, X and Y are defined as domain variables with values from 1 to 5
and from 3 to 8 respectively, their sum is stated to be greater than 9, then the linear
term 5*X-Y is stated to be less than or equal to 12 and, finally, the branch-and-bound
mechanism of ECL'PS® is activated, through the min_max/2 goal, which is asked to compute
the appropriate values of X and Y, i.e. ones that satisfy indomain(X) and indomain(Y),

which minimize the linear term Y-X.

4 Crew Pairing Optimization under ECL'PS¢

Besides the concept of pairings, it is useful to define jobs as well. A job (or duty period)
practically corresponds to the flights performed in a day. More precisely, the continuous
period of time during which a crew is on duty is a job. Thus, a crew pairing is a sequence
of jobs. Consecutive legs within a job must satisfy a number of regulations and constraints.
Usually a job doesn’t last more than 24 hours, although this is not forbidden. Moreover,
the rest time between two consecutive legs within the same job doesn’t exceed a certain
amount of hours.

Before the construction of pairings, all the legal, possible and “good” jobs are found.
Good are those jobs that would lead to the construction of pairings with low cost. The
input of this process is the set of all flight legs. The jobs created in this phase are used to
form legal pairings. The pairing construction phase is akin to the job construction phase
as both entities are subject to similar constraints. Because the number of all legal pairings
is large, heuristic techniques that produce the good pairings are implemented, that is, the
pairings that would lead to a solution with small cost. The last phase of the crew pairing
optimization is a case of the set partitioning problem. From the set of all pairings produced
in the previous phase, the subset that covers all flight legs at minimum cost has to be
chosen.

In the context of this paper, daily legs are considered, that is each leg is performed once
in a day, although a pairing lasts several days. The airline company has only one base

airport. Therefore, all pairings start and end at this base airport.



4.1 Job Construction

A leg is represented by the following ECL‘PS® fact:

leg(Key, Departure_Awrport, Destination_Airport,
Departure_Time, Duration, Aireraft_Id).

where Key is a number that identifies uniquely a leg and has the property: if one leg is
identified by Key; and another leg by Key, and Key; < Keys, then Departure_Time; <

Departure_Timey. Atrcraft_Id is the identifying number of the aircraft which carries out

the flight.

4.1.1 Job Representation Using Domain Variables

A job is represented by a list of lists with 0/1 domain variables, each of which corresponds
to a flight leg. A variable has the value 1 when the corresponding leg is part of the job and
it has the value 0 otherwise.

The maximum duration of a job is considered to be 24 hours. If a list corresponds to a
diary day, then a job can be represented by two lists, since a 24-hour job may span in two

diary days at most. If the following group of legs is available

leg(1l, ath, lgw, deptime(7, 45), 60, 1).
leg(2, ath, lhr, deptime(7, 45), 90, 1).
leg(3, lgw, ath, deptime(12, 45), 60, 1).
leg(4, lhr, ath, deptime(18, 0), 90, 1).

then a job would be represented by the following list:

[[51?117 L12, 13, 51?14], [51?21, T22, T23, 51?24]]

Generally, the following list represents a 24-hour job:

[[1'11, L1y« ,l’ln], [1'21, L22y ... ,l’gn]]

where the first list (x1; variables) stands for the first day and the second list (x5, variables)
stands for the second day. The index ¢ refers to the leg with key .

The above representation apart from being suitable for expressing all constraints has
one more advantage: it is general. Practically no change would be required to the program
code if it was decided that a job might last more than 24 hours, but certainly less than

some other limit, e.g. 72 hours, and, thus, more sublists would be needed.



4.1.2 Job Constraints

It is quite difficult to describe with linear equations and inequations a real life constraint
satisfaction problem. The success of the description depends highly on the representation
of the problem as well as on the way the constraints are set. Sometimes, instead of thinking
what should be true, it is easier trying to express what is forbidden.

For two 0/1 variables y and z, the operation y NAND z may be defined, which is
false only when both y and z are true. This operation expresses the fact that two events
cannot occur simultaneously. The boolean operation N AN D corresponds to the arithmetic
inequality y + z < 1.

The above remark is quite useful in creating the constraint expressions. Suppose that
two legs with corresponding domain variables y and z cannot occur in the same job. The
arithmetic expression for that constraint is then y 4+ 2z < 1.

In job construction, three kinds of constraints can be distinguished: the constraints that
depend on the nature of the problem and are obligatory, the constraints that are dictated
by the representation used and are useful for the efficient and quick solution of the linear
system of constraints and, finally, the heuristic constraints. These constraints are not part
of the airline company’s regulations; they are invented and are used to reduce the number
of jobs produced.

Suppose now that A = [[z11, 212, ..., T1a], [T21, T22, ..., 22,]]. The way constraint ex-

pressions are built is explained in detail next.
I. Constraints imposed by the problem

¢ Maximum number of legs per job

Each job must contain a limited number of legs. This constraint expression can
be constructed easily if all the domain variables of a list are added and then

their sum is bound by the maximum number of legs, called Mazx.

n

Z(l'u + 29) < Max

=1
where n is the number of variables contained in each day sublist.

e Maximum flight duty time per job

This constraint expression is similar to the above. Each sublist member is multi-
plied by the duration of the corresponding leg, called 7;. The sum is then bound
by Max F DT, the maximum flight duty time allowed:

Z(l‘u +a9) - Ty < MaxF DT

=1



e Local constraints

The arrival airport of each leg in a job must be the same with the departure
airport of the following leg in the same job. This is a complicated case of the

NAND constraints mentioned above.

Suppose that two domain variables y and z are adjacent in list A and represent
legs for which the arrival airport of leg y is different from the departure airport
of z. Then, these variables should not have simultaneously the value 1. The
constraint y + z < 1 should be set. It has to be noted here that in this paper
deadheading is not allowed. If now y and z are not adjacent in A and w is the
only element between them, then y and z cannot have the value 1 at the same
time if w = 0 and, thus, y + 2 < 1+ w should be true. In general, if y and z are
separated by k elements (for example A = [[...,y,w1,...],[..., Wk, 2,...]]), then

the constraint expression needed to be set is:

3
y+z <1+ w
=1
for all possible pairs of ¥ and z in list A, such that the arrival airport of y is

different from the departure airport of z.
e Time constraints

— There should be sufficient time between legs for briefing and debriefing. So,
if two legs do not satisty this condition, they should not belong to the same
job. If y and z are the domain variables that correspond to such legs, then
the following should hold:

y+z<1

— Furthermore, adjacent legs in a job should be relatively close one another:
the time period between the arrival time of the first and the departure time
of the second should be less than 10 hours. This constraint is expressed in
the same way as the local constraints. That is, for two domain variables ¥y
and z that cannot have simultaneously the value 1 and are separated by &

domain variables the following should be true:

3
y+z< 14w
=1
This constraint has to be stated for all possible pairs of ¥ and z in list A,
such that the distance between the arrival time of y and the departure time

of z is greater than Maz, where Maz is the maximum rest time between



two legs in the job.

e Job duration

The duration of a job must be at most 24 hours. If the difference between the
departure time of a leg and the arrival time of the following leg is more than 24
hours, then the two legs should not belong to the same job. Thus, if y is the
domain variable for the first leg and z is the domain variable for the following
leg, then:

y+2z<1

This constraint has to be stated for all possible pairs of y and z in list A, such
that the departure time of y and the arrival time of z have a distance greater
than 24 hours.

II. Constraints imposed by the representation

e Beginning of a job
Each job must start at the first day, because otherwise the representation with

two lists would be meaningless. Therefore, the following constraint must be

satisfied:

Z ry; > 1
=1
where z; are the domain variables of the first sublist and n is their total number.

II1. Heuristic constraints

e Minimum number of legs per job

It is useless to construct jobs with very few legs, for example 0 or 1. Therefore,
the number of legs each job comprises must be greater than Min. The expression

for this constraint follows:

n

Z(l'u + 29;) > Min

=1
where n is the number of variables contained in the sublists of list A.

e Departure airport of a job

A job should start from the base of the airline company. This is not obligatory,
but it reduces the number of jobs, since it keeps those which lead to the con-
struction of good pairings (pairings with small cost). If the departure airport

of a leg is other than the base airport, then a job should not start with that



leg. Let y be the domain variable for the specific leg and suppose k variables w;

precede y in list A (A = [[w1,..., w0k, ¥y,...],[...]])- Then it should be true that:

3
y <14 Z w;
=1
The above constraint should be set for every y in the first sublist of A whose

departure airport is different from the base airport.

e Arrival airport of a job
For the same reasons a job should end at the base airport. If the number of
times that the base airport appears in the job as the departure airport is equal
to the number of times it appears in the job as the arrival airport, then this

requirement is satisfied. That is:

Z (T1; + 221) = Z (21 + x2:)

dep;=base arr;=base

where dep; and arr; are the departure and arrival airports of the leg ¢ respectively.

e Flight legs in the second diary day
Only a certain number of flight legs (strictly less than n) can be realized in the

second diary day. Therefore, after a specific leg, no other leg is comprised in a
job, that is
Zn: r9; =0
i=k+1
where k is the key of the last leg permitted in a job, xy; the variables in the

second sublist of list A and n their total number.

4.2 Pairing Construction

The jobs created in the previous stage are used for the construction of the pairings. It
should be mentioned that the representation of the jobs is similar to the representation of
the legs described in the previous paragraph.

A job is represented by the following ECL‘PS fact:

Job(Key, Departure_Airport, Destination_Airport, Departure_Time,
Flight_Duration, Job_Duration, Flights, Number_O f_Flights).

where K ey is a number that identifies uniquely a job and it has the following property: if one
job is identified by Key; and another job is identified by Keys, then Departure_ Time; <

Departure_Timey. Departure_Airport and Destination_Awrport are the departure airport



of the first leg and the destination airport of the last leg respectively and Departure Time
is the departure time of the first leg contained in the job. Flight_Duration is the sum of the
duration of flights, while Job_Duration is the difference between the arrival time of the last
leg contained in the job and the departure time of the first leg. Furthermore, Fllights is a
list containing the leg keys that correspond to the legs of the job and Number_Of_Flights
is the length of this list.

4.2.1 Pairing Representation Using Domain Variables

A pairing is represented by a list of lists (sublists), each of which represents a day. Each
sublist contains 0/1 domain variables, each of which corresponds to a job. A variable has
the value 1, when the corresponding job takes place the specific day of the specific pairing
and it has the value 0 otherwise. The purpose is to build such lists of domain variables that
will be subject to the constraints. Suppose that the following set of jobs is created from

the previous stage:

job(1, ath, ath, deptime(7, 45), 120, 360, [1, 3], 2).
job(2, ath, ath, deptime(7, 45), 180, 705, [2, 4], 2).

It a pairing is allowed to last at most three days, then the following list that contains three

sublists represents a pairing:

[[51?11, 51?12], [51?21, 51?22], [51?31, 51?32]]

The variables xq; correspond to the first day, the variables xq; correspond to the second
day and so on. The index ¢ corresponds to the job with key :. Generally, the following list
represents a pairing that lasts k& days (k-day pairing)

[[1’1171’12, . .,l’ln], [1’21,1’22, . .,l’gn], ceey [$k1,l’k2, . ,l’kn]]

where n is the number of all jobs.

4.2.2 Pairing Constraints

The pairing constraints are similar to the job constraints and their construction is made in

the same way. Suppose that

B = [[1’1171’12, . ,l’ln], [1’21,1’22, . ,l’gn], ceey [$k1,l’k2, . ,l’kn]]

is the representation of a k-day pairing when n jobs are available. z;; stands for the domain

variable that corresponds to the job with key j on the 2-th day.



I. Constraints imposed by the problem

¢ Maximum number of legs per pairing

If the y-th job comprises IV; legs, then

k n

ZZN]"J}”‘ SMCLJ}

=1 j5=1
where Max is the maximum number of legs per pairing.

¢ Maximum number of legs per pairing during three, four and five days

This constraint ensures that the flights are distributed uniformly to the days
of the pairing. The inequation is constructed in the same way as in the above
constraint, for every three, four and five consecutive days in the pairing, setting

the appropriate upper limits for the corresponding sums.

¢ Rest time

There should be enough time between two jobs in a pairing so that the crew
members can rest. In order to ensure this requirement, the following is done:
for every two domain variables y and z that represent jobs in the pairing list, it
is checked whether these jobs can belong to the same pairing, that is if there is
sufficient time between the arrival time of the first job and the departure time
of the second job. If not, then

y+2z<1

Since a job lasts 24 hours maximum, not all possible couples of jobs need to be
checked. It is necessary to check only these couples of domain variables that

belong to adjacent days.

e Local constraints

These constraints are similar to the local constraints of the jobs. They ensure
that the departure airport and the arrival airport of a pairing are the same with
the base airport of the airline company. It is reminded that in this paper, it
is assumed that an airline company has only one base airport. Because every
job starts and ends at the base airport (heuristic constraint), always the arrival
airport of a job is the same with the departure airport of the following job. If
an airline company has more than one base airport, a specific constraint which

ensures the identity of the arrival and departure airports of adjacent jobs must

be defined.

II. Constraints imposed by the representation



¢ Beginning of a pairing
A pairing should start at the first day, because if not, then the first sublist would
be empty. So:

n
> ry =1
=

e Unique legs in a pairing
A leg may belong to more than one job. Therefore a pairing may contain the
same leg more than once, which is forbidden. In order to solve this problem,
the pairing list is searched and all the jobs that contain the same leg are found.
Suppose that these jobs correspond to the domain variables y, z and w. Their
sum must be less than or equal to 1, that is: y+z+w < 1. The above procedure

is repeated for every leg.

4.3 Set Partitioning Problem

In the previous section, the way pairings are created was described. From these pairings a
set must be selected that covers all legs and at the same time minimizes a cost function.
This problem is called set partitioning. Suppose that m legs must be carried out and [
pairings have been constructed. If the problem is formulated mathematically, the function

that must be minimized is:
!
26
i=1

when:
Az=ex;=00r 1,Vy:1 <y <

where ¢; is the cost assigned to x;, A is an m x [ matrix containing 0 and 1, e = (1,1,...,1),

i.e. e is an m-dimensional vector with all its elements equal to 1.

4.3.1 Cost Function

The cost function is very important in solving the set partitioning problem. As it is not
specific, its selection depends on the airline company’s regulations and ideas about cost
effective crew schedules. The cost function used in this paper is the total pairing duration,
that is the sum of the job durations. So, trying to minimize the cost function means
choosing pairings that have the smallest duration. If there are n jobs and Job_Duration;

is the duration of the job with key ¢ then the cost C of a pairing is equal to:

C = Z Job_Duration;

=1



4.3.2 Set Partitioning Constraints

Suppose that A = [Py, P,,..., P] is a list containing all the pairings created during the
pairing construction stage, where F; is the ¢-th pairing. Moreover, consider a list X =
[X1, X2,...,X;] where X, is a 0/1 domain variable, which corresponds to pairing P;. If
the domain variable X; has the value 1, then the pairing P; is contained in the solution,

otherwise it isn’t.

¢ Basic constraint

The basic constraint imposed by the set partitioning problem is that each leg must
be contained exactly once in the final solution. If there are m legs to be covered, then

for each leg with key 2 the following constraint is set:

Y X —1
1<j<lieP;
That is, the sum of the domain variables, which correspond to pairings that contain

the leg with key ¢ must be equal to 1.

¢ Maximum number of pairings

The final solution must contain a maximum number of pairings. This constraint,

which is actually a heuristic one, is expressed by the following equation:

!
ZXi < Max

=1

where Max is the maximum number of pairings permitted in the final solution.

5 A Prototype System

A prototype implementation of the system has been carried out in ECL'PS® and it is based
on the constraint equations and inequations described in the previous paragraphs. The
user can communicate with the system through a graphical user interface, which provides
various facilities. This interface is based on the PCE extension of ECL‘PS®. The main
window consists of some buttons responsible for selecting the system operations and of
two windows; the message window and the graphics window. In the first window, various
messages appear that inform the user about operations selected and performed. In the
second window, the graphical representation of the solution appears after the execution of
the program.

The input of the system is a file containing information about the flights that have to

be scheduled. Each line of this file represents a leg, and contains all information needed for
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Figure 1: Sample of program execution: A flights file has been asserted. Dialog boxes for
the customization of constraints also appear.

this leg in a quite obvious format. Once the user has specified the flights file, the system
transforms the leg information into ECL‘PS® facts (e.g. the ones in paragraph 4.1.1). If
the user inserts another flights file, besides the initial one, the new legs are appended.
Therefore, the user has the opportunity to combine as many flights files as he/she wishes
in one program execution. These files can be created and modified by any system editor.
Furthermore, the system itself provides a friendly way for creating such flights files.

Apart from the leg information, the user can assign values to the constraint parameters
involved in most constraint equations. A dialog box appears for each type of constraints (job
constraints, pairing constraints and set partitioning constraints) as it is shown in Figure 1.
The parameters have a default value with which the constraints will be set, if no change
is made. The user can customize the constraints and his/her choice may depend on the
constraints imposed by the airline company or on the desirable execution time, since the
values of the constraint parameters affect the number of jobs or pairings produced. For
example, one can define the maximum number of legs per day, the flight duty time or the
base airport.

When the execution of the program module has finished, the solution appears in the
message window. A graphical representation of the solution is also shown in the graphics
window (Figure 2). Other facilities available to the user are the retraction of legs, the

restarting of the program and the windows clearing.
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Figure 2: Sample of program execution: An optimal solution has been found and appears
in both the message and the graphics windows.

6 Conclusions

The crew pairing optimization is a crucial operation for an airline company. As the cost of
the crews is very high, a good solution of the problem that maximizes the crew utilization
or other factors is desirable.

In this paper, an approach for the crew pairing optimization problem, based on pure
CLP, is presented, which seems to suit the particularities of crew pairing optimization
quite well. CLP has helped in expressing clearly and comprehensively the constraints of
the problem. A simple working system has been also built in ECL'PS®. This system is
characterized by good prototyping, which is combined with other positive aspects, like
flexibility and maintainability. The code is simple, can be read and understood easily and
the modules responsible for the setting of various constraints are independent. Therefore, it
can be expanded easily, as only the new constraints have to be programmed, and no other
changes to the rest of the system are required. The problem is that while low cost results
are produced for small fleets, the developed system becomes inefficient when tested with
more than a certain number of daily flights. This generally depends on the characteristics
of these flights and the specific constraint parameters. However, we aspire that the basic
contribution of this work is to provide a mathematically precise and easy to implement
formulation for a crucial problem, as the crew pairing optimization. Our experience from
various projects that made use of constraint programming has shown that usually modeling

problem constraints in a straightforward way through “built-in” language constraints might



be quite inefficient in real-world problems. The reason is that problem constraints are

too specific for the general purpose propagation techniques that the constraint languages

use. However, such problem constraints provide the necessary input for developing built-in

specific constraints and, thus, much better results can be obtained without resorting to

specialized methods such as the ones of OR.
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