HyperPlay: A Solution to General Game
Playing with Imperfect Information

M. Schofield, T. Cerexhe and M. Thielscher

Karpathiotaki Maria
M12719

karpathiotaki.maria@gmail.com

General Game Playing...

Intelligent agents that can automatically learn how to
skillfully play a wide variety of games, given only the
descriptions of the game rules.

Agents have to learn diverse game-playing strategies
without any game-specific knowledge being provided
by their developers.

Relevant game-specific knowledge required for
expert-level play, must be effectively discovered
during play!!

...with Impertect Information

Players don’t know exactly the actions chosen by
other players.

They know who the other players are, what their
possible strategies/actions are, and the
preferences/payofis of these other players.
Hence, information about the other players is
imperfect.

E.g.: Card games, like bridge and poker.

GDL: Game Description
Language

A first-order logic based language (variant of Datalog) for defining
discrete games with complete information!

The expressiveness of GDL allows a large range of deterministic, perfect
information, simultaneous-move games to be described, with any number
of adversary or cooperating players.

- Turn-based games are modeled by having the players who do not have a turn
return a special no operation move.

role(?r) ?risa player

init (?f) ? f holds in the nitial position
true (7f) ? £ holds in the current position
legal (?r, ?m) 7?r cando ?m in the current position

does (?7r, 7m) player 7 r does move 7m
next (?f) ? f holds in the next position
terminal the current position is terminal
goal (?r, 7v) 7T gets payoff ?v

GDL-II: GDL with
incomplete/imperiect information

GDL has recently been extended.

Two new keywords to describe arbitrary (finite) games
with randomized moves and imperfect information:

* Sees

- random
role(?r) 7T is a player
init (7f) ? £ holds in the initial position
true(?f) ? £ holds in the current position
legal (?r, ?m) ?r cando ?m in the current position
does (?r, ?m) player 7 r does move Zm
next (7f) ? £ holds in the next position
terminal the current position is terminal
goal (?r, ?v) ?r gets payoff v

sees (7r, 7p) ?r perceives 7p in the next position
random the random player (aka. Nature)

HyperPlay: The Technique

General approach that can be used by any general
game player.

The intuition is to translate imperfect-information
games into a format suitable for simpler, perfect-
information players.

HyperPlay: The Algorithm

We maintain a bag H of HyperGames (random samples or “guesses” of
the current true game state).

In each round n, a perfect-information player can select a next move a_
suitable for each of these isolated models.

Our move selection is then submitted to the game controller and a new
set of percepts in for this round is received.

Each model M in our bag of samples H is then propagated forward to
reflect the deeper game tree.

If we select a path that the last percepts reveal to be impossible, then we
reach a state where no consistent joint move can be found, so:
- we backtrack by adding the guilty move vector to a set of bad moves for that state,

and we call forward on this earlier game node, effectively undoing the move and
attempting to push forward again.

This process repeats until a consistent model is found for the current
round.

Move Selection

The HyperPlay algorithm is agnostic of the move
selection process.

Move selection should be based on:

- the expected value of a move in a HyperGame
- the propability that the HyperGame is the true game

Experiments

Several games were selected:
- Monty Hall,
- Krieg-TicTacToe,
 Blind BreakThrough

The HyperPlayer opposed a Cheat, a HyperPlayer with
access to the true game, and fully resourced so that it
made the best move choices within the limitations of

the move selection process.

- The method for calculating the Cheat’s resources was to play one
Cheat against another Cheat with different resources.

Results

The results showed a successful implementation of the

HyperPlay technique for playing imperfect information
games.

The collection of models:
- can be very accurate,

- is a credible substitute for perfect information about the true
game,

- can be competitive even against a Cheat.

Retferences

Bjornsson, Y., and Finnsson, H. 2009. CadiaPlayer: A simulation-based general game player.
IEEE Transactions on Computational Intelligence and Al in Games 1(1):4-15.

Genesereth, M. R., Love, N., and Pell, B. 2005. General game playing: Overview of the AAAI
competition. Al Magazine 26(2):62-72.

Ginsberg, M. 2011. GIB: Imperfect information in a computationally challenging game.
CoRR.

Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Genesereth, M. 2006. General game
playing: Game description language specification. Technical Report LG-2006-01, Stanford
Logic Group.

Rosenhouse,]. 2009. The Monty Hall Problem. Oxford University Press.

Schofield, M., Cerexhe, T. and Thielscherx, M. 2012. HyperPlay: A Solution to General
Game Playing with Imperfect Information. In Proc. AAAI, 1606-1612.

Thielscher, M. 2010. A general game description language for incomplete information
games. In Proc. AAAI, 994-999.

ﬁ

Thank you! ‘e~

Ed

role (candidate). role(random) . 21 next (car (7d)) <= does (random, hide_car(7d)).
I next (car(yd)) = true(car(?d)) .
init (closed(1)). nit (closed(2)). init(closed(3)). 23 next (closed(?d)) <= true(closed(?d)),

init (step(l)}. 24 not does (random, cpen_door (7d)) .

5 next (chosen (7d)) <= does(candidate, choose(?d)).
5 legal (random, hide_car(7d)) <= true (step(l)), 26 next (chosen (?d)) <= true(chocsen(?d)),
true (closed(7d)) . x not does (candidate, switch).
legal (random, open_door (7d)) <= true(stepi(2)), 28 next (chosen(?d)) <= does(candidate, switch),
true (closed(?d)), 2 true(closed(?d)),
not true(c (2d)), : not true (chosen(?d)) .
not true(chosen(?d)).
' legal (random, noop) <= true (step(3)). 32 next (step(2)) <= true(step(l)).
legal (candidate, choose (7d)) <= true(step(l)), 33 next (step(3)) <= true(step(Z)).
true (closed(?7d)) . 34 next (step(4)) <= true(step(3)).
legal (candidate, noop) <= true (step(2)). 35
6 legal (candidate, noop) <= true (step(3)). 36 terminal <= true(step(4)).
legal (candidate, switch) <= true (step(3)).
goal (candidate, 100) <= true (chosen(?d)), true (car(zd)).
9 sees(candidate, 7d) <= does(randem, cpen_door (7d)) . 39 geoal (candidate, 0) <= true (chosen(?d)), not true(car(7d)).
sees (candidate, ?7d) <= true(step(3)), true(car(?d)). 40 goal (randem, 0) .

A GDL -1II description of the Monty Hall game [Rosenhouse, 2009] adapted from
[Thielscher, 2011].

HyperPlay: The Algorithm

I procedure main()

begin
N =

n =

repeat
a, := select_move(H)
I, := submit_move(a,,)
for all M eH do

forward(M,n + 1)

n = n+1

until end of_game

2 end

3
3

L I

4 procedure forward(M ={By,m1,..., Br_1,Mg_1, By),n)
begin
if k< n then
if choose me L(M)\ B:
with m|, = ar & I(m, M) = I then
M =M 3 7L
Sforward(M, n)
else
backtrack(M, n)
1 end

procedure backtrack({B1,m1, ..., Be_1,M_1, Bi),n)
s begin
Br_y = Br_q U {mr_1}
forward({By,m,...,Br_1),n)
20 end

HyperPlay [Schofield, 2012].

Move Selection

P(Percepts|HG,) * P(HG,)

P(HG, | Percepts) =
P(Percepts)

P(HG, | Percepts) ~ P(HG,)

Move Selection

ChoiceFactor; = l_[j Choices; ;

1/ ChoiceFactor;
P(HG) =

Zn 1/ ChoiceFactor,,

E (Move;) =) E(Move;) - P(HG;)

