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eftelelis,takisg�di.uoa.grAbstra
t. The weighted maximum satis�ability (MAXSAT) problem isof great interest to the Arti�
ial Intelligen
e 
ommunity, as a model forseveral 
onstraint satisfa
tion problems (emerging e.g. from planning)whi
h require that an optimum subset of their 
onstraints be satis�ed.Re
ent resear
h on satis�ability (SAT) problems has rea
hed interest-ing 
on
lusions regarding their hardness. In this paper, we introdu
ean algorithm designed in a way inspired by these results. Based on thenewly introdu
ed 
on
ept of the ba
kbone of a formula in 
onjun
tivenormal form, we try to sample the most likely values of boolean variablesthrough an iterative pro
ess. Experiments 
ondu
ted on appropriate un-satis�able SAT instan
es show that the algorithm 
onverges to a nearoptimum subset of satis�ed disjun
tive 
lauses. Eviden
e of remarkablesu

ess on weighted MAXSAT instan
es is also presented and dis
ussed.1 Introdu
tionThe boolean satis�ability problem (SAT) has attra
ted the interest of the AI
ommunity, as an aspe
t of fundamental importan
e for automated reason-ing systems. SAT was also the �rst 
ombinatorial problem shown to be NP-
omplete [1℄.The problem involves determining a satisfying assignment on boolean vari-ables that parti
ipate in the formation of a boolean formula in 
onjun
tive nor-mal form (CNF). A CNF formula is a 
onjun
tion of 
lauses. Ea
h 
lause 
onsistsof the disjun
tion of literals, where a literal is a boolean variable or its logi
alnegation.The optimization version of SAT (MAXSAT) is the problem of �nding anassignment over the variables of a CNF formula that maximizes the total numberof satis�ed 
lauses. In this paper, we also 
onsider the more generi
 weightedMAXSAT problem, where ea
h 
lause is asso
iated with a positive weight. Theobje
tive fun
tion of weighted MAXSAT maps an assignment of the booleanvariables to the sum of the weights of the satis�ed 
lauses. The aim is to maximizethe aforementioned sum. Setting all weights to 1 yields the unweighted form ofMAXSAT. For the rest of our dis
ussion, MAXSAT will refer to the generi
weighted form, unless otherwise stated.



MAXSAT 
onstitutes a spe
ial 
ase of the generi
 valued Constraint Satis-fa
tion Problem (valued-CSP) [11℄ and, as su
h, it may be used to model sev-eral over
onstrained problems, whi
h require that an optimal subset of their
onstraints be satis�ed. As an example, we mention the Steiner Tree problemfa
ed in [4℄. Furthermore, several planning problems 
an be transformed intoboolean CNF formulae, whi
h require either 
omplete satisfa
tion of all 
lauses,or satisfa
tion of an appropriate subset, a

ording to some obje
tive optimality
riterion.We introdu
e HBS (Heuristi
 Ba
kbone Sampling), an iterative heuristi
 forMAXSAT problems. The main 
ontribution of the proposed methodology 
on-
erns a sto
hasti
 initialization s
heme, whi
h provides a simple hill 
limbingheuristi
 with potentially interesting startup states. Our work was inspired byre
ent studies on the hardness of SAT problems, whi
h have revealed the prop-erty of the ba
kbone [7℄ for CNF formulae. We 
onje
ture that it may be possibleto measure the likelihood of a variable being assigned to a parti
ular value inseveral good assignments, given a set of good assignments. We then exploit thismeasure in produ
ing sto
hasti
ally a new assignment, whi
h is the startup stateof a hill 
limbing pro
edure.Several theoreti
al and experimental MAXSAT studies have appeared. Im-pressive approximation algorithms have been introdu
ed, that a
quire assign-ments of quality 75% of the optimum [15℄ and beyond [3℄. In [4℄, a modi�
ationof the WalkSat [12℄ algorithm is presented, whi
h deals with MAXSAT prob-lems. In [10℄, a 
onstru
tive pro
edure provides startup assignments for a hill
limbing heuristi
 (GRASP). Their 
ombination �nds near optimal solutions onmany MAXSAT instan
es. Another algorithm whi
h performs remarkably betteron the same instan
es appears in [14℄.The paper is organized as follows: In se
tion 2, we brie
y survey some issues
on
erning the ba
kbone stru
ture property. The proposed algorithm is dis
ussedin se
tion 3. Experimental results and 
on
lusions follow in se
tions 4 and 5.2 Phase Transition and the Ba
kboneRe
ent resear
h in SAT problems has provided several statisti
al and theoreti
alresults, 
on
erning the hardness of satisfying CNF formulae. Early experimentalresults [6℄ have shown that randomly generated 3-SAT instan
es (ea
h 
lause
ontains exa
tly 3 literals) of M 
lauses and N variables with the property� = M=N ' 4:26 = �
 are hard to solve. Furthermore, instan
es with a < �
or a > �
 seem to be relatively easy to solve: their sear
h spa
e is either densein satisfying assignments, or empty, respe
tively, thus making it easy to provetheir satis�ability or unsatis�ability. This easy-hard-easy e�e
t is 
hara
terizedas the phase transition of SAT.The statisti
al and theoreti
al study of phase transitions is intended to revealthe in
rease in 
omplexity for the various distributions of SAT problems. In [8℄,through the appli
ation of methods from statisti
al me
hani
s and extended ex-



perimentations, the phase transition of K-SAT is investigated for the estimationof the 
omplexity in
rease rate with problem size.An important stru
tural property of unweighted CNF formulae, namely theba
kbone, has been revealed through the study of phase transitions [7, 9℄. Theba
kbone stands for the set of variables whi
h appear 
onstrained to the samevalue in all optimal variable assignments. As shown experimentally in [9℄, theba
kbone size is an important parameter for the 
ost of lo
al sear
h pro
edures.A large ba
kbone keeps most of the variables of the formula frozen to some valuein every optimal assignment, thus implying that all optimal assignments will liein a restri
ted area of the sear
h spa
e. Small ba
kbones, on the 
ontrary, tend topreserve a wider distribution of optimal assignments. Sin
e in a large ba
kbone,parti
ipating in the optimum assignment, many variables have a restri
ted value,there are many erroneous de
isions (at least as many as the restri
ted variables)to be taken during sear
h. Ba
kbones of 
onsiderable size seem to emerge inCNF formulae lying on the phase transition and beyond (a � a
). O

urren
eof ba
kbones in optimization problems is also dis
ussed in [13℄.Optimal and near optimal assignments are expe
ted to in
lude at least asubset of the formula's ba
kbone 
onstrained to appropriate values. The 
ore ofHBS involves maintaining a set of the best assignments found so far. This set isused to determine the likelihood of a variable being assigned to 1. We expe
t that,at least for the variables of the ba
kbone, this likelihood measure will eventually
onverge to some very small (near 0) or very large (near 1) value. A re
entsystemati
 sear
h algorithm, whi
h exploits the ba
kbone is des
ribed in [2℄. Inthis work a 
onstru
tive sear
h pro
edure is des
ribed, enhan
ed with analyti
te
hniques for exploiting the ba
kbone 
on
ept, towards a
hieving satisfyingassignments or de
iding the unsatis�ability of 3-SAT CNF formulae. HBS is, toour knowledge, the �rst lo
al sear
h strategy, designed to 
apture the ba
kboneof (unweighted) MAXSAT problems, in a statisti
al manner, for guiding thesear
h towards optimal assignments.3 The HBS AlgorithmIn this se
tion, we des
ribe the HBS algorithm. HBS is an iterative algorithm.In ea
h iteration, a sto
hasti
 pro
edure produ
es a new assignment, whi
h isfurther optimized by a hill 
limbing heuristi
. The sto
hasti
 pro
edure is ex-amined �rst and a short des
ription of the hill 
limbing heuristi
 follows. In thefollowing paragraphs, we 
onsider a CNF formula built upon n boolean variables,xi; i = 1 : : : n. If a is an assignment, then we denote the value of variable xi ina with a(xi). The obje
tive fun
tion value 
orresponding to a is denoted withZ(a).3.1 The Sto
hasti
 Initialization Pro
edureThe sto
hasti
 initialization pro
edure is memory-based. A set S of restri
tedsize 
ontains the best assignments found during previous iterations of HBS. S isan input to the pro
edure.



A new startup assignment is produ
ed by assigning xi the boolean value 1with probability: pi = �Xa2S faa(xi)�=�Xa2S fa�If we set fa = 1, then pi is equal to the frequen
y of positive appearan
es ofthe variable xi in the set S. Thus, pi intuitively di
tates the most likely valueassignment of xi with respe
t to the assignments 
ontained in S. An alternativeway of obtaining a more representative pi value is setting fa = Z(a). In this way,we also assign a measure of importan
e to xi's value in the various assignmentsof S. We adopted the latter approa
h during our experimentations.HBS (t; I; jSj)1. Initialize S with random (P [xi = 1℄ = 0:5) assignments2. repeat I timesa. Cal
ulate pi; i = 1 : : : nb. Pi
k the best assignment among t randomly
reated assignments, using the pi probabilities.
. Do hill 
limbing until lo
al optimum, and store in Tall the evaluated assignments during this iteration.d. Insert in S the best assignment in Tnot already in S and better than the worst of S.Delete the worst in S.Fig. 1. The 
omplete HBS algorithm3.2 Hill ClimbingThe neighbourhood explored by the heuristi
 is the standard 
ip neighbourhoodfor SAT problems. A transition from one assignment to a neighbouring one isperformed by 
ipping a sele
ted variable (i.e. setting it to its 
omplementaryvalue). Let C+(xi) and C�(xi) be the sets of 
lauses that be
ome satis�ed andunsatis�ed respe
tively by 
ipping the variable xi. The gain obtained by 
ippingxi is then de�ned as:



gi = X
j2C+(xi)wj � X
j2C�(xi)wjThe steepest as
ent version of hill 
limbing performs in ea
h iteration a 
al-
ulation of the g ve
tor and 
ips the variable xi with i = argmaxj(gj > 0). If(8j)(gj � 0), then a lo
al optimum has been rea
hed and the sear
h stops. The
omplete HBS algorithm appears in Fig. 1.3.3 Implementation DetailsWe 
larify here some implementation issues, not dire
tly dis
ussed in previousparagraphs, but imposed by the des
ription in Fig. 1.The sto
hasti
 initialization s
heme is repeated t times, as shown in the �g-ure. The t value is a parameter to the algorithm, whi
h tunes the probability of�nding randomly a startup assignment of high quality. During our experimenta-tions, we determined the value t in 
ombination with a 
lipping poli
y for the pivalues: all pi values outside the range [0:1; 0:9℄ were appropriately 
lipped to themargins of this range. We then experimented with values of t � 10, so that ea
hboolean variable 
ould obtain randomly one of the two values with probabilityat least 10%. The bias of produ
ing assignments extremely similar to the onesthat appear in the set S is thus redu
ed.T stores 
andidate solutions for updating S. Updating S in the end of ea
h it-eration means inserting the best assignment a 2 T for whi
h Z(a) 6= Z(s), 8s 2S holds. Furthermore, the size of S is maintained 
onstant during the exe
u-tion of the algorithm: ea
h time a new assignment enters the set, an assignmentof worst quality is erased. It appears plausible that the 
onvergen
e speed ofthe algorithm to high quality assignments is depended on jSj. Finally, we shouldnote that assignments produ
ed during sto
hasti
 initialization whi
h 
ould 
on-tribute to the enri
hment of S are also stored in T .4 Experimental ResultsThe behaviour of the algorithm was investigated through experiments 
arried onweighted and unweighted CNF formulae. In parti
ular, we experimented on theuuf125-538-100 dataset1 of unweighted formulae, whi
h 
ontains 100 unsatis�-able 3-SAT instan
es of 125 variables and 538 
lauses. All instan
es are \phasetransition"-hard. Improved results are also dis
ussed on the weighted MAXSATinstan
es of [10℄. This dataset (jnh) 
ontains 44 CNF formulae with 
lausesof varying sizes and weights uniformly distributed in the range 1{1000. Theseproblems 
onsist of 100 variables and 800{900 
lauses. All experiments were per-formed on a Sun Ultra SPARC 5 workstation with 269 MHz CPU and 128 MBRAM. The run time of HBS for I = 500 iterations did not ex
eed 3 se
onds in1 Available from http://www.satlib.org
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Fig. 2. Performan
e of MRHC on uuf125-538-100our experiments. EÆ
ien
y of lo
al sear
h implementations has re
eived 
onsid-erable attention. For HBS, storing and pro
essing of assignments 
onstitutes anoverhead to the hill 
limbing sear
h part. However, it still is a polynomial timepro
ess, whi
h we have eÆ
iently integrated within our implementation.4.1 On Unweighted CNF FormulaePerforman
e on unweighted CNF formulae is 
ompared towards the performan
eof random multi-restart hill 
limbing (MRHC ), where ea
h restart is initiatedwith a random assignment (ea
h variable is set to true with probability 0.5).Figures 2 and 3 summarize the results. Ea
h of the 
ompared heuristi
s wasran independently 20 times on every SAT instan
e. The proposed algorithm ranunder the 
on�guration HBS (20; 300; 10), whereas for MRHC, the number ofrestarts was set to 300 per run.The bar
harts of Fig. 2 and Fig. 3 depi
t the amount of instan
es for whi
h a
ertain number of satis�ed 
lauses was rea
hed. We 
onsider the highest a
hievednumber of satis�ed 
lauses among twenty runs of the algorithms on ea
h instan
e.We might 
arefully observe a shift of the performan
e on the 
ore of the dataset,whi
h 
orresponds to a small in
rease of satis�ed 
lauses at least by two. Im-provements in this range, however, are hardly a
hievable by random MRHC,sin
e they bring most formulae to their optimum satis�ability state.In order to �ne tune the algorithm's 
lipping range of the pi values, we experi-mented with some 
lipping ranges over several instan
es of the uuf-125-538-100dataset. A typi
al pi
ture of the algorithm's performan
e is shown in Fig. 4. HBSqui
kly moves to a lo
ally optimum area, whereas the sele
ted 
lipping range af-
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Fig. 3. Performan
e of HBS on uuf125-538-100fe
ts its performan
e during the subsequent iterations. In our experiments thesele
ted [0:1; 0:9℄ range proved to be the most appropriate. In fa
t, shrinking therange 
orresponds to approa
hing the MRHC bias of produ
ing a new startupassignment. On the 
ontrary, leaving the pi values un
lipped biases the algo-rithm towards produ
tion of startup assignments highly dependent on the ones
ontained in S.4.2 On Weighted CNF FormulaeHBS was applied on the dataset2 of [10℄ with remarkable su

ess. Twenty runsof HBS (10; 500; 12) were 
ondu
ted on ea
h instan
e. The best solution a
hievedfor ea
h instan
e ex
eeded the solution quality rea
hed by GRASP in [10℄. Dueto la
k of spa
e we only mention in Table 1(a) ten instan
es with the greatestimprovement over GRASP's results. It is important to note that optimum solu-tion was rea
hed for 17 instan
es, whereas GRASP managed to solve optimallyonly 3 instan
es.Table 1(b) depi
ts the best improvement a
hieved by HBS over WalkSat(WSAT) on ten instan
es. We experimented with the weighted MAXSAT versionof WSAT, as it appears in [4℄. The default parameters of WSAT were used (thatis, 0.5 noise, 10000 
ips), as suggested in the authors' implementation. The bestimprovements were 
al
ulated over 20 runs of the algorithms on ea
h probleminstan
e. As shown in the table, solution qualities rea
hed by HBS ex
eeded theresults obtained by WSAT. In parti
ular, the least obtained best improvement2 Available from http://www.resear
h.att.
om/~mg
r/data/index.html
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Fig. 4. Average performan
e over ten runs for ea
h 
lipping rangeover the 44 instan
es of the jnh dataset was 31. However, we should note thatWSAT performed slightly better on 13 out of 44 instan
es, 
ontaining a minimumnumber of 
lauses.4.3 Dis
ussionIn [5℄, it is shown that randomly initialized hill 
limbing su

eeds almost alwaysin �nding a satisfying assignment for satis�able 3-SAT instan
es. Furthermore,it is shown that this su

ess is also due to the small probability that the ran-domly generated initial assignment is bad (in the sense of sharing a small partin 
ommon with the satisfying assignment).However, sear
h spa
es of MAXSAT problems are known to be seething withlarge amounts of lo
al optima [14℄. The existen
e of large ba
kbones makes iteven more diÆ
ult to 
onstru
t randomly an initial assignment that 
aptures agreat part of an optimal assignment (in fa
t, the probability of su

ess is expo-nentially small). Our experiments on the uuf125-538-100 dataset have shownthat HBS gradually manages, through sampling, to dis
over a great part of theba
kbone. This is 
on�rmed by the progressive 
onvergen
e of the 
olle
tionP = fpiji = 1 : : : ng to a state of informative 
ertainty: many of the elements ofP approa
h 0 or 1. As a result of that, the sto
hasti
ally produ
ed assignmentstend to 
apture an even larger part of the ba
kbone from one iteration to thenext.Rea
hing a state of maximum 
ertainty for the 
olle
tion P 
orrespondsto maximizing the normalized sum of squares of deviations from 0.5: D =(4=n)Pni=1(pi�0:5)2. Figure 5 depi
ts the maximization of D, whi
h o

urs dur-



Table 1. Performan
e on weighted formulae(a) (b)Deviations from OptimumProblem HBS GRASPjnh305 -142 -609jnh219 0 -436jnh8 -147 -578jnh18 -20 -423jnh214 -66 -462jnh19 -79 -436jnh308 -156 -502jnh304 0 -319jnh14 0 -314jnh15 -52 -359
HBS(10; 500; 12) vs. WSAT(0:5)Problem Best Improvementjnh302 564jnh305 450jnh303 295jnh307 239jnh211 194jnh308 194jnh216 142jnh310 141jnh15 129jnh8 121ing three exe
utions of HBS (20; 300; 10) on a parti
ular instan
e of the dataset.As shown in the �gure, there is a rough 
orresponden
e of the rea
hed D leveland the a
hieved solution quality. In parti
ular, the optimum solution (OPT)was found during the run whi
h rea
hed the highest D value. The other two runsfound su

essively worse solutions, OPT-1 and OPT-2 respe
tively, whereas therea
hed D values were lower. Although this is not always the 
ase, it is generallydesirable that the algorithm rea
hes soon a state of high D value (
apturing theba
kbone) and keeps sear
hing in this state for a long time.The diagram of Fig. 5 
on�rms experimentally the 
onvergen
e of the sampleset S to a 
olle
tion of ba
kbone assignments. Control of the 
onvergen
e speedand level (as indi
ated by D) remain as 
hallenging matters of study.5 Con
lusions and Future WorkIn this paper, we examined experimentally the e�e
tiveness of sampling heuris-ti
ally the ba
kbone stru
ture for hard CNF formulae, in order to provide a hill
limbing heuristi
 with e�e
tive startup states. The algorithm HBS was intro-du
ed. Experimentations with HBS revealed remarkably improved behaviour onboth weighted and unweighted MAXSAT instan
es.The introdu
ed sto
hasti
 initialization s
heme seems to be a 
omputingartifa
t whi
h bears theoreti
al investigation in 
ombination with the ba
kbonetheory. An interesting 
hallenge 
on
erns estimating the expe
ted quality of asto
hasti
ally produ
ed assignment with respe
t to qualities 
ontained in S.Theoreti
al identi�
ation of 
onditions ensuring that S will eventually 
onvergeto a 
olle
tion of ba
kbone assignments also 
onstitutes a matter of future work.Dynami
 tuning of HBS 's parameters is an interesting aspe
t in its ownright. Spe
i�
ally, the size of the assignments sample S appeared to be of greatimportan
e for the method's performan
e during our experiments. For problem
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Fig. 5. Maximization of deviation measure Dinstan
es of size similar to the ones' presented here, 10 � jSj � 15 seems to bea proper range.The en
ouraging experimental results obtained on weighted CNFs 
on�rmedHBS 's generi
 heuristi
 value. It gradually dis
overs valuable partial assignmentsthrough sampling, thus guiding the sear
h to promising regions of the sear
hspa
e. Therefore, we 
onsider experimenting with the algorithm on several NP-hard optimization problems, su
h as maximum graph bise
tion, 
oloring, and
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