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Abstract. Constraint programming is a powerful paradigm for solv-
ing constraint satisfaction problems, using various techniques. Amongst
them, local search is a prominent methodology, particularly for large
instances. However, it lacks uniformity, as it includes many variations
accompanied by complex data structures, that cannot be easily brought
under the same “umbrella.” In this work we embrace their wide diversity
by adopting propagation algorithms. Our constraint based local search
(CBLS) system provides declarative alternative tools to express search
methods, by exploiting conflict-sets of constraints and variables. Their
maintenance is straightforward as it does not employ queues, unlike the
state of the art CBLS systems. Thus, the propagation complexity is kept
linear in the number of changes required after each assignment. Experi-
mental results illustrate the capabilities, not only of the already imple-
mented methods, such as hill climbing, simulated annealing, etc., but
also the robustness of the underlying propagation engine.

Keywords: constraint based local search, constraint programming, con-
straint satisfaction problem, solver, indirect methods, metaheuristics.

1 Introduction

Constraint programming (CP) is nowadays a well-established Computer Science
field, that facilitates the expression of contemporary or difficult problems and, on
the other hand, solves them through generic search methods. What makes this
approach unique is not only the independence between the problem description
and solution processes, but also the plethora of the solving mechanisms that one
may leverage on; constraint based local search (CBLS) is one of them.

While in constructive search we build a solution to a constraint satisfaction
problem (CSP) from scratch and take care to satisfy every constraint after each
assignment, CBLS solvers assemble a candidate solution, and then try to fix it,
by eliminating conflicting sets of variables and constraints.

Recent work on the area includes Kangaroo, a CBLS system that appeared
only in 2011 [11]. It is presented as a more efficient alternative to the Comet
platform [23]. Both CBLS systems internally employ queues in the constraint
propagation and externally provide high level control structures and interfaces,
that permit their use by inexperienced users, although it is not easy for the

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 9–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



10 N. Pothitos, G. Kastrinis, and P. Stamatopoulos

local search method programmer to surpass the already implemented variants
and access immediately the conflict sets.1 iOpt toolkit offers many local search
variants, but does not favour internal methods reprogramming [24].

Previous frameworks, like EasyLocal++ [4] and HotFrame [6] are flexible
for the design of new local search methods, but the CSP description is effortful
for the average user, as new C++ classes have to be built. They effectively
implement local search but it is not bridged with other famous paradigms, such
as constructive search. Last but not least, there are also CBLS solvers that are
specialized only for specific problems like SAT [12].

A CBLS system should support the design and implementation of most lo-
cal search variants by facilitating the problem description and by allowing the
user/programmer to access every conflict set. Our contribution focuses on these
two aspects. First of all, we provide an expressive mechanism to state CSPs by
using Naxos Solver, a constraint programming platform [13], that supports
constructive search as well. And second, we build generic conflict sets that are
updated after each assignment. Our constructs are theoretically defined, algo-
rithmically supported and experimentally tested for solving CSPs.

2 CSPs and Multidisciplinary Contributions

Constraint satisfaction problems appear in many areas not only in Computer
Science, but in daily routine too. Common problems such as timetabling for ed-
ucational institutes are now easily formulated as CSPs [20] and efficiently solved
via Constraint Programming [15], while many new CSPs come from Bioinfor-
matics [1]. A known interdisciplinary CSP is the satisfiability problem [21].

Definition 1. A CSP consists of the following triptych [22]:

– Constrained Variables that compose the set X = {X1, X2, . . . , Xn}.
– Domains of the variables that make up the set D = {DX1 , DX2 , . . . , DXn}.

In this work it is presumed that each domain is a finite set of integers.
– Constraints between the variables, composing the set C . Each Ci in C is a

relation between the variables of a set Si ⊆ X . Formally, we define Ci =
(Si, Ti), where Ti ⊆ Di1 × Di2 × · · · × Diq is the set with all the allowed
combinations for the variables in Si = {Xi1 , Xi2 , . . . , Xiq}.

When every domain becomes singleton, in other words when each constrained
variable “equals” a specific value, we have an assignment. If an assignment sat-
isfies the constraints of the problem, it is also a solution.

2.1 Solving Phase and Thrashing

After a CSP description, we select a procedure to seek a solution. There are direct
search methods that construct a solution step by step, by assigning a value to a
variable each time, that is why they are also called systematic [14].

1 We did not analyze Comet further, because it has not sufficient implementation
details (see also [11]), whilst the Kangaroo executable is currently unavailable.
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But when it comes to solve large-scale instances, constructive search suffers
by the so-called combinatorial explosion that ends up in thrashing, because of
the many steps and constraints checks required to build a solution.

2.2 Local Search and Variants

An alternative is to start with an assignment and to iteratively try to repair it,
in order to satisfy the constraints a posteriori [8].

Definition 2. In the general case, an assignment or location L is a non-empty
subset of DX1 × DX2 × · · · × DXn . If the assignment contains more than one
tuples, i.e. if |L| > 1, then it is called a partial assignment.2

Example 1. Let D = {DX1 , DX2 , DX3} and DX1 = DX2 = DX3 = {0, 1, 2}. The
location L1 = {1}×{1, 2}×{0} is a partial assignment, while L2 = {1}×{1}×{0}
is a complete assignment—with all the domains made singleton.

In local search we begin with an initial assignment Linit and, if it is not a solution,
we modify it, so as to move on to an improved assignment L′.

Definition 3. A neighborhood for a (complete or partial) assignment L is a set
N(L) with all the possible successors of L in the search space. The step function
step(L) is used to return the specific successor of L, with step(L) ∈ N(L).

Each local search variant is described by its neighborhood and step function.

Hill Climbing. A well-known variant is hill climbing (HC), also known as iter-
ative improvement [3]. Normally, its neighborhood N(L) contains the locations
L′ which differ in one variable assignment with regard to L (1-exchange).

The step functions of HC variants usually employ an eval-uation function that
quantifies each location quality. So, the step(L) function selects a location L′ with
eval(L′) < eval(L). To define this metric we utilize the conflict set notion.

Definition 4. We have three conflict set kinds:

– CS(C ) consists of the constraints in C , violated by the current assignment.
– CS(C , X) contains the constraints in CS(C ) that refer to the variable X.
– CS(X ) is composed of all the variables X ∈ X , with CS(C , X) �= ∅.

An ordinary measure for eval(L) is |CS(C )|. E.g. in the iterative best improve-
ment, we select the location L′ in N(L) with the minimum |CS(C )|.
Simulated Annealing. The above practice is prone to be trapped into local
minima of the evaluation function. In this case we need a meta-heuristic to
escape the current local minimum by making a random step. Simulated annealing
(SA) was introduced in 1983 as one of the first meta-heuristics [10].

SA permits random steps—to skip local minima—while a parameter called
temperature is high; as time passes by and temperature drops, the method be-
comes less tolerant in random steps, especially if their evaluation is poor.

2 In Definition 2 we extended the more traditional definition: “partial assignment is
an assignment where not all variables are given values.”
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3 An Augmented CSP Schema

To cope with the needs of a generic CBLS system, that integrates the above
methods and supports the design of new ones, an enhanced CSP outline is sug-
gested by extending the variable notion. At first, the variables in X , specified in
the CSP description, are marked as non-intermediate; then X is augmented by
adding into it the implied intermediate variables. These variables do not alter
the CSP semantics; they are completely auxiliary, as they satisfy the following.

Property 1. If a constrained variable Y ∈ X is intermediate (in other words, if
it is invariant or dependent) with regard to the variables {Xi1 , Xi2 , . . . , Xim}, it
holds that |DXi1

| = 1 ∧ |DXi2
| = 1 ∧ · · · ∧ |DXim

| = 1 =⇒ |DY | = 1 .

Example 2. Let X = {X,Y } and C = {Y = X + 1}, where Y is intermediate.
Due to Property 1, the variable Y is intermediate with regard to X, because if
we instantiate X (i.e. if we set DX = {3}), the domain DY must be also made
singleton (DY = {4}) in order to satisfy the constraint.

In some cases Property 1 may hold for non-intermediate variables too. Thus, it
is not Property 1 that makes a variable intermediate; CP solvers automatically
generate intermediate variables, to produce amalgamated constraints.

3.1 Intermediate Variables in the N-Queens Problem

Take for example the N -Queens problem; the goal here is to place N queens on
a N ×N chessboard, so that no two queens “attack” each other.

Problem 1. In the normal chessboard we have X = {X1, X2, . . . , X8}. Each
Xi corresponds to the queen on the ith line. The values in DXi are the possible
columns to place the queen on. The constraint “no Xi attacks Xj” is decomposed
into the constraints triplet Xi �= Xj ∧ Xi + i �= Xj + j ∧ Xi − i �= Xj − j [19].

The above three sub-constraints, imply that no two queens share the same col-
umn, minor diagonal, and principal diagonal respectively. These can be stated in
most CP solvers [5,9] as three individual constraints, while the compound state-
ment “Xi does not attack Xj” is only used in theoretical bibliography, where ad
hoc and not generic constraints often occur. Besides, the inequality constraint
(�=) is reusable in many CSPs [7], while the complex constraint “Xi does not
attack Xj” is not generic. Figure 1 depicts the automatically generated inter-
mediate variables X ′

i, X
′′
i , X

′
j , and X ′′

j that are eventually added into X .

3.2 Issues in Local Search

Intermediate variables facilitate the CSPs specification and adapt smoothly to
direct search methods. However, they do not “fit” well in local search, as it does
not usually incorporate constraint propagation [18], that is mainly integrated
in systematic search [17]. Actually, in local search, when we assign a value to a
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Fig. 1. Non-intermediate and intermediate (dotted) variables in the constraint network

variable, the assignment is not propagated to its dependent intermediate vari-
ables; their assignment is dependent exclusively to the heuristics and the declared
neighborhood and step functions (cf. Definition 3).

Another issue is that the conflict sets are made inefficient to maintain, due
to the significant number of redundant (intermediate) variables in them. This
makes it also difficult for the heuristics to select the next move to go on, out
from a cumbersome set—with the intermediate variables included in it.

3.3 Conflicting Assignments and Violated Constraints

In the new schema, we make the conflict sets transparent to invariants.

Proposition 1. If a constraint which involves the variables Xi1 , . . . , Xim is vi-
olated, then it holds depend(Xi1)∪· · ·∪depend(Xim) ⊆ CS(X ), where depend(X)
is the set of non-intermediate variables that the intermediate X depends on. If
X is not intermediate, then we suppose depend(X) = {X}.
With the above proposition we can identify a composite constraint, even if we
do not know about its inherent sub-constraints and intermediate variables. For
instance, in this work we label each constraint with the non-intermediate vari-
ables it depends on. Consequently, the conflict sets CS(C ) and CS(C , X) contain
tuples of variables that are involved into the corresponding violated constraints.

4 Unqueued Constraint Propagation

In light of this theoretical background we designed lightweight algorithms for
the assignment propagation and conflict sets maintenance. The assignment of a
value to a variable is the focal point of our framework.

Figure 2 illustrates what happens when we assign a value toX . IfX is already
bound to another value, then there is a conflict; we build the conflictTuples and
add them to CS(C ). Note that CS(C , X) and CS(X ) are also updated.

Each intermediate variable has its own supportTuples containing the sets of
the variables that support its current assignment. When there is a conflict,
X.supportTuples collides with supportVars , i.e. the variables that fired the as-
signment. Hence, the conflict set here is X.supportTuples × {supportVars}. We
used the Cartesian product, because we may have multiple supportTuples for an
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procedure X.assign(value, supportVars)
if X is assigned another value then

conflictTuples ← {{}}
X.getSupport(conflictTuples)
for each Y ∈ supportVars do

Y.getSupport(conflictTuples)
end for
Add conflictTuples to CS(C )

else
Commit the assignment of value to X
Add supportVars to X.supportTuples
for each c ∈ C , with X involved do

c.FixedCons( )
end for

end if
end procedure

procedure X.getSupport(csTuples)
for each tuple ∈ X.supportTuples do

suppTuple ← {{}}
for each Y ∈ tuple do

suppY ← {{}}
Y.getSupport(suppY )
suppTuple←suppTuple×suppY

end for
csTuples ← csTuples × suppTuple

end for
if X is non-intermediate then

csTuples ← csTuples × {{X}}
end if
end procedure

Fig. 2. Algorithms to propagate assignments and to update conflict sets

assignment. But before inserting the product into CS(C ), we must “dig” into it
to find the non-intermediate variables it depends on, in view of Proposition 1;
this is performed via getSupport, a recursive function in Fig. 2.

If assign is called by the user/programmer, supportVars is empty and the as-
signment is permitted in any case. assign may be also called inside FixedCons,
a constraint-specific procedure which imposes fixed consistency.

Definition 5. A constraint Ci = (Si, Ti)
3 is fixed consistent, iff for each unas-

signed variable Xim ∈ Si, there exist at least two values v1, v2 ∈ DXim
that

satisfy it, i.e., formally,
∣
∣Ti ∩

(

Di1 × · · · × {v} × · · · ×Diq

)∣
∣ ≥ 1, v ∈ {v1, v2}.

FixedCons imposes fixed consistency w.r.t. Ci, by making singleton every vari-
able in Si that has only one value supported by the rest of the variables in Si.
Apparently, each constraint type has its own FixedCons implementation.

5 Empirical Results

On top of the above algorithmic ground, we implemented several local search
variants, including hill climbing and simulated annealing, outlined in Sect. 2.2.
We integrated them into Naxos Solver, a library for an object-oriented pro-
gramming environment, written in C++ [13].

We used the above methods to find a solution to the N -Queens (Problem 1),
on a Dell computer with an Intel PentiumD 2.8GHz dual-core processor and
1GB of memory, running Ubuntu 8.04.4 Figure 3 depicts the performance of the

3 See also Definition 1.
4 The experiments code is available at http://di.uoa.gr/~pothitos/setn2012 with
other instances, such as graph coloring, also solved.

http://di.uoa.gr/~pothitos/setn2012
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Fig. 3. Solving N-Queens using Constructive Search, Hill Climbing (left), and Simu-
lated Annealing (right)

two methods, while the problem scales. In the left subfigure, constructive search
time is also shown; besides, Naxos Solver is capable of using it to solve exactly
the same instances, as we did not need to modify the problem descriptions.
Nevertheless, local search is orders of magnitude faster than constructive search.
ECLiPSe 5.10 (Interval Constraints) constructive search gave even slower results.

Simulated Annealing performance depends on how fast the “temperature”
drops. A low temperature means less random moves. In Fig. 3 the temperature
stability factor defines for how many steps the temperature will remain the same.
In these instances a rapid temperature decrease gives better results.

6 Conclusions and Future Directions

Our goal is to provide a freely available flexible platform—implemented as a
C++ library—for both the specification of a problem and the design of local
search methods. Beyond facilitating the compound constraints expression, inter-
mediate variables were the key feature for propagating assignments.

A future direction is to enrich the available methods, by adopting e.g. genetic
algorithms. It will be also interesting and easy, to describe a methodology for
exploiting Naxos hybrid framework to mix direct and indirect methods [2].
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