
Compilers
Lecture 2
Overview

Yannis Smaragdakis, U. AthensYannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Last timeLast time…
The compilation problem

Source language
High-level abstractions
Easy to understand and maintainEasy to understand and maintain

Target language
Very low-level, close to machine
Few abstractionsFew abstractions

Concerns
Systematic, correct translation
High-quality translation

22

Translation strategyTranslation strategy

Meaning

Sentences

Meaning

Sentences

Words

Sentences Sentences

WordsWords Words

Letters Letters

Assembly/machine codeHigh-level language

33

Compilation strategyCompilation strategy
Follows directly from translation strategy:

Sentences

Meaning

Sentences

Grouping letters
into words is
called lexical

l i

Words Words

analysis

Assembly codeHigh-level language

Letters Letters

A series of passes
Each pass performs one step
Transforms the program representation

44

Transforms the program representation

Basic compiler structureBasic compiler structure

S A blFront End Back EndIRSource
code

Assembly
code

Traditional two-pass compiler
Front-end reads in source code
Internal representation captures meaning
Back-end generates assembly

Advantages?
Decouples input language from target machine

55

Modern optimizing compilerModern optimizing compiler
Middle end:
4 Optimization4. Optimization

Front End Back End
Source
code

Assembly
codeOptimizerIR IR

Front end: Back end:Front end:
1. Lexical analysis
2. Parsing
3. Semantic analysis

Back end:
5. Instruction selection
6. Register allocation
7. Instruction scheduling

66

The front endThe front end

IRLexical
analyzer Parsertokenstext

chars

Responsibilities?

Errors

Recognize legal (and illegal programs)
Report errors in a useful way
Generate internal representationp

How it works
Good news: linear time, mostly generated automatically
By analogy to natural languages

77

By analogy to natural languages…

Lexical AnalysisLexical Analysis
First step: recognize words.g

Smallest unit above letters

This is a sentence.

Some lexical rules
Capital “T” (start of sentence symbol)
Blank “ “ (word separator)Blank (word separator)
Period “.” (end of sentence symbol)

88

More Lexical AnalysisMore Lexical Analysis

Lexical analysis is not trivial. Consider:
ist his ase nte nce

Often a key question:
What is the role of “white space” in the language?What is the role of “white space” in the language?

Plus, programming languages are typically more , p g g g g yp y
cryptic than English:

*p->f ++ = -.12345e-5

99

Early compilersEarly compilers
Strict formatting rules:

C AREA OF THE TRIANGLE
799 S = (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - IA) * (S - IB) *
+ (S - FLOATF(IC)))
WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA

Why?
Punch cards!
And it’s easier

1010

Lexical analysisLexical analysis
Another example:

void func(float * ptr, float val)
{{

float result;
result = val/*ptr;/ p ;

}

Why is this case interesting?
“/*” is the comment delimiter

1111

Lexical AnalysisLexical Analysis

Lexical analyzer divides program text into “words” or
tokens

if x == y then z = 1; else z = 2;

Tokens have value and type:
<if, keyword>, <x, identifier>, <==, operator>, etc….

1212

SpecificationSpecification
How do we specify tokens?y

Keyword – an exact string
What about identifier? floating point number?

Regular expressions
Just like Unix tools grep, awk, sed, etc.Jus e U oo s g ep, a , sed, e c
Identifier: [a-zA-Z_][a-zA-Z_0-9]*
Algorithms for matching regexps

Actually, generate code that does the matching
This code is often called a scanner

1313

ParsingParsing

Once words are understood, the next step is to
understand sentence structure

Parsing = Diagramming Sentences
The diagram is a tree…

1414

Diagramming a SentenceDiagramming a Sentence

This line is a longer sentenceThis line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

1515

Diagramming programsDiagramming programs
Diagramming program expressions is the sameg g p g p
Consider:

If x == y then z = 1; else z = 2;
Di dDiagrammed:

x y z 1 z 2==x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

1616

if-then-else

SpecificationSpecification
How do we describe the language?

Same as English: using grammar rules

1. goal → expr1. sentence → subject verb object

2. expr → expr op term
3. | term
4. term → number
5 | id

2. subject → noun-phrase

3. noun-phrase → article noun-phrase
4. | adjective noun-phrase
5 | noun 5. | id

6. op → +
7. | -

5. | noun
…etc…

Formal grammars
Chomsky hierarchy – context-free grammars
Each rule is called a production

Tokens from scanner

1717

Each rule is called a production

Using grammars
Given a grammar, we can

Using grammars
Production Result

derive sentences by
repeated substitution

Parsing is the reverse

goal
1 expr
2 expr op term
5 expr op yParsing is the reverse

process – given a
sentence, find a derivation
(same as diagramming)

5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y(same as diagramming)
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y 1. goal → expr

2. expr → expr op termp p p
3. | term
4. term → number
5. | id
6. op → +

1818

p
7. | -

RepresentationRepresentation
Diagram is called a

t t t
goal

parse tree or syntax tree
expr

x + 2 - y

op termexpr

termexpr op

<id,y>-

term <number,2>+ 1. goal → expr

2. expr → expr op term

Notice: Contains a lot of
unneeded information

<id,x> 3. | term

4. term → number
5. | id

6 op → +

1919

unneeded information. 6. op → +
7. | -

RepresentationRepresentation
Compilers often use an abstract syntax tree

-

+ <id, y>
x + 2 - y

More concise and convenient:

<id, x> <num, 2>

o e co c se a d co e e t
Summarizes grammatical structure without including all the
details of the derivation
ASTs are one kind of intermediate representation (IR)

2020

ASTs are one kind of intermediate representation (IR)

Semantic AnalysisSemantic Analysis
Once sentence structure is understood, we can try y
to understand “meaning”

What would the ideal situation be?
F ll h k th i t ifi tiFormally check the program against a specification
This capability is coming

Compilers perform limited analysis to catch
inconsistencies

Some do more analysis to improve the performance
of the program

2121

of the program

Semantic Analysis in EnglishSemantic Analysis in English
Example:

Jack said Jerry left his assignment at home.
What does “his” refer to? Jack or Jerry?

Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?

2222

Semantic analysis in programsSemantic analysis in programs
Programming g g
languages define strict
rules to avoid such
ambiguities

{
int Jack = 3;
{

ambiguities

What does this code

int Jack = 4;
System.out.print(Jack);

}
What does this code
print? Why?

This Java code prints

}

p
“4”; the inner-most
declaration is used.

2323

More Semantic AnalysisMore Semantic Analysis
Compilers perform many semantic checks besides y
variable bindings

Example:
Jack left her homework at home.

A “type mismatch” between her and Jack; we know
they are different peoplethey are different people
(I’m assuming Jack is male)

2424

Where are we?Where are we?

Front End Back End
Source
code

Assembly
code

E

OptimizerIR IR

Front end

Errors

Produces fully-checked AST
Problem: AST still represents source-level semantics

2525

Intermediate representationsIntermediate representations
Many different kinds of IRs

High-level IR (e.g. AST)
Closer to source code
Hides implementation details

Low-level IR
Closer to the machine
Exposes details (registers, instructions, etc)

M t d ff i IR d iMany tradeoffs in IR design

Most compilers have 1 or maybe 2 IRs:
T i ll l t l l l IRTypically closer to low-level IR
Better for optimization and code generation

2626

IR loweringIR lowering
Preparing for optimization and code gen

Dismantle complex structures into simple onesDismantle complex structures into simple ones
Process is called lowering
Result is an IR called three-address code

if (x == y)
z = 1;

t0 = x == y
br t0 label1

if

==;
else
z = 2;

goto label2
label1:
z = 1
goto label3

x y

= goto abe 3
label2:
z = 2
label3:

z

=

1

2727

z 2

OptimizationOptimization

Opt 1 Opt 3IR Opt 2 IROpt 2

Series of passes – often repeated
Goal: reduce some cost

Run faster
Use less memory
Conserve some other resource, like power, p

Must preserve program semantics

Dominant cost in most modern compilers

2828

OptimizationOptimization
General scheme

Analysis phase:
Pass over code looking for opportunities
Often uses a formal analysis framework

fTransformation phase
Modify the code to exploit opportunity

Cl i ti i tiClassic optimizations
Dead-code elimination, common sub-expression elimination,
loop-invariant code motion, strength reduction

This class: time permitting

2929

Optimization exampleOptimization example
Array accesses

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)
A[i][j] A[i][j] C

for (i = 0; i < N; i++)
for (j = 0; j < M; j++){
t0 = &A + (i * M) + j(i * M)A[i][j] = A[i][j] + C; t0 = &A + (i M) + j
(*t0) += C;

}

(i * M)

for (i = 0; i < N; i++) {
t1 = i * M;
for (j = 0; j < M; j++){

0 1 j

t1 = 0;
for (i = 0; i < N; i++) {
for (j = 0; j < M; j++){

0 1 j

i * M
t1 = 0;

t0 = &A + t1 + j
(*t0) += C;

}
}

t0 = &A + t1 + j
(*t0) += C;

}
t1 = t1 + M;

3030

}
}

t1 = t1 + M;

OptimizationOptimization
Often contain assumptions about performance
tradeoffs of the underlying machine
Like what?

R l ti d f ith ti ti l tiRelative speed of arithmetic operations – plus versus times
Possible parallelism in CPU

Example: multiple additions can go on concurrentlyp p g y
Cost of memory versus computation

Should I save values I’ve already computed or recompute?
Si f i hSize of various caches

In particular, the instruction cache

3131

Where are we?Where are we?

Source A blFront End Back End
Source
code

Assembly
code

Errors

OptimizerIR IR

Optimization output
Transformed program
Typically, same level of abstraction

3232

Back endBack end

AssemblyInstruction
selection

Instruction
schedulingIR Register

allocation

Responsibilities
Map abstract instructions to real machine architecture
Allocate storage for variables in registers
Schedule instructions (often to exploit parallelism)

How it works
Bad news: very expensive, poorly understood, some automation

3333

Instruction selectionInstruction selection
Example: RISC instructions

load @b => r1
load @c => r2
mult r1 r2 => r3

...
label1: mult r1, r2 => r3

load @a => r1
add r3, r1 => r1
store r1 => @y

label1:
t1 = b * c
y = a + t1
z = d + t1

Notice:

load @d => r1
add r3, r1 => r1
store r1 => @z

...

Notice:
Explicit loads and stores
Lots of registers – “virtual registers”

3434

Register allocationRegister allocation
Goals:

H h l i i t h it i dHave each value in a register when it is used
Manage a limited set of resources
Often need to insert loads and storesOften need to insert loads and stores

Intel Nehalem Intel Penryn
L1 Size / L1 Latency 64KB / 4 cycles 64KB / 3 cycles
L2 Size / L2 Latency 256KB / 11 cycles 6MB* / 15 cycles

Algorithms

y y y
L3 Size / L3 Latency 8MB / 39 cycles N/A
Main Memory (DDR3) 107 cycles (33.4 ns) 160 cycles (50.3 ns)

Algorithms
Optimal allocation is NP-complete
Many back-end algorithms compute approximate solutions

3535

to NP-complete problems

Instruction schedulingInstruction scheduling

Change the order of instructionsChange the order of instructions
Why would that matter?
Even single-core CPUs have parallelism
Multiple functional units – called superscalar

Group together different kinds of operations
E.g., integer vs floating pointg , g g p

Parallelism in memory subsystem
Initiate a load from memory
Do other work while waitingDo other work while waiting

3636

Instruction schedulingInstruction scheduling
Example:

Move loads early to avoid waitingMove loads early to avoid waiting
BUT: often creates extra register pressure

load @b => r1 load @b => r1load @b => r1
load @c => r2
mult r1, r2 => r3
load @a => r1

load @b => r1
load @c => r2
load @a => r4
load @d => r5

add r3, r1 => r1
store r1 => @y
load @d => r1
add r3, r1 => r1

mult r1, r2 => r3
add r3, r4 => r4
store r4 => @y
add r3, r5 => r5add r3, r1 > r1

store r1 => @z

May stall on loads

add r3, r5 > r5
store r5 => @z

Start loads early, hide

3737

May stall on loads y
latency, but need 5

registers

Finished programFinished program
What else does the code need to run?

Programs need support at run-time
Start-up codeStart up code
Interface to OS
Libraries

Varies significantly between languages
C – fairly minimaly
Java – Java virtual machine

3838

Run-time SystemRun-time System
Memory management servicesy g

Manage heap allocation
Garbage collection

R i h kiRun-time type checking
Error processing (exception handling)
I t f t th ti tInterface to the operating system
Support of parallelism

Parallel thread initiationParallel thread initiation
Communication and synchronization

3939

