Compillers

Lecture 2
Overview

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Last time...

e The compilation problem
Source language
High-level abstractions
Easy to understand and maintain
Target language
Very low-level, close to machine
Few abstractions

e Concerns

%

Systematic, correct translation
High-quality translation

Translation strategy

High-level language

Assembly/machine code

%

Compilation strategy

e Follows directly from translation strategy:

Grouping letters
Into words is
called lexical

analysis

ak

Sentences

Words

X
Letters

High-level language

e A series of passes

%

Each pass performs one step
Transforms the program representation

N
Sentences
R
Words
N

Letters

Assembly code

Basic compiler structure

Source
de —* FronteEnd —@RD—> Back End

—

e Traditional two-pass compiler
Front-end reads in source code
Internal representation captures meaning
Back-end generates assembly

e Advantages”?

%

Decouples input language from target machine

Assembly
code

(Y X)
YY)
eeovo0o0

. - . . XXX
o0o0
Modern optimizing compiler
‘XY X
C)
. B
Middle end:
4. Optimization
W J
Source Assembl
Front end: A Back end: h
1. Lexical analysis 5. Instruction selection
2. Parsing 6. Register allocation
3. Semantic analysis 7. Instruction scheduling

_ / _ /

The front end

Lexical ‘
‘ analyzer Parser '

» Errors

e Responsibilities?
Recognize legal (and illegal programs)
Report errors in a useful way
Generate internal representation
e How it works
Good news: linear time, mostly generated automatically
By analogy to natural languages...

%

Lexical Analysis

e First step: recognize words.
Smallest unit above letters

This IS a sentence.

e Some lexical rules
Capital “T” (start of sentence symbol)
Blank “ “ (word separator)
Period “.” (end of sentence symbol)

%

More Lexical Analysis

e Lexical analysis is not trivial. Consider:
ISt his ase nte nce

e Often a key question:
What is the role of “white space” in the language®?

e Plus, programming languages are typically more

%

cryptic than English:
*p->f ++ = -.12345e-5

Early compilers

e Strict formatting rules:

C| AREA OF THE TRIANGLE

799 S = (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - IA) * (S - IB) *

n (S - FLOATF(IC)))

WRITE OUTPUT TAPE 6, 601, 1A, 1B, IC, AREA

e Why?
Punch cards!
And It's easier

%

10

Lexical analysis

e Another example:

voild func(float * ptr, float val)
{

float result;
result = val/*ptr;

}

e Why is this case interesting?

%

“/*" Is the comment delimiter

11

Lexical Analysis .

e Lexical analyzer divides program text into “words” or
tokens

fx==ythenz =1, else z =2

e Tokens have value and type:
<if, keyword>, <x, identifier>, <==, operator>, etc....

12

%

Specification .

e How do we specify tokens?
Keyword — an exact string
What about identifier? floating point number?

e Regular expressions
Just like Unix tools grep, awk, sed, etc.
ldentifier: [a-zA-Z][a-zA-Z 0-9]*
Algorithms for matching regexps
Actually, generate code that does the matching
This code is often called a scanner

%

13

Parsing :

e Once words are understood, the next step is to
understand sentence structure

e Parsing = Diagramming Sentences
The diagram is a tree...

14

Diagramming a Sentence

This ine IS a longer sentence

- | \

article noun verb article adjective noun

AV T~

subject object

sentence

15

%

Diagramming programs

e Diagramming program expressions is the same

e Consider:

fx==ythenz=1;elsez=2

e Diagrammed:

X ==Yy Z 1
\|/ \/
relation assign

| |
predicate then-stmt

Z 2
\/

assign
\
else-stmt

e e —

If-then-else

%

16

Specification

e How do we describe the language?
Same as English: using grammar rules

. sentence — subject verb object

...etc...

subject — noun-phrase

noun-phrase — article noun-phrase
| adjective noun-phrase
| noun

e Formal grammars

%

. goal — expr
. expr — expr op term

1
2
3.
4
5
6
7

Tokens from scanner

Chomsky hierarchy — context-free grammars

Each rule is called a production

17

Using grammars

e Given a grammar, we can
derive sentences by
repeated substitution

e Parsing is the reverse
process — given a
sentence, find a derivation
(same as diagramming)

goal — expr

expr — expr op term
| term

term — number
| id

op — +

Nk od =

Production

Result

QWO PRANNON-=-

goal

expr

expr op term
expr op 'y
expr -y
expr op term
expr op 2 -y
expr + 2 -y
term + 2 - y
X+ 2-y

-y

18

Representation

o Diagramis called a (goal)

parse tree or syntax tree

X + 2 -y

@ + <number,2>

<id,x>

e Notice: Contains a lot of
unneeded information.

NO Op WN

<id,y>

. goal — expr

expr — expr op term
| term

term — number

id

op — +

19

Representation .

e Compilers often use an abstract syntax tree

D
ey S G
G G

e More concise and convenient:

Summarizes grammatical structure without including all the
detalils of the derivation

ASTs are one kind of intermediate representation (IR)

20

Semantic Analysis

e Once sentence structure is understood, we can try
to understand “meaning”
What would the ideal situation be?
Formally check the program against a specification
This capabillity is coming

e Compilers perform limited analysis to catch
Inconsistencies

e Some do more analysis to improve the performance

%

of the program

21

Semantic Analysis in English :

e Example:
Jack said Jerry left his assignment at home.
What does “his” refer to? Jack or Jerry?

e Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there?
Which one left the assignment?

22

Semantic analysis in programs

e Programming
languages define strict 1 L
rules to avoid such ;nt Jack = 3;
ambiguities int Jack = 4;

System.out.print(Jack);

e What does this code 1
print? Why?
This Java code prints

“4”: the Inner-most
declaration iIs used.

%

23

More Semantic Analysis

e Compilers perform many semantic checks besides
variable bindings

e Example:
Jack left her homework at home.

e A “type mismatch” between her and Jack; we know

%

they are different people
('m assuming Jack is male)

24

000
000
:0 .0
Where are we? sess’
e O
—» Errors
e Front end

Produces fully-checked AST
Problem: AST still represents source-level semantics

%

25

Intermediate representations :

e Many different kinds of IRs
High-level IR (e.g. AST)
Closer to source code
Hides implementation details
Low-level IR
Closer to the machine
Exposes details (registers, instructions, etc)
Many tradeoffs in IR design

e Most compilers have 1 or maybe 2 IRs:

%

Typically closer to low-level IR
Better for optimization and code generation

26

IR lowering

e Preparing for optimization and code gen
Dismantle complex structures into simple ones
Process is called lowering
Result is an IR called three-address code

If (X == y)
z = 1;
else
zZ = 2;

t0 = X ==y
br t0O labell
goto label2
labell:

z =1
goto label3
label?2:

z = 2
1abel3:

27

Optimization
<{mm

e Series of passes — often repeated
Goal: reduce some cost
o Run faster
o Use less memory
» Conserve some other resource, like power
Must preserve program semantics

e Dominant cost in most modern compilers

%

28

Optimization

e General scheme
Analysis phase:
Pass over code looking for opportunities
Often uses a formal analysis framework
Transformation phase
Modify the code to exploit opportunity

e Classic optimizations

Dead-code elimination, common sub-expression elimination,
loop-invariant code motion, strength reduction

e This class: time permitting

%

29

000
000
:.
Optimization example ss
e O
e Array accesses
for (1 = 0; 1 < Nj; 1++) for (1 = 0; 1 < N; 1++)
for (j = 0; j < M; j++) for (j = 0; j < M; j++?{
ALTLI] = ALi1L] + C; t0 = &A + +j

for (1 = 0; 1 < N; 1++) {

Y
for =0; J <M; j++){

t0 = &A + t1 + j
(t0) += C;
}
+

y

%

t0) +=

}

K

|or !' = 0; 1 <Nj; i++) {

for G = 0; J < M; j++){
t0 = &A + t1 +]
t0) += C;

}

}

30

Optimization .

e Often contain assumptions about performance
tradeoffs of the underlying machine
Like what?
Relative speed of arithmetic operations — plus versus times
Possible parallelism in CPU
Example: multiple additions can go on concurrently
Cost of memory versus computation
Should I save values I've already computed or recompute?

Size of various caches
In particular, the instruction cache

31

Where are we? iy
| o e | @G| @ sk

—» Errors

e Optimization output

%

Transformed program
Typically, same level of abstraction

32

Back end

® TS | e

e Responsibilities
Map abstract instructions to real machine architecture
Allocate storage for variables in registers
Schedule instructions (often to exploit parallelism)

e How it works

%

Bad news: very expensive, poorly understood, some automation

33

Instruction selection

e Example: RISC instructions

labell:

ti1 = b * cC

y =a+ tl

z =d + tl
e Notice:

Explicit loads and stores

load @b
load @c
mult r1, r2
load @a

add r3, ri
store rl
load @d

add r3, ri
store rl

ri
r2
r3
ri
ri

rl
rl

Lots of registers — “virtual registers”

%

34

Register allocation $3 4

e Goals:
» Have each value in a register when it is used
» Manage a limited set of resources
» Often need to insert loads and stores

e Algorithms
» Optimal allocation is NP-complete

» Many back-end algorithms compute approximate solutions
k to NP-complete problems

35

Instruction scheduling

e Change the order of instructions

Why would that matter?

Even single-core CPUs have parallelism

Multiple functional units — called superscalar
Group together different kinds of operations
E.g., integer vs floating point

Parallelism in memory subsystem
Initiate a load from memory
Do other work while waiting

36

Instruction scheduling

e Example:
Move loads early to avoid waiting
BUT: often creates extra register pressure

load @b = rl load @b = rl
load Q@c => r2 load Q@c => r2
mult r1, r2 => r3 load @a => r4
:> load @a => r1 load @d => 15
add r3, ril = rl mult r1, r2 =>r3
store rl => @y add r3, r4 => r4
|:> load @d => rl store r4 => @y
add r3, rl => rl add r3, r5 => r5
store rl => 0z store rb5 => @z
May stall on loads Start loads early, hide
latency, but need 5

k registers

37

Finished program
e What else does the code need to run?

e Programs need support at run-time

Start-up code
Interface to OS
Libraries

e Varies significantly between languages
C — fairly minimal
Java — Java virtual machine

%

38

Run-time System

e Memory management services
Manage heap allocation
Garbage collection

e Run-time type checking
e Error processing (exception handling)
e Interface to the operating system

e Support of parallelism
Parallel thread initiation
Communication and synchronization

%

39

