Compilers

Optimization

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

What we already saw

- Lowering

From language-level constructs to machine-level constructs

- At this point we could generate machine code
- Output of lowering is a correct translation
- What's left to do?
- Map from lower-level IR to actual ISA
- Maybe some register management
(could be required)
- Pass off to assembler
- Why have a separate assembler?
- Handles "packing the bits"

Assembly	addi <target>, <source>, <value>
Machine	0010 00ss ssst tttt iiii iiii iiii iiii

But first...

- The compiler "understands" the program
- IR captures program semantics
- Lowering: semantics-preserving transformation
- Why not do others?
- Compiler optimizations
- Oh great, now my program will be optimal!
- Sorry, it's a misnomer
- What is an "optimization"?

Optimizations

- What are they?
- Code transformations
- Improve some metric
- Metrics
- Performance: time, instructions, cycles Are these metrics equivalent?
- Memory
- Memory hierarchy (reduce cache misses)
- Reduce memory usage
- Code Size
- Energy

Big picture
 Big picture

Why optimize?

- High-level constructs may make some optimizations difficult or impossible:

$$
\begin{aligned}
& A[i][j]=A[i][j-1]+1 \\
& t=A+i^{*} \text { row }+j \\
& s=A+i^{*} \text { row }+j-1 \\
& (* t)=\left({ }^{*} s\right)+1
\end{aligned}
$$

- High-level code may be more desirable
- Program at high level
- Focus on design; clean, modular implementation
- Let compiler worry about gory details
- Premature optimization is the root of all evil!

Limitations

- What are optimizers good at?
- Consistent and thorough
- Find all opportunities for an optimization
- Uniformly apply the transformation
-What are they not good at?
- Asymptotic complexity
- Compilers can't fix bad algorithms
- Compilers can't fix bad data structures
- There's no magic

Requirements

- Safety
- Preserve the semantics of the program
- What does that mean?
- Profitability
- Will it help our metric?
- Do we need a guarantee of improvement?
- Risk
- How will interact with other optimizations?
- How will it affect other stages of compilation?

Example: loop unrolling

```
for (i=0; i<100; i++)
    *t++ = *s++;
```

- Safety:

```
for (i=0; i<25; i++) {
    *t++ = *s++;
    *t++ = *s++;
    *t++ = *s++;
    *t++ = *s++; }
```

- Always safe; getting loop conditions right can be tricky.
- Profitability
- Depends on hardware - usually a win - why?
- Risk?
- Increases size of code in loop
- May not fit in the instruction cache

Optimizations

- Many, many optimizations invented
- Constant folding, constant propagation, tail-call elimination, redundancy elimination, dead code elimination, loopinvariant code motion, loop splitting, loop fusion, strength reduction, array scalarization, inlining, cloning, data prefetching, parallelization. . .etc . .
- How do they interact?
- Optimist: we get the sum of all improvements!
- Realist: many are in direct opposition

Rough categories

- Traditional optimizations
- Transform the program to reduce work
- Don't change the level of abstraction
- Resource allocation
- Map program to specific hardware properties
- Register allocation
- Instruction scheduling, parallelism
- Data streaming, prefetching
- Enabling transformations
- Don't necessarily improve code on their own
- Inlining, loop unrolling

Constant propagation

- Idea
- If the value of a variable is known to be a constant at compile-time, replace the use of variable with constant
- Safety

$$
\begin{aligned}
& \mathrm{n}=10 ; \quad \mathrm{n}=10 ; \\
& \text { c = 2; } \quad \rightarrow \text { c = 2; } \\
& \text { for (i=0;i<n;i++) for (i=0;i<10;i++) } \\
& \text { s = s + i* } \mathbf{c} \text {; } \\
& \text { s = s + i*2; }
\end{aligned}
$$

- Prove the value is constant
- Notice:
- May interact favorably with other optimizations, like loop unrolling - now we know the trip count

Constant folding

- Idea
- If operands are known at compile-time, evaluate expression at compile-time

$$
r=3.141 * 10 ; \Rightarrow \quad r=31.41 ;
$$

- What do we need to be careful of?
- Is the result the same as if executed at runtime?
- Overflow/underflow, rounding and numeric stability
- Often repeated throughout compiler

Partial evaluation

- Constant propagation and folding together
- Idea:
- Evaluate as much of the program at compile-time as possible
- More sophisticated schemes:
- Simulate data structures, arrays
- Symbolic execution of the code
- Caveat: floating point
- Preserving the error characteristics of floating point values

Algebraic simplification

- Idea:
- Apply the usual algebraic rules to simplify expressions

$\left.$	$a * 1$	
$a / 1$		
$a * 0$		
$a+0$		
b	II false	$\quad \neg \right\rvert\,$
:---		
a		
0		
a		
b		

- Repeatedly apply to complex expressions
- Many, many possible rules
- Associativity and commutativity come into play

Common sub-expression elimination

- Idea:
- If program computes the same expression multiple times, reuse the value.

$$
\begin{aligned}
& \mathbf{a}=\mathbf{b}+\mathbf{c} ; \\
& \mathbf{c}=\mathbf{b}+\mathbf{c} ; \\
& \mathbf{d}=\mathbf{b}+\mathbf{c} ;
\end{aligned} \quad \square \quad \begin{aligned}
& \mathbf{t}=\mathbf{b}+\mathbf{c} \\
& \mathbf{a}=\mathbf{t} ; \\
& \mathbf{c}=\mathbf{t} \\
& \mathbf{d}=\mathbf{b}+\mathbf{c} ;
\end{aligned}
$$

- Safety:
- Subexpression can only be reused until operands are redefined
- Often occurs in address computations
- Array indexing and struct/field accesses

Dead code elimination

- Idea:
- If the result of a computation is never used, then we can remove the computation

$$
\begin{aligned}
& x=y+1 ; \\
& y=1 ; \\
& x=2 * z ;
\end{aligned}
$$

$$
\begin{aligned}
& y=1 ; \\
& x=2 * z ;
\end{aligned}
$$

- Safety
- Variable is dead if it is never used after defined
- Remove code that assigns to dead variables
- This may, in turn, create more dead code
- Dead-code elimination usually works transitively

Copy propagation

- Idea:
- After an assignment $x=y$, replace any uses of x with y

$$
\begin{aligned}
& x=y \\
& \text { if } \quad(x>1) \\
& \quad s=x+f(x)
\end{aligned}
$$

$$
\begin{aligned}
& x=y ; \\
& \text { if } \quad(y>1) \\
& \quad s=y+f(y)
\end{aligned}
$$

- Safety:
- Only apply up to another assignment to x, or
- ...another assignment to y!
- What if there was an assignment $y=z$ earlier?
- Apply transitively to all assignments

Unreachable code elimination

- Idea:
- Eliminate code that can never be executed

```
#define DEBUG 0
if (DEBUG)
    print("Current value = ", v);
```

- Different implementations
- High-level: look for if (false) or while (false)
- Low-level: more difficult
- Code is just labels and gotos
- Traverse the graph, marking reachable blocks

How do these things happen?

- Who would write code with:
- Dead code
- Common subexpressions
- Constant expressions
- Copies of variables
- Two ways they occur
- High-level constructs - we've already seen examples
- Other optimizations
- Copy propagation often leaves dead code
- Enabling transformations: inlining, loop unrolling, etc.

Loop optimizations

- Program hot-spots are usually in loops
- Most programs: 90% of execution time is in loops
- What are possible exceptions?

OS kernels, compilers and interpreters

- Loops are a good place to expend extra effort
- Numerous loop optimizations
- Often expensive - complex analysis
- For languages like Fortran, very effective
- What about C?

Loop-invariant code motion

- Idea:
- If a computation won't change from one loop iteration to the next, move it outside the loop
for (i=0;i<N;i++)

$A[i]=A[i]+x^{*} x ;$$\Rightarrow \quad$| $t 1=x^{*} x ;$ |
| :--- |
| for $(i=0 ; i<N ; i++)$ |
| $A[i]=A[i]+t 1 ;$ |

- Safety:
- Determine when expressions are invariant
- Just check for variables with no assignments?
- Useful for array address computations
- Not visible at source level

Strength reduction

- Idea:
- Replace expensive operations (mutiplication, division) with cheaper ones (addition, subtraction, bit shift)
- Traditionally applied to induction variables
- Variables whose value depends linearly on loop count
- Special analysis to find such variables

$$
\begin{gathered}
\text { for }(i=0 ; i<N ; i++) \\
v=4 * i ; \\
A[v]=.
\end{gathered}
$$

$$
\begin{aligned}
& v=0 ; \\
& \text { for }(i=0 ; i<N ; i++) \\
& A[v]=. \vdots \\
& v=v+4 ;
\end{aligned}
$$

Strength reduction

- Can also be applied to simple arithmetic operations:

- Typical example of premature optimization
- Programmers use bit-shift instead of multiplication
- " $x \ll 2$ " is harder to understand
- Most compilers will get it right automatically

Inlining

- Idea:
- Replace a function call with the body of the callee
- Safety
- What about recursion?
- Risk
- Code size
- Most compilers use heuristics to decide when
- Has been cast as a knapsack problem

Inlining

- What are the benefits of inlining?
- Eliminate call/return overhead
- Customize callee code in the context of the caller
- Use actual arguments
- Push into copy of callee code using constant prop
- Apply other optimizations to reduce code
- Hardware
- Eliminate the two jumps
- Keep the pipeline filled
- Critical for OO languages
- Methods are often small
- Encapsulation, modularity force code apart

Inlining

- In C:
- At a call-site, decide whether or not to inline
- (Often a heuristic about callee/caller size)
- Look up the callee
- Replace call with body of callee
- What about Java?
- What complicates this?
- Virtual methods
- Even worse?
- Dynamic class loading

```
class A { void M() {...} }
class B extends A
    { void M() {...} }
void foo(A x)
{
    x.M(); // which M?
}
```


Inlining in Java

- With guards:

```
void foo(A x)
{
    if (x is type A)
        x.M(); // inline A's M
    if (x is type B)
    x.M(); // inline B's M
}
```

- Specialization
- At a given call, we may be able to determine the type
- Requires fancy analysis

$$
\begin{aligned}
& y=\text { new } A() ; \\
& \text { foo(y); } \\
& z=\text { new } B() ; \\
& \text { foo(z); }
\end{aligned}
$$

Big picture

-When do we apply these optimizations?

- High-level:
- Inlining, cloning
- Some algebraic simplifications
- Low-level
- Everything else
- It's a black art
- Ordering is often arbitrary
- Many compilers just repeat the optimization passes over and over

Writing fast programs

In practice:

- Pick the right algorithms and data structures
- Asymptotic complexity and constants
- Memory usage, memory layout, data representation
- Turn on optimization and profile
- Run-time
- Program counters (e.g., cache misses)
- Evaluate problems
- Tweak source code
- Help the optimizer do "the right thing"

Anatomy of an optimization

Two big parts:

- Program analysis

Pass over code to find:

- Opportunities
- Check safety constraints
- Program transformation
- Change the code to exploit opportunity
- Often: rinse and repeat

Dead code elimination

- Idea:
- Remove a computation if result is never used

$$
\begin{align*}
& y=w-7 ; \\
& x=y+1 ; \\
& y=1 ; \\
& x=2^{*} z ;
\end{align*}
$$

$$
\Rightarrow \begin{aligned}
& y=w-7 ; \\
& y=1 ; \\
& x=2 * z
\end{aligned}
$$

$$
\begin{aligned}
& y=1 ; \\
& x=2 * z ;
\end{aligned}
$$

- Safety
- Variable is dead if it is never used after defined
- Remove code that assigns to dead variables
- This may, in turn, create more dead code
- Dead-code elimination usually works transitively

Dead code

- Another example:

$$
\begin{aligned}
& x=y+1 ; \\
& y=2 * z ; \\
& x=y+z ; \\
& z=1 ; \\
& z=x ;
\end{aligned}
$$

- Conditions:
- Computations whose value is never used
- Obvious for straight-line code
- What about control flow?

Dead code

- With if-then-else:

- Which statements are dead code?
- What if "c" is false?
- Dead only on some paths through the code

Dead code

- And a loop:

Which
statements are can be removed?

$$
\left.\begin{array}{l}
\text { while (p) \{ } \\
\quad x=y+1 ; \\
y=2 * z ; \\
\quad \text { if }(c) x=y+z ; \\
z=1 ;
\end{array}\right\}
$$

- Now which statements are dead code?

Dead code

- And a loop:

Which
statements are can be removed?

- Statement " $x=y+1$ " not dead
- What about " $z=1$ "?

Low-level IR

- Most optimizations performed in low-level IR
- Labels and jumps
- No explicit loops
- Even harder to see possible paths

Optimizations and control flow

- Dead code is flow sensitive
- Not obvious from program

Dead code example: are there any possible paths that make use of the value?

- Must characterize all possible dynamic behavior
- Must verify conditions at compile-time
- Control flow makes it hard to extract information
- High-level: different kinds of control structures
- Low-level: control-flow hard to infer
- Need a unifying data structure

Control flow graph

- Control flow graph (CFG):
a graph representation of the program
- Includes both computation and control flow
- Easy to check control flow properties
- Provides a framework for global optimizations and other compiler passes
- Nodes are basic blocks
- Consecutive sequences of non-branching statements
- Edges represent control flow
- From jump to a label
- Each block may have multiple incoming/outgoing edges

CFG Example

Program
Control flow graph

$$
\begin{aligned}
& x=a+b ; \\
& y=5 ; \\
& i f(c)\{ \\
& \quad x=x+1 ; \\
& y=y+1 ; \\
& \} \text { else }\{ \\
& \quad x=x-1 ; \\
& y=y-1 ; \\
& y \\
& z=x+y ;
\end{aligned}
$$

Multiple program executions

Control flow graph

- CFG models all program executions
- An actual execution is a path through the graph
- Multiple paths: multiple possible executions
- How many?

Execution 1

Control flow graph

- CFG models all program executions
- Execution 1:
- $\quad \mathrm{c}$ is true
- Program executes $\mathrm{BB}_{1}, \mathrm{BB}_{2}$, and BB_{4}

Execution 2

Control flow graph

- CFG models all program executions
- Execution 2 :
- c is false
- Program executes $\mathrm{BB}_{1}, \mathrm{BB}_{3}$, and BB_{4}

Basic blocks

- Idea:
- Once execution enters the sequence, all statements (or instructions) are executed
- Single-entry, single-exit region
- Details
- Starts with a label
- Ends with one or more branches
- Edges may be labeled with predicates May include special categories of edges
- Exception jumps
- Fall-through edges
- Computed jumps (jump tables)

Building the CFG

- Two passes
- First, group instructions into basic blocks
- Second, analyze jumps and labels
- How to identify basic blocks?
- Non-branching instructions

Control cannot flow out of a basic block without a jump

- Non-label instruction

Control cannot enter the middle of a block without a label

Basic blocks

- Basic block starts:
- At a label
- After a jump
- Basic block ends:
- At a jump
- Before a label

Basic blocks

- Basic block starts:
- At a label
- After a jump
- Basic block ends:
- At a jump
- Before a label
- Note: order still matters
label1:
jumpifnot p label2

$$
\begin{aligned}
& x=y+1 \\
& y=2 * z \\
& \text { jumpifnot c label3 }
\end{aligned}
$$

$$
x=y+z
$$

label3:
z = 1
jump label1

```
label2:
z = x
```


Add edges

- Unconditional jump
- Add edge from source of jump to the block containing the label
- Conditional jump
- 2 successors
- One may be the fallthrough block
- Fall-through

Two CFGs

- From the high-level
- Break down the complex constructs
- Stop at sequences of non-control-flow statements
- Requires special handling of break, continue, goto
- From the low-level
- Start with lowered IR - tuples, or 3-address ops
- Build up the graph
- More general algorithm
- Most compilers use this approach

Should lead to roughly the same graph

Using the CFG

- Uniform representation for program behavior
- Shows all possible program behavior
- Each execution represented as a path
- Can reason about potential behavior Which paths can happen, which can't
- Possible paths imply possible values of variables
- Example: liveness information
- Idea:
- Define program points in CFG
- Describe how information flows between points

Program points

- In between instructions
- Before each instruction
- After each instruction

Live variables analysis

- Idea
- Determine live range of a variable Region of the code between when the variable is assigned and when its value is used
- Specifically:

Def: A variable v is live at point p if

- There is a path through the CFG from p to a use of v
- There are no assignments to v along the path
\Rightarrow Compute a set of live variables at each point p
- Uses of live variables:
- Dead-code elimination - find unused computations
- Also: register allocation, garbage collection

Computing live variables

- How do we compute live variables?
(Specifically, a set of live variables at each program point)
- What is a straight-forward algorithm?
- Start at uses of v, search backward through the CFG
- Add v to live variable set for each point visited
- Stop when we hit assignment to v
- Can we do better?
- Can we compute liveness for all variables at the same time?
- Idea:
- Maintain a set of live variables
- Push set through the CFG, updating it at each instruction

Flow of information

- Question 1: how does information flow across instructions?
- Question 2: how does information flow between predecessor and successor blocks?

Live variables analysis

- At each program point:

Which variables contain values computed earlier and needed later

- For instruction I:
- in[l] : live variables at program point before I
- out[]] : live variables at program point after I
- For a basic block B:
- in[B] : live variables at beginning of B
- out[B] : live variables at end of B
- Note: in $[I]=$ in[B] for first instruction of B
out $[I]=\operatorname{out}[B]$ for last instruction of B

Computing liveness

- Answer question 1: for each instruction I, what is relation between in[I] and out[I]?

- Answer question 2: for each basic block B, with successors B_{1}, \ldots, B_{n}, what is relationship between out[B] and in $\left[B_{1}\right] \ldots$ in $\left[B_{n}\right]$

Part 1: Analyze instructions

- Live variables across instructions
- Examples:

$$
\begin{gathered}
\mid \operatorname{in}[I]=\{y, z\} \\
x=y+z \\
\text { out }[1]=\{x\}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{in}[1]=\{y, z, t\} \\
x=y+z \\
\operatorname{out}[1]=\{x, t, y\}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{in}[1]=\{x, t\} \\
x=x+1 \\
\text { out }[1]=\{x, t\}
\end{gathered}
$$

- Is there a general rule?

Liveness across instructions

- How is liveness determined?
- All variables that I uses are live before I Called the uses of I
- All variables live after I are also live before I, unless I writes to them Called the defs of I
- Mathematically:

$$
\begin{gathered}
\operatorname{in}[l]=\{b\} \\
a=b+2
\end{gathered}
$$

$$
\operatorname{in}[I]=\{y, z\}
$$

$$
x=5
$$

$$
\text { out }[1]=\{x, y, z\}
$$

$$
\text { in }[I]=(\text { out }[I]-\text { def[I] }) \cup \text { use[I] }
$$

Example

- Single basic block (obviously: out[I] = in[succ(I)])
- Live1 = in[B] =in[11]
- Live2 $=$ out[$[11]=$ in $[12]$
- Live3 $=$ out $[12]=$ in $[13]$
- Live4 $=$ out $[13]=$ out $[B]$
- Relation between live sets

Live1

$$
x=y+1
$$

Live2
$y=2 * z$
Live3
if (d)
Live4

- Live1 $=($ Live2 $-\{x\}) \cup\{y\}$
- Live2 $=($ Live3 $-\{y\}) \cup\{z\}$
- Live3 $=($ Live4 $-\{ \}) \cup\{d\}$

Flow of information

- Equation:

$$
\text { in }[I]=(\text { out }[I]-\operatorname{def}[I]) \cup \text { use[I] }
$$

- Notice: information flows backwards
- Need out[] sets to compute in[] sets
- Propagate information up
- Many problems are forward Common sub-expressions, constant propagation, others

Live1
$\mathrm{x}=\mathrm{y}+1$
Live2
$y=2 * z$
Live3
if (d)
Live4

Part 2: Analyze control flow

- Question 2: for each basic block B, with successors B_{1}, \ldots, B_{n}, what is relationship between out $[B]$ and $\operatorname{in}\left[B_{1}\right] \ldots$ in $\left[B_{n}\right]$
- Example:

- What's the general rule?

Control flow

- Rule: A variable is live at end of block B if it is live at the beginning of any of the successors
- Characterizes all possible executions
- Conservative: some paths may not actually happen
- Mathematically:

$$
\operatorname{out}[B]=\bigcup_{B^{\prime} \in \operatorname{succ}(B)} \operatorname{in}\left[B^{\prime}\right]
$$

- Again: information flows backwards

System of equations

- Put parts together:

$$
\begin{aligned}
& \operatorname{in}[1]=(\text { out }[l]-\operatorname{def}[1]) \cup \text { use }[1] \\
& \text { out }[1]=\operatorname{in}[\operatorname{succ}(I)] \\
& \text { out }[B]=\underset{B^{\prime} \in \operatorname{succ}(B)}{ } \operatorname{in}\left[B^{\prime}\right]
\end{aligned}
$$

- Defines a system of equations (or constraints)
- Consider equation instances for each instruction and each basic block
- What happens with loops?
- Circular dependences in the constraints
- Is that a problem?

Solving the problem

- Iterative solution:
- Start with empty sets of live variables
- Iteratively apply constraints
- Stop when we reach a fixpoint

For all instructions in $[I]=$ out $[I]=\varnothing$
Repeat
For each instruction I

$$
\begin{aligned}
& \text { in }[I]=(\text { out }[I]-\operatorname{def}[I]) \cup \text { use[I] } \\
& \text { out }[I]=\operatorname{in}[\operatorname{succ}(I)]
\end{aligned}
$$

For each basic block B

$$
\text { out }[B]=\underset{B^{\prime} \in \operatorname{succ}(B)}{\cup} \operatorname{in}\left[B^{\prime}\right]
$$

Until no new changes in sets

Example

- Steps:
- Set up live sets for each program point
- Instantiate equations
- Solve equations

Example

- Program points

Example

$\mathrm{L} 1=\mathrm{L} 2 \cup\{\mathrm{c}\}$
L2 = L3 $\cup \mathrm{L} 11$
L3 $=(\mathrm{L} 4-\{x\}) \cup\{y\}$
L4 $=(\mathrm{L} 5-\{y\}) \cup\{z\}$
$\mathrm{L} 5=\mathrm{L} 6 \cup\{\mathrm{~d}\}$
L6 = L7 \cup L9
$\mathrm{L7}=(\mathrm{L8}-\{x\}) \cup\{y, z\}$
L8 = L9
L9 = L10 - \{z\}
L10 $=$ L1
$\mathbf{L 1 1}=(\mathrm{L} 12-\{\mathrm{z}\}) \cup\{\mathrm{x}\}$
L12 $=\{ \}$

Questions

- Does this terminate?
- Does this compute the right answer?
- How could generalize this scheme for other kinds of analysis?

Generalization

- Dataflow analysis
- A common framework for such analysis
- Computes information at each program point
- Conservative: characterizes all possible program behaviors
- Methodology
- Describe the information (e.g., live variable sets) using a structure called a lattice
- Build a system of equations based on:
- How each statement affects information
- How information flows between basic blocks
- Solve the system of constraints

Parts of live variables analysis

- Live variable sets
- Called flow values
- Associated with program points
- Start "empty", eventually contain solution
- Effects of instructions
- Called transfer functions
- Take a flow value, compute a new flow value that captures the effects
- One for each instruction - often a schema
- Handling control flow
- Called confluence operator
- Combines flow values from different paths

Mathematical model

- Flow values
- Elements of a lattice $L=(P, \subseteq)$
- Flow value $v \in P$
- Transfer functions
- Set of functions (one for each instruction)
- $F_{i}: P \rightarrow P$
- Confluence operator
- Merges lattice values
- $C: P \times P \rightarrow P$
- How does this help us?

Lattices

- Lattice L $=(\mathrm{P}, \subseteq)$
- A partial order relation \subseteq

Reflexive, anti-symmetric, transitive

- Upper and lower bounds

Consider a subset S of P

- Upper bound of S:
- Lower bound of S: $\quad I \in S: \forall x \in S \quad I \subseteq x$
- Lattices are complete

Unique greatest and least elements

- "Top" $\quad \mathrm{T} \in \mathrm{P}: \forall \mathrm{x} \in \mathrm{P} \mathrm{x} \subseteq \mathrm{T}$
- "Bottom" $\quad \perp \in P: \forall x \in P \perp \subseteq x$

Confluence operator

- Combine flow values
- "Merge" values on different control-flow paths
- Result should be a safe over-approximation
- We use the lattice \subseteq to denote "more safe"
- Example: live variables
- $v 1=\{x, y, z\}$ and $v 2=\{y, w\}$
- How do we combine these values?
- $\mathrm{v}=\mathrm{v} 1 \cup \mathrm{v} 2=\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$
- What is the " \subseteq " operator?
- Superset

Meet and join

- Goal:

Combine two values to produce the "best" approximation

- Intuition:
- Given $\mathrm{v} 1=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\mathrm{v} 2=\{\mathrm{y}, \mathrm{w}\}$
- A safe over-approximation is "all variables live"
- We want the smallest set
- Greatest lower bound
- Given $x, y \in P$
- GLB $(x, y)=z$ such that
- $z \subseteq x$ and $z \subseteq y$ and
- $\forall w w \subseteq x$ and $w \subseteq y \Rightarrow w \subseteq z$
- Meet operator: $x \wedge y=\operatorname{GLB}(x, y)$

Natural "opposite": Least upper bound, join operator

Termination

- Monotonicity

Transfer functions F are monotonic if

- Given $x, y \in P$
- If $x \subseteq y$ then $F(x) \subseteq F(y)$
- Alternatively: $F(x) \subseteq x$
- Key idea:

Iterative dataflow analysis terminates if

- Transfer functions are monotonic
- Lattice has finite height
- Intuition: values only go down, can only go to bottom

Example

- Prove monotonicity of live variables analysis
- Equation: in[i] = (out[i] - def[i]) \cup use[i]
(For each instruction i)
- As a function: $F(x)=(x-\operatorname{def}[i]) \cup u s e[i]$
- Obligation: If $x \subseteq y$ then $F(x) \subseteq F(y)$
- Prove:

$$
x \subseteq y \quad \Rightarrow \quad(x-\operatorname{def}[i]) \cup u s e[i] \subseteq(y-\operatorname{def}[i]) \cup u s e[i]
$$

- Somewhat trivially:
- $x \subseteq y \Rightarrow x-s \subseteq y-s$
- $x \subseteq y \Rightarrow x \cup s \subseteq y \cup s$

Dataflow solution

- Question:
- What is the solution we compute?
- Start at lattice top, move down
- Called greatest fixpoint
- Where does approximation come from?
- Confluence of control-flow paths
- Knaster Tarski theorem
- Every monotonic function F over a complete lattice L has a unique least (and greatest) fixpoint
- (Actually, the theorem is more general)

Summary

- Dataflow analysis
- Lattice of flow values
- Transfer functions (encode program behavior)
- Iterative fixpoint computation
- Key insight:

If our dataflow equations have these properties:

- Transfer functions are monotonic
- Lattice has finite height
- Transfer functions distribute over meet operator Then:
- Our fixpoint computation will terminate
- Will compute meet-over-all-paths solution

