

Where are we

Register allocation

- What are registers?
- Memory
- Very close to the processor - very fast to access
- On many architectures, required by ISA
- RISC - all computations use registers
- Pentium - many instructions register + memory
- Part of the memory hierarchy
- Top: close to CPU, fast, small
- Bottom: far from CPU, slow, large

Memory hierarchy

Pentium 43.2 Ghz	Core 2 Duo	Athlon 64
1 cycle	1 cycle	1 cycle
2 cycles $\left(16 \mathrm{~KB}^{*}\right)$	3 cycles $(64 \mathrm{~KB})$	3 cycles $(128 \mathrm{~KB})$
19 cycles $(2 \mathrm{MB})$	14 cycles $(2 \mathrm{MB})$	13 cycles $(1 \mathrm{MB})$
204 cycles	180 cycles	125 cycles
millions of cycles	millions of cycles	millions of cycles

Memory hierarchy

- What is the compiler's role in the memory hierarchy?
- Virtual memory?
- Main memory?
- Heap layout
- Prefetching
- Level-1 and level-2 cache?
- Many locality optimizations
- Loop transforms, tiling, strip mining
- Registers

Main memory
Virtual memory

- Compiler has direct control

Registers

- How important is register allocation?
- Widely recognized as one of the most important "optimizations" performed by the compiler
- An order of magnitude compared to poor or no register allocation
- Most other optimizations: at most $\sim 10 \%$ to 20%
- Varies somewhat depending on machine
- Number of registers
- Architecture constraints on register use
- Speed of memory hierarchy

Using registers

- Software view

ISA: Assembly code and machine code

- Register names are explicit
- Like variables, names represent data dependences
- Hard to change this view - why?
- Machine view
- Actual machine may have more registers

	At ISA level	Physical
DEC Alpha	64 int+float	80 int, 72 float
IA-32	8 int	128 int

- Why have more physical registers than ISA?

Renaming may occur inside the processor

Register allocation

- What are we trying to do?
- Register allocation
- Decide which values will be kept in registers
- Register assignment
- Select specific registers for each value
- Constraints
- Primary: limited number of registers
- Different kinds of registers -- integer vs floating point
- Special-purpose registers - SP
- Instruction requirements - x86 mul must use eax, adx
- Some values cannot go in registers

Register allocation

- What values can go in registers?

What does it mean to "allocate a variable in a register"?

- Most cases: variable becomes a register
- All uses and defs replaced with the register
- It has no storage on the stack
- What is the implication of that decision?
- The compiler must be able to see all accesses
- For example:

Register allocation

- Primary problems to be solved:
- Usually more variables than registers
- Can't use the same register for two variables that are live at the same time
- Key insight:

We can cast this as a graph coloring problem (Lavrov, Chaitin)

- Nodes = program variables
- Edges = connect variables that are live at the same time
- "Interference graph" or "conflict graph"

Colors represent registers

Example

- Key idea: if we can color the graph with K colors, then we can allocate the variables to K registers

Example

- Graph is 2-colorable

$$
\begin{aligned}
& \mathrm{R} 2=\mathrm{R} 1+2 \\
& \mathrm{R} 2=\mathrm{R} 2 * \mathrm{R} 2 \\
& \mathrm{R} 2=\mathrm{R} 2+1 \\
& \text { return } \mathrm{R} 2 * \mathrm{R} 1
\end{aligned}
$$

Scope

- Simple formulation:
- Within a basic block - called local
- Live ranges are linear - just look at how they overlap
- What to do at basic block boundaries?
- Load all live vars into registers on entry
- Store all live vars to memory on exit
- More sophisticated:
- Across the control-flow graph - called global
- Consider live ranges as "webs" of dependences
- Key: use the same graph coloring algorithm

Example

Example

Webs s1 and s2 interfere Webs s2 and s3 interfere

Graph coloring

The big questions:

- Can we efficiently find a K-coloring of the graph?
- Can we efficiently find the optimal coloring of the graph (i.e., using the least number of colors)?
- What do we do when there aren't enough colors (registers) to color the graph?

Graph coloring

- The bad news:

Graph coloring is NP-complete

- Do we need the optimal algorithm?
- Works on any graph
- Tells us for certain if a graph is K-colorable
- Observations
- We'll never see the worst-case graph

- We don't necessarily need the perfect coloring
- Compute an approximation with heuristics

Spilling

- What if the graph is not K-colorable?
- There aren't enough registers to hold all variables
- Sadly: this happens a lot
- Pick a variable, spill it back to the stack
- Value lives on the stack
- Must generate extra code to load and store it
- Need registers to hold value temporarily
- Simple approach: keep a few registers just for this purpose
- Better approach:
- Rewrite the code introducing a new temporary
- Use the temporary to "load" and "store" the spilled variable
- Rerun the liveness analysis and register allocation

Rewriting the code

- Example: add v1, v2
- Suppose v2 is selected for spilling and assigned to stack location [SP-12]
- Add a new variable t23 just for this instruction:

mov | [SP-12], t23 |
| :--- |
| add |
| $\mathrm{v} 1, \mathrm{t} 23$ |

- Rerun the whole algorithm
- Idea:
t23 has a short live range and (hopefully) doesn't interfere with other variables as much as v2

Graph coloring

- Assume you have K registers

Looking for K-coloring of interference graph

- Observation:

Any node with less than K neighbors (degree < K) must be colorable

- Why?
- Pick the color not used by any neighbor
- There must be one!
- This is the basis for Chaitin's algorithm (Chaitin, 1981)

Chaitin's algorithm

Idea:

- Pick any vertex n with fewer than k neighbors

This is a k-colorable vertex

- Remove that vertex from the graph
- Also: remove incident edges
- Key: this may result in some other nodes now having fewer than k neighbors
- Now choose one of those vertices, continue...
- What if we get stuck?

Spill the variable whose node has more that k neighbors, and continue

Chaitin's Algorithm

1. While \exists vertices with $<k$ neighbors in G_{1}
> Pick any vertex n such that $n^{\circ}<k$ and put it on the stack
> Remove that vertex and all edges incident to it from $G_{\text {l }}$

- This will lower the degree of n's neighbors

2. If G_{l} is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic) and spill the live range associated with n
$>$ Remove vertex n from G_{l}, along with all edges incident to it
$>$ If this causes some vertex in G_{l} to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin's Algorithm in Practice

3 Registers

Chaitin's Algorithm in Practice

3 Registers

Colors:
1: \bigcirc
2: \bigcirc

3: \bigcirc

Chaitin's Algorithm in Practice

3 Registers

Colors:
1: \bigcirc
2: \bigcirc

3: \bigcirc

Chaitin's Algorithm in Practice

3 Registers

Colors:
1: 0
2: 0
3: 0

Chaitin's Algorithm in Practice

 3 Registers

Colors:
: 0
2: 0
3: 0

Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

- Observation:
- Some graphs may be k-colorable, even though all vertices have k neighbors
- Example:

2 Registers:

2-colorable

Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

- Idea:
- Don't spill when we get stuck
- Remove k-neighbor vertices, as usual
- Push on stack in some priority order
- If popping and coloring fails, then spill and start over

Chaitin-Briggs Algorithm

1. While \exists vertices with $<k$ neighbors in G,
$>$ Pick any vertex n such that $n^{\circ}<k$ and put it on the stack
$>$ Remove that vertex and all edges incident to it from $G_{\text {, }}$
2. If G_{l} is non-empty (all vertices have k or more neighbors) then:
$>$ Pick a vertex n (using some heuristic condition), push n on the stack and remove n from G_{l}, along with all edges incident to it
$>$ If this causes some vertex in G_{l} to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
> If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

Picking a spill candidate

- How important is choosing a spill candidate?
- Goal: minimize the performance impact
- Spilled variable is stored at each def, loaded at each use
- Higher degree nodes interfere with more variables
- Chaitin: minimize spill cost \div current degree
- Many subtle variations
- Live range splitting
- More sophisticated spill cost estimation
- Impact on rest of the coloring problem
- Interaction with other optimizations - scheduling, copy propagation

More spilling

- Problem:
- This approach turns a single large live range into many small live ranges with many loads and stores
- Can we do better?
- Live range splitting
- Choose a point in the live range -- insert a store followed by a load
- Divides the live range into two (or more pieces)
- Key: choose carefully to reduce the degree of nodes

Another improvement

- Register coalescing
- We may be able to reduce the degree of vertices by merging live ranges that are connected only by a copy
- Idea:
- Find a register copy "tb = ta"
- If ta and tb do not interfere, combine their live ranges

a b c

$a b c$

Allocation constraints

- How do we deal with architectural constraints?
- Register types (floating point versus integer)
- Reserved registers - the stack pointer
- Instruction-level constraints
- Instruction requirements - x86 mul must use eax, adx
- We can encode constraints in the graph
- Precolored nodes (for required registers)
- Additional nodes and edges for constraints
- Example: explicit nodes for physical registers

Bin Packing

Different approach

- What is the bin packing problem?
- Some number of objects of different "weights" or "volumes"
- Series of bins of fixed size
- Pack objects using the fewest number of bins
- How hard is this problem?
- Mapping to register allocation?
- "Objects" are live ranges
- "Bins" are registers
- Can use existing bin packing approximations

Another approach

- What if graph coloring and bin packing are still too expensive?
- How big can interference graph get?
- Worst-case quadratic size (edges)

Example: in a just-in-time compiler

- Compilation time is critical
- Compiler needs to be simple and fast
- Alternative: Linear scan register allocation (Poletto, 1999)
- Make one pass over the list of variables
- Spill variables with longest lifetimes - those that would tie up a register for the longest time

Linear scan

- First: Compute live intervals
- Linearize the IR - usually just a list of tuples/instructions
- A live interval for a variable is a range [i,j]
- The variable is not live before instruction i
- The variable is not live after instruction j
- Idea: overlapping live intervals imply interference
- Given R registers and N overlapping intervals
- R intervals allocated to registers
- N-R intervals spilled to the stack
- What does this mean about the linearization?

Key: choosing the right intervals to spill

Example

- How many registers do we need?
- What would the interference graph look like?
- What if we only have two registers?

Algorithm

- Sort live intervals
- In order of increasing start points
- Quickly find the next live interval in order
- Maintain a sorted list of active intervals
- In order of increasing end points
- Quickly find expired intervals
- At each step, update active as follows
- Add the next interval from the sorted list
- Remove any expired intervals (those whose end points are earlier that the start point of the new interval)

Algorithm

- Extra restriction:

Never allow active to have more than R elements

- Spill scenario:
active has R elements, new interval doesn't cause any existing intervals to expire
- Heuristic:

Spill the interval that ends last (furthest from current position)

- Has optimal behavior for straight-line code
- Appears to work well even in linearized code

Example (2 registers)

- Step 1: active $=\{a\}$
- Step 2: active = $\{\mathrm{a}, \mathrm{b}\}$

Allows this code to use 2 registers, with one spill

- Step 3: active $=\{a, b, c\} \rightarrow$ spill $c \rightarrow$ active $=\{a, b\}$
- Step 4: a and b expire, active $=\{d\}$

Step 5: active = $\{\mathrm{d}, \mathrm{e}\}$

Linear scan

- Register allocation
- Each new interval added to active gets the next register
- Registers freed as intervals are removed
- Resulting code:
within 10% of graph coloring
- Compilation time:

2-3 times faster than graph coloring

- Architectural considerations
- How sensitive is architecture to register allocation?
- Many registers (Alpha, PowerPC): use linear scan
- Few registers (x86): use graph coloring

