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Register allocation

� What are registers?

� Memory

� Very close to the processor – very fast to access

� On many architectures, required by ISA

� RISC – all computations use registers
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� RISC – all computations use registers

� Pentium – many instructions register + memory

� Part of the memory hierarchy

� Top: close to CPU, fast, small

� Bottom: far from CPU, slow, large



Memory hierarchy

CPU

Registers

Level-1 cache

Farther away,

larger,
slower

Pentium 
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Duo

Athlon 64

1 cycle 1 cycle 1 cycle

2 cycles 3 cycles 3 cycles
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Level-1 cache

Level-2 cache

Main memory

Virtual memory

2 cycles

(16 KB*)

3 cycles

(64 KB)
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(128 KB)

19 cycles

(2 MB)

14 cycles

(2 MB)

13 cycles

(1 MB)
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Memory hierarchy

� What is the compiler’s role in the 
memory hierarchy?

� Virtual memory?

� Main memory?
� Heap layout

CPU

Registers

Level-1 cache
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� Heap layout

� Prefetching

� Level-1 and level-2 cache?
� Many locality optimizations

� Loop transforms, tiling, strip mining

� Registers
� Compiler has direct control

Level-1 cache

Level-2 cache

Main memory

Virtual memory



Registers

� How important is register allocation?

� Widely recognized as one of the most important 

“optimizations” performed by the compiler

� An order of magnitude compared to poor or no register 

allocation
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� Most other optimizations: at most ~ 10% to 20%

� Varies somewhat depending on machine

� Number of registers

� Architecture constraints on register use

� Speed of memory hierarchy



Using registers
� Software view

ISA: Assembly code and machine code

� Register names are explicit

� Like variables, names represent data dependences

� Hard to change this view – why?

� Machine view
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� Machine view
� Actual machine may have more registers

� Why have more physical registers than ISA?

Renaming may occur inside the processor

At ISA level Physical

DEC Alpha 64 int+float 80 int, 72 float

IA-32 8 int 128 int



Register allocation

� What are we trying to do?

� Register allocation

� Decide which values will be kept in registers

� Register assignment

� Select specific registers for each value
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� Select specific registers for each value

� Constraints

� Primary: limited number of registers

� Different kinds of registers -- integer vs floating point

� Special-purpose registers – SP

� Instruction requirements – x86 mul must use eax, adx

� Some values cannot go in registers



Register allocation

� What values can go in registers?

What does it mean to “allocate a variable in a register”?

� Most cases: variable becomes a register

� All uses and defs replaced with the register

� It has no storage on the stack
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� It has no storage on the stack

� What is the implication of that decision?

� The compiler must be able to see all accesses

� For example: int x;

int * p = &x;

(*p) = 7;

foo(p);

Might be able to 

handle (*p) = 7 case



Register allocation

� Primary problems to be solved:

� Usually more variables than registers

� Can’t use the same register for two variables that are live 

at the same time

� Key insight:
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� Key insight:

We can cast this as a graph coloring problem (Lavrov, Chaitin)

� Nodes = program variables

� Edges = connect variables that are live at the same time

� “Interference graph” or “conflict graph”

Colors represent registers



Example

b = a + 2

c = b * b

b = c + 1

{a}

{a,b}

{a,c}

a b c

a

b c

1111

� Key idea: if we can color the graph with K colors, 
then we can allocate the variables to K registers

Code

b = c + 1

return b*a

Live sets

{a,b}

Live ranges Interference
graph



Example

� Graph is 2-colorable

R2 = R1 + 2

R2 = R2 * R2

a

b c
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R2 = R2 + 1

return R2*R1

b c

= Register 1 (R1)

= Register 2 (R2)



Scope

� Simple formulation:

� Within a basic block – called local

� Live ranges are linear – just look at how they overlap

� What to do at basic block boundaries?

� Load all live vars into registers on entry
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� Load all live vars into registers on entry

� Store all live vars to memory on exit

� More sophisticated:

� Across the control-flow graph – called global

� Consider live ranges as “webs” of dependences

� Key: use the same graph coloring algorithm



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y
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use ydef y

use x

def x

use x

use x

use y



Example

def y

def x

use y

def x

def y

s1

s2
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use ydef y

use x

def x

use x

use x

use y

s3

s4



Example

def y

def x

use y

def x

def y

s1

s2

Webs s1 and s2 interfere
Webs s2 and s3 interfere
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use ydef y

use x

def x

use x

use x

use y

s3

s4



Graph coloring

The big questions:

� Can we efficiently find a K-coloring of the graph?

� Can we efficiently find the optimal coloring of the graph 

2323

(i.e., using the least number of colors)?

� What do we do when there aren’t enough colors (registers) 

to color the graph?



Graph coloring

� The bad news:

Graph coloring is NP-complete

� Do we need the optimal algorithm?

� Works on any graph
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� Tells us for certain if a graph is K-colorable

� Observations

� We’ll never see the worst-case graph 

� We don’t necessarily need the perfect coloring

� Compute an approximation with heuristics



Spilling

� What if the graph is not K-colorable?
� There aren’t enough registers to hold all variables

� Sadly: this happens a lot

� Pick a variable, spill it back to the stack
� Value lives on the stack

2525

� Value lives on the stack

� Must generate extra code to load and store it

� Need registers to hold value temporarily
� Simple approach: keep a few registers just for this purpose

� Better approach:

� Rewrite the code introducing a new temporary

� Use the temporary to “load” and “store” the spilled variable

� Rerun the liveness analysis and register allocation



Rewriting the code

� Example:

� Suppose v2 is selected for spilling and assigned to stack 

location [SP-12]

� Add a new variable t23 just for this instruction:

add     v1, v2
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� Rerun the whole algorithm

� Idea: 

t23 has a short live range and (hopefully) doesn’t interfere 

with other variables as much as v2

mov    [SP-12], t23

add     v1, t23



Graph coloring

� Assume you have K registers

Looking for K-coloring of interference graph

� Observation:

Any node with less than K neighbors (degree < K) must be 
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colorable

� Why?

� Pick the color not used by any neighbor

� There must be one!

� This is the basis for Chaitin’s algorithm             
(Chaitin, 1981)



Chaitin’s algorithm

Idea:

� Pick any vertex n with fewer than k neighbors
This is a k-colorable vertex

� Remove that vertex from the graph
Also: remove incident edges
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� Also: remove incident edges

� Key: this may result in some other nodes now having fewer 
than k neighbors

� Now choose one of those vertices, continue…

� What if we get stuck?
Spill the variable whose node has more that k neighbors, 
and continue



Chaitin’s Algorithm

1. While ∃ vertices with < k neighbors in GI 

> Pick any vertex n such that n°< k and put it on the stack

> Remove that vertex and all edges incident to it from GI

• This will lower the degree of n’s neighbors

2. If GI is non-empty (all vertices have k or more neighbors) then:
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I 

> Pick a vertex n (using some heuristic) and spill the live range 
associated with n

> Remove vertex n from GI , along with all edges incident to it

> If this causes some vertex in GI to have fewer than k neighbors, 
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the 
lowest color not used by some neighbor



Chaitin’s Algorithm in Practice

2

3 Registers
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3

1 4 5

Stack



Chaitin’s Algorithm in Practice

2

3 Registers
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3

4 5

Stack

1



Chaitin’s Algorithm in Practice
3 Registers
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3

4 5

Stack

1

2



Chaitin’s Algorithm in Practice
3 Registers
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3

5

Stack

1

2

4



Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:  
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Stack

1

2

4

3

5

1:  

2:  

3:  



Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:  
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2:  

3:  



Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:  
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3

5

Stack

1
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4
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Chaitin’s Algorithm in Practice
3 Registers

Colors:

1:  
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3
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Stack

1
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Chaitin’s Algorithm in Practice

2

3 Registers

Colors:

1:  
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3
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Stack

1
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Chaitin’s Algorithm in Practice

2

3 Registers

Colors:

1:  
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3

1 4 5

Stack

1:  

2:  

3:  



Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

� Observation:

� Some graphs may be k-colorable, even though all vertices 

have k neighbors
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have k neighbors

� Example:

2 Registers:

2-colorable



Improvements

Optimistic Coloring

(Briggs, Cooper, Kennedy, and Torczon)

� Idea:
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� Don’t spill when we get stuck

� Remove k-neighbor vertices, as usual

� Push on stack in some priority order

� If popping and coloring fails, then spill and start over



Chaitin-Briggs Algorithm

1. While ∃ vertices with < k neighbors in GI 

> Pick any vertex n such that n°< k and put it on the stack

> Remove that vertex and all edges incident to it from GI

2. If GI is non-empty (all vertices have k or more neighbors) then:

> Pick a vertex n (using some heuristic condition), push n on the 
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> Pick a vertex n (using some heuristic condition), push n on the 
stack and remove n from GI , along with all edges incident to it

> If this causes some vertex in GI to have fewer than k neighbors, 
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the 

lowest color not used by some neighbor

> If some vertex cannot be colored, then pick an uncolored 
vertex to spill, spill it, and restart at step 1



Picking a spill candidate

� How important is choosing a spill candidate?

� Goal: minimize the performance impact

� Spilled variable is stored at each def, loaded at each use

� Higher degree nodes interfere with more variables

� Chaitin: minimize spill cost ÷÷÷÷ current degree
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� Chaitin: minimize spill cost ÷÷÷÷ current degree

� Many subtle variations

� Live range splitting

� More sophisticated spill cost estimation

� Impact on rest of the coloring problem

� Interaction with other optimizations – scheduling, copy 

propagation



More spilling 

� Problem:
� This approach turns a single large live range into many 

small live ranges with many loads and stores

� Can we do better?

� Live range splitting
Choose a point in the live range -- insert a 
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� Choose a point in the live range -- insert a 
store followed by a load

� Divides the live range into two (or more pieces)

� Key: choose carefully to reduce the degree of nodes

x x0 x1



Another improvement
� Register coalescing

� We may be able to reduce the degree of vertices by 

merging live ranges that are connected only by a copy

� Idea:

� Find a register copy “tb = ta”

� If ta and tb do not interfere, combine their live ranges
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� If ta and tb do not interfere, combine their live ranges

add t1, t2, a

. . .

mov a, b

mov a, c

. . .

add b, t3, t4

add c, t5, t6

a b c ab c



Allocation constraints

� How do we deal with architectural constraints?

� Register types (floating point versus integer)

� Reserved registers – the stack pointer

� Instruction-level constraints

� Instruction requirements – x86 mul must use eax, adx
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� We can encode constraints in the graph

� Precolored nodes (for required registers)

� Additional nodes and edges for constraints

� Example: explicit nodes for physical registers

a

b

c r1



Bin Packing

Different approach

� What is the bin packing problem?

� Some number of objects of different “weights” or “volumes”

� Series of bins of fixed size

� Pack objects using the fewest number of bins
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� Pack objects using the fewest number of bins

� How hard is this problem?

� Mapping to register allocation?

� “Objects” are live ranges

� “Bins” are registers

� Can use existing bin packing approximations



Another approach

� What if graph coloring and bin packing are still too 
expensive?

� How big can interference graph get?
� Worst-case quadratic size (edges)

Example: in a just-in-time compiler
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Example: in a just-in-time compiler

� Compilation time is critical

� Compiler needs to be simple and fast

� Alternative: Linear scan register allocation
(Poletto, 1999)

� Make one pass over the list of variables

� Spill variables with longest lifetimes – those that would tie up a 
register for the longest time



Linear scan

� First: Compute live intervals

� Linearize the IR – usually just a list of tuples/instructions

� A live interval for a variable is a range [i,j]

� The variable is not live before instruction i

� The variable is not live after instruction j
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� Idea: overlapping live intervals imply interference

� Given R registers and N overlapping intervals

� R intervals allocated to registers

� N-R intervals spilled to the stack

� What does this mean about the linearization?

� Key: choosing the right intervals to spill



Example

a

b

c

d

e

Variables
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� How many registers do we need?

� What would the interference graph look like?

� What if we only have two registers?

e

Linearization (live ranges)



Algorithm

� Sort live intervals

� In order of increasing start points

� Quickly find the next live interval in order

� Maintain a sorted list of active intervals
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� In order of increasing end points

� Quickly find expired intervals

� At each step, update active as follows

� Add the next interval from the sorted list

� Remove any expired intervals (those whose end points are 

earlier that the start point of the new interval)



Algorithm

� Extra restriction:

Never allow active to have more than R elements

� Spill scenario:

active has R elements, new interval doesn’t cause any 
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active has R elements, new interval doesn’t cause any 

existing intervals to expire

� Heuristic:

Spill the interval that ends last (furthest from current 

position)

� Has optimal behavior for straight-line code

� Appears to work well even in linearized code



Example     (2 registers)

a

b

c

d

e

Variables
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� Step 1: active = {a}

� Step 2: active = {a,b}

� Step 3: active = {a,b,c} � spill c � active = {a,b}

� Step 4: a and b expire, active = {d}

� Step 5: active = {d,e}

1 2 3 4 5

Allows this code to 

use 2 registers, 

with one spill



Linear scan

� Register allocation
� Each new interval added to active gets the next register

� Registers freed as intervals are removed

� Resulting code:
within 10% of graph coloring
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within 10% of graph coloring

� Compilation time: 
2 – 3 times faster than graph coloring

� Architectural considerations
� How sensitive is architecture to register allocation?

� Many registers (Alpha, PowerPC): use linear scan

� Few registers (x86): use graph coloring


