Compilers

Lecture 3
 Lexical analysis

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

Big picture

- Front end responsibilities
- Check that the input program is legal
- Check syntax and semantics
- Emit meaningful error messages
- Build IR of the code for the rest of the compiler

Front end design

- Two part design
- Scanner (a.k.a. lexer)
- Reads in characters
- Classifies sequences into words or tokens
- Parser
- Checks sequence of tokens against grammar
- Creates a representation of the program (AST)

Lexical analysis

- The input is just a sequence of characters. Example:

$$
\begin{aligned}
& \text { if } \quad(i==j) \\
& z=0 ; \\
& \text { else } \\
& z=1 ;
\end{aligned}
$$

- More accurately, the input is:
\tif (i == j) \n\t $\backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1 ;$
- Goal: Partition input string into substrings

And classify them according to their role

Scanner

- Responsibilities
- Read in characters
- Produce a stream of tokens

$$
\langle\text { key, if }><\text { (> <id, i> <op, ==> <id, j> } \ldots
$$

- Token has a type and a value

Hand-coded scanner

- Explicit test for each token
- Read in a character at a time
- Example: recognizing keyword "if"

Hand-coded scanner

- What about other tokens?

Example: "if" is a keyword, "if0" is an identifier

```
c = readchar();
if (c != 'i') { other tokens... }
else {
    c = readchar();
    if (c != 'f') { other tokens... }
    else {
    c = readchar();
    if (c not alpha-numeric) {
        putback(c);
        return IF_TOKEN; }
    while (c alpha-numeric) { build identifier }
```


Hand-coded scanner

Problems:

- Many different kinds of tokens
- Fixed strings (keywords)
- Special character sequences (operators)
- Tokens defined by rules (identifiers, numbers)
- Tokens overlap
- "if" and "if0" example
- "=" and "=="
- Coding this by hand is too painful!

Getting it right is a serious concern

Scanner construction

- Goal: automate process
- Avoid writing scanners by hand
- Leverage the underlying theory of languages

Outline

Problems we need to solve:

- Scanner description
- How to describe parts of the input language
- The scanning mechanism
- How to break input string into tokens
- Scanner generator
- How to translate from (1) to (2)
- Ambiguities
- The need for lookahead

Problem 1: Describing the scanner

- We want a high-level language \mathbf{D} that

1. Describes lexical components, and
2. Maps them to tokens (determines type)
3. But doesn't describe the scanner algorithm itself !

- Part 3 is important
- Allows focusing on what, not on how
- Therefore, D is sometimes called a specification language, not a programming language

Part 2 is easy, so let's focus on Parts 1 and 3

Specifying tokens

- Many ways to specify them
- Regular expressions are the most popular
- REs are a way to specify sets of strings
- Examples:
- a - denotes the set \{"a"\}
- alb - denotes the set $\{$ "a", "b"\}
- ab - denotes the set \{"ab"\}
- ab" * - denotes the set \{"a", "ab", "abb", "abbb", ...\}
- Why regular expressions?
- Easy to understand
- Strong underlying theory

May specify sets of infinite size

- Very efficient implementation

Formal languages

- Def. a language is a set of strings
- Alphabet Σ : the character set
- Language is a set of strings over alphabet
- Each regular expression denotes a language
- If \boldsymbol{A} is a regular expression, then $\boldsymbol{L}(\boldsymbol{A})$ is the set of strings denoted by \boldsymbol{A}
- Examples: given $\Sigma=\{$ 'a', 'b'\}
- $A=\underline{a}$
$L(A)=\{" a "\}$
- $A=\underline{a} \mid \underline{b}$
$L(A)=\{" a ", " b "\}$
- $A=\underline{a b}$
$L(A)=\{" a b "\}$
- $A=\underline{a b}{ }^{*}$
$L(A)=\{" a ", " a b ", " a b b ", " a b b b ", \ldots\}$

Building REs

- Regular expressions over Σ
- Atomic REs
- ε is an RE denoting empty set
- if \underline{a} is in Σ, then a is an RE for $\{\underline{a}\}$
- Compound REs
- if x and y are REs then:
- $x y$ is an RE for $L(x) L(y)$
- x / y is an RE for $L(x) \cup L(y)$
- x^{*} is an RE for $L(x)^{*}$

Concatentation
Alternation
Kleene closure

Outline

Problems we need to solve:

- Scanner specification language DONE
- How to describe parts of the input language
- The scanning mechanism
- How to break input string into tokens

- Scanner generator
- How to translate from (1) to (2)
- Ambiguities
- The need for lookahead

Overview of scanning

- How do we recognize strings in the language?

Every RE has an equivalent finite state automaton that recognizes its language
(Often more than one)

- Idea: scanner simulates the automaton
- Read characters
- Transition automaton
- Return a token if automaton accepts the string

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
- An input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $\mathrm{F} \subseteq \mathrm{S}$
- A set of transitions state \rightarrow input state

Finite Automata State Graphs

- A state

- The start state
- An accepting state

- A transition

FA Example

- Transition
- Is read
$\mathrm{s}_{1} \rightarrow^{\mathrm{a}} \mathrm{S}_{2}$
In state s_{1} on input "a" go to state s_{2}
- FA accepts a string if we can follow transitions labeled with the characters in the string from the start to an accepting state
- What if we run out of characters?
- A finite automaton that accepts only "1"

Another Simple Example

- FA accepts any number of 1 's followed by a single 0
- Alphabet: $\{0,1\}$

- Check that " 1110 " is accepted but " $1101 \ldots$ " is not

And Another Example

- Alphabet $\{0,1\}$
- What language does this recognize?

"Realistic" example

- Recognizing machine register names
- Typically "r" followed by register number (how many?) Register $\rightarrow \underline{\underline{r}}(\underline{0}|\underline{1}| \underline{2}|\ldots| \underline{9})(\underline{0}|\underline{1}| \underline{2}|\ldots| \underline{9})^{*}$

REs and DFAs

- Key idea:
- Every regular expression has an equivalent DFA that accepts only strings in the language
- Problem:
- How do we construct the DFA for an arbitrary regular expression?
- Not always easy

Example

- What is the FA for $a(a \mid \varepsilon) b$?
- Need ε moves

- Transition A to B without consuming input!

Another example

- Remember this DFA?

- We can simplify it as follows:

A different kind of automaton

- Accepts the same language

Actually, it's easier to understand!

- What's different about it?
- Two different transitions on ' 0 '
- This is a non-deterministic finite automaton

DFAs and NFAs

- Deterministic Finite Automata (DFA)
- One transition per input per state
- No ع-moves
- Nondeterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves

Execution of Finite Automata

- DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose
- Whether to make ε-moves
- Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

- Input.

100

- Rule: NFA accepts if it can get in a final state

Non-deterministic finite automata

- An NFA accepts a string x iff \exists a path through the transition graph from s_{0} to a final state such that the edge labels spell x
(Transitions on ε consume no input)
- To "run" the NFA, start in s_{0} and guess the right transition at each step
- Always guess correctly
- If some sequence of correct guesses accepts x then accept

Why do we care about NFAs?

- Simpler, smaller than DFAs
- More importantly:
- Need them to support all RE capabilities
- Systematic conversion from REs to NFAs
- Need ε transitions to connect RE parts
- Problem: how to implement NFAs?
- How do we guess the right transition?

Relationship between NFAs and DFAs

- DFA is a special case of an NFA
- DFA has no ε transitions
- DFA's transition function is single-valued
- Same rules will work
- DFA can be simulated with an NFA (obvious)
- NFA can be simulated with a DFA
- Simulate sets of possible states
- Possible exponential blowup in the state space
- Still, one state per character in the input stream

Automatic scanner construction

- To convert a specification into code:

1 Write down the RE for the input language
2 Build a big NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code

- Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!

Scanner construction

[0] Define tokens as regular expressions
[1] Construct NFA for all REs

- Connect REs with ε transitions
- Thompson's construction
[2] Convert NFA into a DFA
- DFA is a simulation of NFA
- Possibly much larger than NFA
- Subset construction
[3] Minimize the DFA
- Hopcroft's algorithm
[4] Generate implementation

[1] Thompson's construction

- Goal:

Systematically convert regular expressions for our language into a finite state automaton

- Key idea:
- FA "pattern" for each RE operator
- Start with atomic REs, build up a big NFA
- Idea due to Ken Thompson in 1968

Thompson's construction

By induction on RE structure

- Base case:

Construct FA that recognizes atomic regular expressions:

- Induction:

Given FAs for two regular expressions, \mathbf{x} and \mathbf{y}, build a new FA that recognizes:

- $x y$
- $\mathbf{x} \mid \mathbf{y}$
- \mathbf{x}^{\star}

Thompson's construction

- Given:

$$
s_{0} M^{\mathbf{x}} \quad s_{2} M_{1}^{\mathbf{y}} s_{3}
$$

- Build xy

$$
s_{0} M M^{\mathbf{x}} \xrightarrow{\varepsilon} s_{1} S_{2} S_{3}
$$

- Why can't we do this?

$$
s_{0} M M_{2} \sin _{2}
$$

Need for ε transitions

- What if \mathbf{x} and \mathbf{y} look like this:

- Then $\mathbf{x y}$ ends up like this:

Thompson's construction

- Given:

So $\mathrm{S}_{0}^{\mathrm{x}}$

- xy

- $\mathbf{x | y}$

- \mathbf{x}^{*}

Example

Regular expression: $\underline{a}(\underline{b} \mid \underline{c})^{*}$

- $\underline{b} \mid \underline{c}$

- ($\underline{b} \mid \underline{c})^{*}$

Example

- $\underline{a}(\underline{b} \mid \underline{c})^{*}$

- Note: a human could design something simpler...
- Like what?

Problem

- How to implement NFA scanner code?
- Will the table-driven scheme work?
- Non-determinism is a problem
- Explore all possible paths?
- Observation:

We can build a DFA that simulates the NFA

- Accepts the same language
- Explores all paths simultaneously

[2] NFA to DFA

- Subset construction algorithm
- Intuition: each DFA state represents the possible states reachable after one input in the NFA

State in DFA $=$ set of states	
	from NFA
$s_{1}=\left\{q_{0}\right\}$	
$s_{2}=\left\{q_{2}, q_{3}\right\}$	

- Two key functions
- $\operatorname{next}\left(s_{i}, \underline{a}\right)$ - the set of states reachable from s_{i} on \underline{a}
- ε-closure $\left(s_{i}\right)$ - the set of states reachable from s_{i} on ε
- DFA transition function
- Edge labeled \underline{a} from state \mathbf{s}_{i} to state ε-closure(next($\left.\mathrm{s}_{\mathrm{i}}, \underline{\mathrm{a}}\right)$)

NFA to DFA example

$\underline{a}(\underline{b} \mid \underline{c})^{\star}$:

Subsets S		ε-closure(next(s, α)		
(DFA states)	NFA states	a	b	C
S_{0}	q_{0}	$\begin{aligned} & q_{1}, q_{2}, q_{3}, \\ & q_{4}, q_{6}, q_{9} \end{aligned}$	none	none
S_{1}	$\begin{aligned} & q_{1}, q_{2}, q_{3}, \\ & q_{4}, q_{6}, q_{9} \end{aligned}$	none	$\begin{aligned} & q_{5}, q_{8}, q_{9}, \\ & q_{3}, q_{4}, q_{6} \end{aligned}$	$\begin{aligned} & q_{7}, q_{8}, q_{9}, \\ & q_{3}, q_{4}, q_{6} \end{aligned}$
S_{2}	$\begin{aligned} & q_{5}, q_{8}, q_{9}, \\ & q_{3}, q_{4}, q_{6} \end{aligned}$	none	(also s_{2})	(also s_{3})
S_{3}	$\begin{aligned} & q_{7}, q_{8}\left(q_{9}\right) \\ & q_{3}, q_{4}, q_{6} \end{aligned}$	pone	(also s_{2})	(also s_{3})

NFA to DFA example

- Convert each subset in S into a state:

δ	$\underline{\mathbf{a}}$	$\underline{\mathbf{b}}$	$\underline{\mathbf{c}}$
s_{0}	s_{1}	-	-
s_{1}	-	s_{2}	s_{3}
s_{2}	-	s_{2}	s_{3}
s_{3}	-	s_{2}	s_{3}

- All transitions are deterministic
- Smaller than NFA, but still bigger than necessary

Subset construction

- Algorithm

Start with the ε-closure over the initial state
Build a set of subsets \varnothing rA states

Does it work?

- Does the algorithm halt?
- S contains no duplicate subsets
- $2^{|N F A|}$ is finite
- Main loop adds to S, but does not remove It is a monotone function
- S contains all the reachable NFA states

Tries all input symbols, builds all NFA configurations

- Note: important class of compiler algorithms
- Fixpoint computation
- Monotonic update function
- Convergence is guaranteed

[3] DFA minimization

- Hopcroft's algorithm
- Discover sets of equivalent states in DFA
- Represent each set with a single state
- When would two states in the DFA be equivalent?
- Two states are equivalent iff.
- For all input symbols, transitions lead to equivalent states
\Rightarrow This is the key to the algorithm

DFA minimization

- A partition P of the states S
- Each $s \in S$ is in exactly one set $p_{i} \in P$
- Idea:

If two states s and t transition to different partitions, then they must be in different partitions

- Algorithm:

Iteratively partition the DFA's states

- Group states into maximal size sets, optimistically
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent

Splitting S around α

Original set S

The algorithm partitions S around α

Splitting S around α

Original set S

DFA minimization

- Details:
- Given DFA $\left(S, \Sigma, \delta, s_{0}, F\right)$
- Initial partition: $P_{0}=\{F, S-F\}$

Intuition: final states are always different

- Splitting a set around symbol a
- Assume $s_{a} \& s_{b} \in p_{i}$, and $\delta\left(s_{a}, \underline{a}\right)=s_{x}, \& \delta\left(s_{b}, \underline{a}\right)=s_{y}$
- Split p_{i} if:
- If $s_{x} \& s_{y}$ are not in the same set
- If s_{a} has a transition on a, but s_{b} does not

Intuition: one state in DFA cannot have two transitions on a

DFA minimization algorithm

Does it work?

- Algorithm halts
- Partition $P \in 2^{S}$
- Start off with 2 subsets of $S \quad\{F\}$ and $\{S-F\}$
- While loop takes $P_{i} \rightarrow P_{i+1}$ by splitting 1 or more sets
- P_{i+1} is at least one step closer to partition with $|S|$ sets
- Maximum of $|S|$ splits
- Note that
- Partitions are never combined
- Initial partition ensures that final states are intact

DFA minimization

Refining the algorithm

- As written, it examines every $S \in P$ on each iteration
- This does a lot of unnecessary work
- Only need to examine S if some T, reachable from S, has been split
- Reformulate the algorithm using a "worklist"
- Start worklist with initial partition, F and $\{Q-F\}$
- When it splits S into S_{1} and S_{2}, place S_{2} on worklist

This version looks at each $S \in P$ many fewer times
Well-known, widely used algorithm due to John Hopcroft

Implementation

- Finite automaton
- States, characters
- State transition δ uniquely determines next state
- Next character function
- Reads next character into buffer
- (May compute character class by fast table lookup)
- Transitions from state to state
- Implement δ as a table
- Access table using current state and character

Example

Turning the recognizer into code

δ	r	$0,1,2,3,4,5$ $, 6,7,8,9$	All others
s_{0}	s_{1}	s_{e}	s_{e}
s_{1}	s_{e}	s_{2}	s_{e}
s_{2}	s_{e}	s_{2}	s_{e}
s_{e}	s_{e}	s_{e}	s_{e}

Table encoding RE

Char \leftarrow next character
State $\leftarrow s_{0}$
while $($ Char \neq EOF $)$
State $\leftarrow \delta($ State, Char $)$
Char \leftarrow next character
if (State is a final state $)$
then report success
else report failure

Skeleton recognizer

Example
Adding actions

$\boldsymbol{\delta}$	r	$0,1,2,3,4,5$ $, 6,7,8,9$	All others
s_{0}	s_{1} start	s_{e} error	s_{e} error
s_{1}	s_{e} error	s_{2} add	s_{e} error
s_{2}	s_{e} error	s_{2} add	s_{e} error
s_{e}	s_{e} error	s_{e} error	s_{e} error

Table encoding RE

Char \leftarrow next character State $\leftarrow \mathrm{s}_{0}$
while (Char \neq EOF)
State $\leftarrow \delta$ (State,Char) perform specified action Char \leftarrow next character
if (State is a final state) then report success else report failure

Skeleton recognizer

Tighter register specification

- The DFA for

Register $\rightarrow \underline{r}((\underline{0}|\underline{1}| \underline{2})(\operatorname{Digit} \mid \varepsilon)|(\underline{4}|\underline{5}| \underline{6}|\underline{\mid}| \mathbf{8} \mid \underline{9})|(\underline{3}|\mathbf{3} \mathbf{0}| \mathbf{3 1}))$

- Accepts a more constrained set of registers
- Same set of actions, more states

Tighter register specification

δ	r	0,1	2	3	$4-9$	All others
s_{0}	s_{1}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}
s_{1}	s_{e}	s_{2}	s_{2}	s_{5}	s_{4}	s_{e}
s_{2}	s_{e}	s_{3}	s_{3}	s_{3}	s_{3}	s_{e}
s_{3}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}
s_{4}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}
s_{5}	s_{e}	s_{6}	s_{e}	s_{e}	s_{e}	s_{e}
s_{6}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}	s_{e}
s_{e}						

Runs in the same skeleton recognizer

Table encoding RE for the tighter register specification

Building a scanner

Specification
"if"
"while"
[a-zA-Z][a-zA-Z0-9] *
[0-9][0-9]*
$($
$)$
...

- Language: if |while|[a-zA-z][a-zA-z0-9]*|[0-9][0-9]*...
- Problem:
- Giant NFA either accepts or rejects a one token
- We need to partition a string, and indicate the kind

Partitioning

Giant NFA

- Annotate the NFA
- Remember the accepting state of each RE
- Annotate with the kind of token
- Does giant NFA accept some substring $\mathbf{x}_{0} \ldots \mathbf{x}_{\mathbf{i}}$?
- Return substring and kind of token
- Restart the NFA at $\mathbf{x}_{\mathbf{i}+1}$

Partitioning problems

- Matching is ambiguous
- Example: "foo+3"
- We want <foo>,<+>,<3>
- But: <f>,<00>,<+>,<3> also works with our NFA
- Can end the identifier anywhere
- Note: "foo+" does not satisfy NFA
- Solution: "maximal munch"
- Choose the longest substring that is accepted
- Must look at the next character to decide -- lookahead
- Keep munching until no transition on lookahead

More problems

- Some strings satisfy multiple REs
- Example: "new foo"
- <new> could be an identifier or a keyword
- Solution: rank the REs
- First, use maximal munch
- Second, if substring satisfies two REs, choose the one with higher rank
- Order is important in the specification
- Put keywords first!

C scanner

Short-hand


```
%{
#include "parser.tab.h"
%}
identifier ([a-zA-Z_][0-9a-zA-Z_]*)
octal_escape ([0-7][^'"\n]*)
any_white ([ \011\013\014\015])
%%
{any_white}+ { }
for { Ival.tok = get_pos(); return ctokFOR;}
if { Ival.tok = get_pos(); return ctokIF;}
{identifier} { Ival.tok = get_pos();
    Ival.idN = new idNode(cbtext, cblval.tok);
    if ( is_typename(cbtext)) return TYPEDEFname;
    else return IDENTIFIER; }
{decimal_constant} { Ival.exprN = atoi(cbtext);
                                    return INTEGERconstant; }
%%
...any special code...
```


Implementation

- Table driven
- Read and classify character
- Select action
- Find the next state, assign to state variable
- Repeat
- Alternative: direct coding
- Each state is a chunk of code
- Transitions test and branch directly
- Very ugly code - but who cares?
- Very efficient

> This is how lex/flex work: states are encoded as cases in a giant switch statement

Building a lexer

Specification
"if"
"while"
$[a-z A-Z][a-z A-z 0-9] *$
$[0-9][0-9] *$
$($
$)$

Giant DFA

Giant NFA

Table or code

Building scanners

- The point
- Theory lets us automate construction
- Language designer writes down regular expressions
- Generator does: RE \rightarrow NFA \rightarrow DFA \rightarrow code
- Reliably produces fast, robust scanners
- Works for most modern languages

Think twice about language features that defeat the DFAbased scanners

