# Compilers

Lecture 3 *Lexical analysis* 

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)







### **Big picture**



- Front end responsibilities
  - Check that the input program is legal
    - Check syntax and semantics
    - Emit <u>meaningful</u> error messages
  - Build IR of the code for the rest of the compiler



#### Front end design



- Two part design
  - Scanner (a.k.a. lexer)
    - Reads in characters
    - Classifies sequences into words or tokens
  - Parser
    - Checks sequence of tokens against grammar
    - Creates a representation of the program (AST)



### Lexical analysis

• The input is just a sequence of characters. *Example*:

```
if (i == j)
    z = 0;
else
    z = 1;
```

- More accurately, the input is: \tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
- **Goal**: Partition input string into substrings And classify them according to their role





# Scanner



- Responsibilities
  - Read in characters
  - Produce a stream of tokens



• Token has a type and a value



### Hand-coded scanner

- Explicit test for each token
  - Read in a character at a time
  - Example: recognizing keyword "if"





### Hand-coded scanner

• What about other tokens?

Example: "if" is a keyword, "if0" is an identifier

```
c = readchar();
if (c != `i') { other tokens... }
else {
  c = readchar();
  if (c != `f') { other tokens... }
else {
    c = readchar();
    if (c not alpha-numeric) {
      putback(c);
      return IF_TOKEN; }
    while (c alpha-numeric) { build identifier }
```



### Hand-coded scanner

#### **Problems:**

- Many different kinds of tokens
  - Fixed strings (keywords)
  - Special character sequences (operators)
  - Tokens defined by rules (identifiers, numbers)
- Tokens overlap
  - "if" and "if0" example
  - "=" and "=="
- Coding this by hand is too painful!
   Getting it right is a serious concern





#### **Scanner construction**

- Goal: automate process
  - Avoid writing scanners by hand
  - Leverage the underlying theory of languages





### Outline

Problems we need to solve:

- Scanner description
  - How to describe parts of the input language
- The scanning mechanism
  - How to break input string into tokens
- Scanner generator
  - How to translate from (1) to (2)
- Ambiguities
  - The need for *lookahead*





#### Problem 1: Describing the scanner

- We want a high-level language **D** that
  - 1. Describes lexical components, and
  - 2. Maps them to tokens (determines type)
  - 3. **But** doesn't describe the scanner algorithm itself !
- Part 3 is important
  - Allows focusing on *what*, not on *how*
  - Therefore, **D** is sometimes called a *specification language*, not a programming language



Part 2 is easy, so let's focus on Parts 1 and 3



## **Specifying tokens**

- Many ways to specify them
- Regular expressions are the most popular
  - REs are a way to specify sets of strings
  - Examples:
    - <u>a</u> denotes the set {"a"}
    - <u>a|b</u> denotes the set {"a", "b"}
    - <u>ab</u> denotes the set {"ab"}
    - <u>ab</u>\* denotes the set {"a", "ab", "abb", "abbb", … }
- Why regular expressions?
  - Easy to understand
  - Strong underlying theory
  - Very efficient implementation





May specify sets of infinite size

#### **Formal languages**



- **Def:** a language is a set of strings
  - Alphabet  $\Sigma$  : the character set
  - Language is a set of strings over alphabet
- Each regular expression denotes a language
  - If A is a regular expression, then L(A) is the set of strings denoted by A
  - Examples: given  $\Sigma = \{ a', b' \}$ 
    - $A = \underline{a}$   $L(A) = {"a"}$
    - $A = \underline{a}|\underline{b}$   $L(A) = {"a", "b"}$
    - $A = \underline{ab}$   $L(A) = {"ab"}$
    - $A = \underline{ab}^*$   $L(A) = \{ "a", "ab", "abb", "abbb", ... \}$



### **Building REs**

- Regular expressions over  $\boldsymbol{\Sigma}$
- Atomic REs
  - $\epsilon$  is an RE denoting empty set
  - if <u>a</u> is in Σ, then a is an RE for {<u>a</u>}
- Compound REs
  - if *x* and *y* are REs then:
    - xy is an RE for L(x)L(y)
    - x/y is an RE for  $L(x) \cup L(y)$
    - $x^*$  is an RE for  $L(x)^*$

*Concatentation Alternation Kleene closure* 





### Outline

Problems we need to solve:

- Scanner specification language
  - How to describe parts of the input language
- The scanning mechanism
  - How to break input string into tokens
- Scanner generator
  - How to translate from (1) to (2)
- Ambiguities
  - The need for *lookahead*





DONE

### **Overview of scanning**



- How do we recognize strings in the language? Every RE has an equivalent finite state automaton that recognizes its language (Often more than one)
  - Idea: scanner simulates the automaton
    - Read characters
    - Transition automaton
    - Return a token if automaton accepts the string



#### **Finite Automata**

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
  - An input alphabet  $\Sigma$
  - A set of states S
  - A start state n
  - A set of accepting states  $F \subseteq S$
  - A set of transitions state  $\rightarrow^{input}$  state





## **Finite Automata State Graphs**

- A state
- The start state
- An accepting state

• A transition







#### **FA Example**



- Transition  $s_1 \rightarrow^a s_2$
- Is read In state  $s_1$  on input "a" go to state  $s_2$
- FA accepts a string if we can follow transitions labeled with the characters in the string from the start to an accepting state
  - What if we run out of characters?
- A finite automaton that accepts only "1"





## **Another Simple Example**

- FA accepts any number of 1's followed by a single 0
- Alphabet: {0,1}



• Check that "1110" is accepted but "1101..." is not



## **And Another Example**

- Alphabet {0,1}
- What language does this recognize?





#### "Realistic" example



- Recognizing machine register names
  - Typically "r" followed by register number (how many?)

 $Register \rightarrow \underline{r} \ (\underline{0}|\underline{1}|\underline{2}| \ \dots \ | \ \underline{9}) \ (\underline{0}|\underline{1}|\underline{2}| \ \dots \ | \ \underline{9})^{*}$ 





#### **REs and DFAs**



#### • Key idea:

 Every regular expression has an equivalent DFA that accepts only strings in the language

#### • Problem:

- How do we construct the DFA for an arbitrary regular expression?
- Not always easy



#### Example



• What is the FA for  $a(a|\epsilon)b$ ?

• Need  $\epsilon$  moves



• Transition A to B without consuming input!



#### **Another example**

• Remember this DFA?



• We can simplify it as follows:





## A different kind of automaton



- Accepts the same language Actually, it's easier to understand!
- What's different about it?
  - Two different transitions on '0'
  - This is a *non-deterministic finite automaton*





### **DFAs and NFAs**



- Deterministic Finite Automata (DFA)
  - One transition per input per state
  - No ε-moves
- Nondeterministic Finite Automata (NFA)
  - Can have multiple transitions for one input in a given state
  - Can have ε-moves



## **Execution of Finite Automata**



- DFA can take only one path through the state graph
  - Completely determined by input
- NFAs can choose
  - Whether to make ε-moves
  - Which of multiple transitions for a single input to take



### **Acceptance of NFAs**

- An NFA can get into multiple states
- *Input*: 1 0 0
- Rule: NFA accepts if it can get in a final state



#### Non-deterministic finite automata



 An NFA accepts a string x iff ∃ a path through the transition graph from s<sub>0</sub> to a final state such that the edge labels spell x

(Transitions on  $\varepsilon$  consume no input)

- To "run" the NFA, start in s<sub>0</sub> and guess the right transition at each step
  - Always guess correctly
  - If some sequence of correct guesses accepts x then accept



## Why do we care about NFAs?

- Simpler, smaller than DFAs
- More importantly:
  - Need them to support all RE capabilities
  - Systematic conversion from REs to NFAs
  - Need ε transitions to connect RE parts
- Problem: how to implement NFAs?
  - How do we guess the right transition?





#### **Relationship between** NFAs and DFAs

- DFA is a special case of an NFA
  - DFA has no  $\epsilon$  transitions
  - DFA's transition function is single-valued
  - Same rules will work
- DFA can be simulated with an NFA *(obvious)*
- NFA can be simulated with a DFA
  - Simulate sets of possible states
  - Possible exponential blowup in the state space
  - Still, one state per character in the input stream





(less obvious)

#### **Automatic scanner construction**

- To convert a specification into code:
  - 1 Write down the RE for the input language
  - 2 Build a big NFA
  - 3 Build the DFA that simulates the NFA
  - 4 Systematically shrink the DFA
  - 5 Turn it into code
- Scanner generators
  - Lex and Flex work along these lines
  - Algorithms are well-known and well-understood
  - Key issue is interface to parser (define all parts of speech)
  - You could build one in a weekend!





### **Scanner construction**

[0] Define tokens as regular expressions[1] Construct NFA for all REs

- Connect REs with ε transitions
- Thompson's construction
- [2] Convert NFA into a DFA
  - DFA is a simulation of NFA
  - Possibly much larger than NFA
  - Subset construction
- [3] Minimize the DFA
  - Hopcroft's algorithm

[4] Generate implementation





## [1] Thompson's construction



#### • Goal:

Systematically convert regular expressions for our language into a finite state automaton

#### • Key idea:

- FA "pattern" for each RE operator
- Start with atomic REs, build up a big NFA
- Idea due to Ken Thompson in 1968



## **Thompson's construction**



By induction on RE structure

#### • Base case:

Construct FA that recognizes atomic regular expressions:



#### • Induction:

Given FAs for two regular expressions, **x** and **y**, build a new FA that recognizes:

- xy
- x|y
- X\*



#### **Thompson's construction**

• Given:



• Build **xy**  $(s_a) \wedge$ 

$$\mathbf{x} \qquad \mathbf{y}$$

$$\mathbf{s}_{0} \qquad \mathbf{s}_{1} \qquad \mathbf{s}_{1} \qquad \mathbf{s}_{2} \qquad \mathbf{s}_{3}$$

• Why can't we do this?

$$\mathbf{x} \quad \mathbf{y}$$



#### Need for $\epsilon$ transitions

• What if **x** and **y** look like this:



• Then **xy** ends up like this:





#### **Thompson's construction**

• Given:



• xy













#### Example

Regular expression: <u>a</u>  $(\underline{b} | \underline{c})^*$ 

•  $\underline{a}, \underline{b}, \underline{k}, \underline{c}$   $(\underline{s}_0) \xrightarrow{\underline{a}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{b}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{c}} (\underline{s}_1)$ 

• <u>b|c</u>











#### Example





- <u>Note</u>: a human could design something simpler...
  - Like what?





#### Problem

- How to implement NFA scanner code?
  - Will the table-driven scheme work?
  - Non-determinism is a problem
  - Explore all possible paths?
- Observation:

We can build a DFA that simulates the NFA

- Accepts the same language
- Explores all paths simultaneously





# [2] NFA to DFA



- Subset construction algorithm
  - Intuition: each DFA state represents the *possible* states reachable after one input in the NFA



State in DFA = set of states from NFA  $s_1 = \{ q_0 \}$  $s_2 = \{ q_2, q_3 \}$ 

- Two key functions
  - next(s<sub>i</sub>, <u>a</u>) the set of states reachable from s<sub>i</sub> on <u>a</u>
  - $\epsilon$ -closure(s<sub>i</sub>) the set of states reachable from s<sub>i</sub> on  $\epsilon$
- DFA transition function
  - Edge labeled <u>a</u> from state s<sub>i</sub> to state ε-closure(next(s<sub>i</sub>, <u>a</u>))







| Subsets S             | ε-closure(next(s,α))                                                                                         |                                                                                                               |                                                                                                         |                                                                                                               |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| (DFA states)          | NFA states                                                                                                   | <u>a</u>                                                                                                      | <u>b</u>                                                                                                | <u>C</u>                                                                                                      |  |
| s <sub>0</sub>        | <b>q</b> <sub>0</sub>                                                                                        | <b>q</b> <sub>1</sub> , q <sub>2</sub> , q <sub>3</sub> ,<br>q <sub>4</sub> , q <sub>6</sub> , q <sub>9</sub> | none                                                                                                    | none                                                                                                          |  |
| <b>S</b> <sub>1</sub> | $     \begin{array}{c}             q_1, q_2, q_3, \\             q_4, q_6, q_9         \end{array}         $ | none                                                                                                          | <mark>q</mark> 5, q <sub>8</sub> , q <sub>9</sub> ,<br>q <sub>3</sub> , q <sub>4</sub> , q <sub>6</sub> | <b>q</b> <sub>7</sub> , q <sub>8</sub> , q <sub>9</sub> ,<br>q <sub>3</sub> , q <sub>4</sub> , q <sub>6</sub> |  |
| <b>S</b> <sub>2</sub> | $q_5, q_8, q_9, q_9, q_3, q_4, q_6$                                                                          | none                                                                                                          | (also s <sub>2</sub> )                                                                                  | (also s <sub>3</sub> )                                                                                        |  |
| <b>S</b> 3            | $q_7, q_8, q_9, q_3, q_4, q_6$                                                                               | none                                                                                                          | (also s <sub>2</sub> )                                                                                  | (also s <sub>3</sub> )                                                                                        |  |
| Accepting states      |                                                                                                              |                                                                                                               |                                                                                                         |                                                                                                               |  |



## NFA to DFA example



• Convert each subset in S into a state:



- All transitions are deterministic
- Smaller than NFA, but still bigger than necessary







#### **Does it work?**

- Does the algorithm halt?
  - S contains no duplicate subsets
  - 2<sup>|NFA|</sup> is finite
  - Main loop adds to S, but does not remove It is a monotone function
- S contains all the reachable NFA states

Tries all input symbols, builds all NFA configurations

- Note: important class of compiler algorithms
  - Fixpoint computation
  - Monotonic update function
  - Convergence is guaranteed





# [3] DFA minimization

- Hopcroft's algorithm
  - Discover sets of *equivalent* states in DFA
  - Represent each set with a single state
- When would two states in the DFA be equivalent?
- Two states are equivalent *iff*:
  - For all input symbols, transitions lead to equivalent states
  - $\Rightarrow$  This is the key to the algorithm



## **DFA** minimization



- A *partition P* of the states *S* 
  - Each  $s \in S$  is in exactly one set  $p_i \in P$

#### • <u>Idea</u>:

*If two states s and t transition to different partitions, then they must be in different partitions* 

• Algorithm:

Iteratively partition the DFA's states

- Group states into maximal size sets, *optimistically*
- Iteratively subdivide those sets, as needed
- States that remain grouped together are equivalent



## Splitting S around $\alpha$



#### Original set S





The algorithm partitions S around  $\alpha$ 

# Splitting S around $\alpha$





Could we split S<sub>2</sub> further? Yes, but it does not help asymptotically



## **DFA** minimization



- Details:
  - Given DFA  $(S, \Sigma, \delta, s_0, F)$
  - Initial partition: P<sub>0</sub> = {F, S-F}
     <u>Intuition</u>: final states are always different
- Splitting a set around symbol <u>a</u>
  - Assume  $s_a \& s_b \in p_i$ , and  $\delta(s_a,\underline{a}) = s_x$ ,  $\& \delta(s_b,\underline{a}) = s_y$
  - Split  $p_i$  if:
    - If  $s_x \& s_y$  are not in the same set
    - If  $s_a$  has a transition on a, but  $s_b$  does not

Intuition: one state in DFA cannot have two transitions on <u>a</u>



# **DFA** minimization algorithm



| $P \leftarrow \{F, \{Q-F\}\}$                                                                               | Start with two sets: final states, everything else                   |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| while ( P is still changing)<br>$T \leftarrow \{\}$                                                         | Build a new partitioning                                             |
| for each set $S \in P$<br>for each $\alpha \in \Sigma$<br>partition S by $\alpha$<br>into $S_1$ , and $S_2$ | For each set and each input symbol, try to partition the set         |
| $T \leftarrow T \cup S_1 \cup S_2$<br>if $T \neq P$ then<br>$P \leftarrow T$                                | Collect the resulting sets in a new partition, see if it's different |



This is a fixed-point algorithm!

#### **Does it work?**

- Algorithm halts
  - Partition  $P \in 2^S$
  - Start off with 2 subsets of *S* {*F*} and {*S*-*F*}
  - While loop takes  $P_i \rightarrow P_{i+1}$  by splitting 1 or more sets
  - $P_{i+1}$  is at least one step closer to partition with |S| sets
  - Maximum of |S | splits
- Note that
  - Partitions are <u>never</u> combined
  - Initial partition ensures that final states are intact



## **DFA** minimization



Refining the algorithm

- As written, it examines every  $S \in P$  on each iteration
  - This does a lot of unnecessary work
  - Only need to examine S if some T, reachable from S, has been split
- Reformulate the algorithm using a "worklist"
  - Start worklist with initial partition, *F* and *{Q-F}*
  - When it splits S into  $S_1$  and  $S_2$ , place  $S_2$  on worklist

This version looks at each  $S \in P$  many fewer times



Well-known, widely used algorithm due to John Hopcroft



#### Implementation



- Finite automaton
  - States, characters
  - State transition  $\delta$  uniquely determines next state
- Next character function
  - Reads next character into buffer
  - (May compute *character class* by fast table lookup)
- Transitions from state to state
  - Implement  $\delta$  as a table
  - Access table using current state and character





Turning the recognizer into code

| δ                     | r              | 0,1,2,3,4,5<br>,6,7,8,9 | All<br>others  |
|-----------------------|----------------|-------------------------|----------------|
| <b>S</b> <sub>0</sub> | S <sub>1</sub> | S <sub>e</sub>          | S <sub>e</sub> |
| S <sub>1</sub>        | S <sub>e</sub> | S <sub>2</sub>          | S <sub>e</sub> |
| <b>S</b> 2            | S <sub>e</sub> | S <sub>2</sub>          | S <sub>e</sub> |
| S <sub>e</sub>        | S <sub>e</sub> | S <sub>e</sub>          | S <sub>e</sub> |

Table encoding RE

 $\begin{array}{l} \text{Char} \leftarrow \textit{next character} \\ \text{State} \leftarrow s_0 \\ \text{while (Char} \neq \underline{\text{EOF}}) \\ \text{State} \leftarrow \delta(\text{State,Char}) \\ \text{Char} \leftarrow \textit{next character} \\ \text{if (State is a final state )} \\ \text{then report success} \end{array}$ 

else report failure

Skeleton recognizer









#### Adding actions

| δ              | r              | 0,1,2,3,4,5<br>,6,7,8,9 | All<br>others  |
|----------------|----------------|-------------------------|----------------|
| <b>S</b> 0     | s <sub>1</sub> | s <sub>e</sub>          | s <sub>e</sub> |
|                | start          | error                   | error          |
| <b>S</b> 1     | s <sub>e</sub> | s <sub>2</sub>          | s <sub>e</sub> |
|                | error          | add                     | error          |
| <b>S</b> 2     | s <sub>e</sub> | s <sub>2</sub>          | s <sub>e</sub> |
|                | error          | add                     | error          |
| S <sub>e</sub> | s <sub>e</sub> | s <sub>e</sub>          | s <sub>e</sub> |
|                | error          | error                   | error          |



Table encoding RE

 $\begin{array}{l} \text{Char} \leftarrow \textit{next character} \\ \text{State} \leftarrow s_0 \end{array}$ 

- while (Char  $\neq$  <u>EOF</u>) State  $\leftarrow \delta$ (State,Char) *perform specified action* Char  $\leftarrow$  *next character*
- if (State is a final state) then report success else report failure

Skeleton recognizer

## **Tighter register specification**

• The DFA for

 $\textit{Register} \rightarrow \underline{r} \;(\; (\underline{0|1|2}) \;(\textit{Digit} \mid \epsilon) \mid (\underline{4|5|6|7|8|9}) \mid (\underline{3|30|31}) \;)$ 



- Accepts a more constrained set of registers
- Same set of actions, more states





#### **Tighter register specification**

| δ                     | r              | 0,1            | 2              | 3              | 4-9            | All<br>others  |                                |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------------------|
| s <sub>0</sub>        | <b>S</b> 1     | S <sub>e</sub> |                                |
| <b>S</b> <sub>1</sub> | s <sub>e</sub> | <b>S</b> 2     | <b>S</b> 2     | $s_5$          | <b>S</b> 4     | s <sub>e</sub> |                                |
| <b>S</b> <sub>2</sub> | S <sub>e</sub> | S3             | S <sub>3</sub> | S3             | S3             | s <sub>e</sub> |                                |
| <b>S</b> 3            | S <sub>e</sub> | ← Runs in the                  |
| <i>S</i> <sub>4</sub> | S <sub>e</sub> | same<br>skeleton<br>recognizer |
| <b>S</b> 5            | S <sub>e</sub> | s <sub>6</sub> | s <sub>e</sub> | s <sub>e</sub> | s <sub>e</sub> | s <sub>e</sub> |                                |
| <b>S</b> <sub>6</sub> | S <sub>e</sub> |                                |
| S <sub>e</sub>        | S <sub>e</sub> | S <sub>e</sub> | S <sub>e</sub> | s <sub>e</sub> | s <sub>e</sub> | S <sub>e</sub> |                                |

Table encoding RE for the tighter register specification



#### **Building a scanner**



- Language: if | while | [a-zA-Z][a-zA-Z0-9]\* | [0-9][0-9]\*...
- Problem:
  - Giant NFA either accepts or rejects a one token
  - We need to *partition* a string, and indicate the kind



#### Partitioning

• Input: stream of characters

 $x_0, x_1, x_2, x_3, \dots, x_n$ 



- Annotate the NFA
  - Remember the accepting state of each RE
  - Annotate with the kind of token
- Does giant NFA accept some substring x<sub>0</sub>...x<sub>i</sub>?
  - Return substring and kind of token
  - Restart the NFA at x<sub>i+1</sub>





## **Partitioning problems**

- Matching is ambiguous
  - Example: "foo+3"
  - We want <foo>,<+>,<3>
  - But: <f>,<00>,<+>,<3> also works with our NFA
    - Can end the identifier anywhere
    - Note: "foo+" does not satisfy NFA
- Solution: "maximal munch"
  - Choose the longest substring that is accepted
  - Must look at the next character to decide -- lookahead
  - Keep munching until no transition on lookahead



#### **More problems**

- Some strings satisfy multiple REs
  - Example: "new foo"
  - <new> could be an identifier or a keyword

#### • Solution: rank the REs

- First, use maximal munch
- Second, if substring satisfies two REs, choose the one with higher rank
- Order is important in the specification
- Put keywords first!





#### **C** scanner





#### Implementation

- Table driven
  - Read and classify character
  - Select action
  - Find the next state, assign to state variable
  - Repeat
- Alternative: direct coding
  - Each state is a chunk of code
  - Transitions test and branch directly
  - Very ugly code but who cares?
  - Very efficient

This is how lex/flex work: states are encoded as cases in a giant switch statement





#### **Building a lexer**





Giant DFA

Table or code





#### **Building scanners**



#### • The point

- Theory lets us automate construction
- Language designer writes down regular expressions
- Generator does: RE  $\rightarrow$  NFA  $\rightarrow$  DFA  $\rightarrow$  code
- Reliably produces fast, robust scanners
- Works for most modern languages Think twice about language features that defeat the DFAbased scanners

