
Compilers
Type checking

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Summary of parsingSummary of parsing

Parsing
A solid foundation: context-free grammars
A simple parser: LL(1)
A more powerful parser: LR(1)
An efficiency hack: LALR(1)An efficiency hack: LALR(1)
LALR(1) parser generators

22

A Hierarchy of Grammar
ClassesClasses

From Andrew Appel,
“Modern Compiler
Implementation in Java”Implementation in Java

33

RoadmapRoadmap

IRLexical
analyzer Parsertokenstext

chars

Parsing

Errors

Tells us if input is syntactically correct
Gives us derivation or parse tree
But we want to do more:But we want to do more:

Build some data structure – the IR
Perform other checks and computations

44

Syntax-directed translationSyntax-directed translation
In practice:p

Fold some computations into parsing
Computations are triggered by parsing steps
Syntax-directed translation

Parser generators
Add action code to do something
Typically build the IR

How much can we do during parsing?

55

Syntax-directed translationSyntax-directed translation
General strategygy

Associate values with grammar symbols
Associate computations with productions

Implementation approaches
Formal: attribute grammarso a a bu e g a a s
Informal: ad-hoc translation schemes

S thi t b f ld d i t iSome things cannot be folded into parsing

66

ExampleExample
Desk calculator G

Expression grammar
Build parse tree
Evaluate the resulting tree

E
Evaluate the resulting tree

Production rule
1 G E

E + T

T F
1
2
3
4

G → E
E → E1 + T
E → T
T → T1 * F

T * F

F 5

4

4
5
6
7

T → T1 F
T → F
F → (E)
F → num 3 * 5 + 4

F

3

5

77

Example
G

Example
Can we evaluate the expression without G

E
building the tree first?
“Piggyback” on parsing 19

E + T

T F
Production rule
1
2

G → E
E E + T

15 + 4

15 4

T * F

F 5

4
2
3
4
5

E → E1 + T
E → T
T → T1 * F
T → F

3 * 5

3 5

4

F

3

55
6
7

T F
F → (E)
F → num

3 * 5 + 4

3

3

5

88

ExampleExample
Codify:y

Store intermediate values with non-terminals
Perform computations in each production

Computation
print(E.val)

Production rule
1 G → E

E.val ← E1.val + T.val
E.val ← T.val
T.val ← T1.val * F.val
T val ← F val

2
3
4
5

E → E1 + T
E → T
T → T1 * F
T → F T.val ← F.val

F.val ← E.val
F.val ← valueof(num)

5
6
7

T → F
F → (E)
F → num

99

Where are weWhere are we…

Abstract
syntax treeParsertext

chars

Optimization
and

code generation

Parsing complete

Errors

Parsing complete
Syntax is correct
Built an internal representationBuilt an internal representation

(usually an abstract syntax tree)
Now what?

1010

Beyond syntaxBeyond syntax
foo(int a, char * s){ … }(,){ }

int bar() {
int f[3];

What’s wrong
with this code?

int i, j, k;
char q, *p;
float k;

6 10

(Note: it parses
perfectly)

foo(f[6], 10, j);
break;
i->val = 5;
j = i + k;j = i + k;
printf(“%s,%s.\n”,p, q);
goto label23;

}

1111

}

ErrorsErrors
Undeclared identifier
Multiply declared identifier
Index out of bounds
Wrong number or types of args to call
Incompatible types for operation
Break statement outside switch/loop
Goto with no label

1212

Program checkingProgram checking
Why do we care?

Obvious:
Report mistakes to programmerp p g
Avoid bugs: f[6] will cause a run-time failure
Help programmer verify intent

How do these checks help compiler?
Allocate right amount of space for variables
S l t i ht hi tiSelect right machine operations
Proper implementation of control structures

1313

Program checkingProgram checking

ASTParsertext
chars …Semantic

checker

Semantic checking

Errors

Semantic checking
Beyond syntax: hard to express directly in grammar
Requires extra computation, extra data structures
Goals:

Better error checking – “deeper”
Give back-end everything it needs to generate code

1414

y g g

Program checkingProgram checking
When are checks performed?

Static checking
At compile-time
Detect and report errors by analyzing the programDetect and report errors by analyzing the program

Dynamic checking
At run-time
Detect and handle errors as they occur

What are the pros and cons?
Efficiency? Completeness? Developer vs user experience?
Language flexibility?

What is the role of the compiler?

1515

What is the role of the compiler?

Kinds of static checksKinds of static checks
Uniqueness checks

Certain names must be unique
Many languages require variable declarations

Flow-of-control checks
Match control-flow operators with structures
E l b k li t i t l / it hExample: break applies to innermost loop/switch

Type checks
Check compatibility of operators and operandsCheck compatibility of operators and operands
Example: does 3.5 + “foobar” make sense?

What kind of check is “array bounds”?

1616

What kind of check is array bounds ?

Uniqueness checksUniqueness checks
What does a name in a program denote?

Variable
Label
Function name

Information maintained in bindings
A binding from the name to the entity
Bindings have scopeBindings have scope –
the region of the program in which they are valid

Uniqueness checks:
Analyze the bindings
Make sure they obey the rules

Closely tied to procedures

1717

Closely tied to procedures

ProceduresProcedures
What is a procedure/function/method?

Does it exist at the machine code level?
Not really – it’s an abstraction created by the compiler
Components

Name space abstraction
Control abstractionControl abstraction
Interface

Today: name space abstractionToday: name space abstraction
Defines scoping and binding rules

Later: look at how abstraction is implemented

1818

Later: look at how abstraction is implemented

Procedures as name spacesProcedures as name spaces
Each procedure creates its own name space

Any name (almost) can be declared locally
Local names hide identical non-local names (shadowing)
Local names cannot be seen outside the procedureLocal names cannot be seen outside the procedure
We call this set of rules & conventions lexical scoping
Scopes may be nested

Examples
C has global, static, local, and block scopes

Blocks can be nested, procedures cannot
Scheme has global, procedure-wide, and nested scopes

Procedure scope (typically) contains formal parameters

1919

p (yp y) p

Procedures as name spacesProcedures as name spaces
Why introduce lexical scoping?Why introduce lexical scoping?

Flexibility for programmer
Simplifies rules for naming & resolves conflicts

Implementation:
The compiler responsibilities:

At point p, which “x” is the programmer talking about?
At run-time, where is the value of x found in memory?

Solution:
Lexically scoped symbol tables

2020

ExamplesExamples
In C++ and Java

{
for (int i=0; i < 100; i++) {
...
}

for (Iterator i=list.iterator(); i.hasNext();) {
...
}

}

This is actually useful!

}

2121

Dynamic vs staticDynamic vs static
Static scopingg

Most compiled languages – C, C++, Java, Fortran
Scopes only exist at compile-time
W ’ll th di ti t t th tWe’ll see the corresponding run-time structures that are
used to establish addressability later.

Dynamic scopingDynamic scoping
Interpreted languages – Perl, Common Lisp

int x = 0;int x = 0;
int f() { return x; }
int g() { int x = 1; return f(); }

2222

Lexically-scoped
Symbol TablesSymbol Tables

Compiler jobj
Keep track of names (identifiers)
At a use of a name, find its information (like what?)

The problem
Compiler needs a distinct entry for each declaration
N t d l i l d it d li t d l tiNested lexical scopes admit duplicate declarations

The symbol table interface
enter() enter a new scope levelenter() – enter a new scope level
insert(name) – creates entry for name in current scope
lookup(name) – lookup a name, return an entry

2323

exit() – leave scope, remove all names declared there

Example

class p {
int a b c

L0:{
int a b cint a, b, c

method q {
int v, b, x, w
for (r = 0; ...) {

i

int a, b, c
L1: {

int v, b, x, w
L2a: {

iint x, y, z
….

}
while (s) {

int x, y, z
...

}
L2b: {while (s) {

int x, a, v
…

}

L2b: {
int x, a, v
...

}
}… r … s

}
… q …

}

}
}

2424

}

Chained implementationChained implementation
Create a new table for each scope,
h i th t th f l kchain them together for lookup

“Sheaf of tables” implementation
p ...

• enter() creates a new table
• insert() adds at current level
• lookup() walks chain of tables &x

a

b
r

q

p

• lookup() walks chain of tables &
returns first occurrence of name

• exit() throws away table for level
p, if it is top table in the chain

y

v

b
x

c

•
...

p, p

How would you implement the
individual tables?

z

w

2525

Stack implementationStack implementation
Implementation

growth
• enter() puts a marker in stack
• insert () inserts at nextFree
• lookup () searches from

x
y
z

lookup () searches from
nextFree–1 forward

• exit () sets nextFree back to
the previous marker.r (level 2)

nextFree

c
v
b
x
w Advantage

• Uses less space
Disadvantageq (level 1)

a
b
c • Lookups can be expensive

p (level 0)

2626

Threaded stack
implementationimplementation

•
Implementation

•

•

growth
• insert () puts new entry at the

head of the list for the name
• lookup () goes direct to location

•

•
h(x)

x
y
z

• exit () processes each element in
level being deleted to remove
from head of list

r

•

c
v
b
x
w Advantage

• lookup is fast

Disadvantage
q

• a
b
c Disadvantage

• exit takes time proportional to
number of declared variables in
level

p

2727

Symbol tables in CSymbol tables in C
Identifiers

M i f t d l tiMapping from names to declarations
Fully nested – each ‘{‘ opens new scope

Labels
Mapping from names to labels (for goto)
Flat table – one set of labels for each procedure

Tags
Mapping from names to struct definitions
Fully nested

Externals
Record of extern declarations
Flat table – redundant extern declarations must be identical

2828

In general, rules can be very subtle

ExamplesExamples
Example of typedef use:
t d f i t T

Example of proper declaration binding:

typedef int T;
struct S { T T; }; /* redefinition of T as member name */

Example of proper declaration binding:
int; /* syntax error: vacuous declaration */
struct S; /* no error: tag is defined, not elaborated */

Example of declaration name spaces
Declare "a" in the name space before parsing initializer

Declare "b" with a type before parsing "c"

int a = sizeof(a);

int b, c[sizeof(b)];

2929

int b, c[sizeof(b)];

Uniqueness checksUniqueness checks
Which ones involve foo(int a, char * s){ … }
uniqueness?

Wh t d d t

(,){ }

int bar() {
int f[3];

What do we need to
do to detect them?

int i, j, k;
char q, *p;
float k;

6 10foo(f[6], 10, j);
break;
i->val = 5;
j = i + k;j = i + k;
printf(“%s,%s.\n”,p, q);
goto label23;

}

3030

}

Next: type checkingNext: type checking
Big topic

Type systems
Type inference
Non-standard type systems for program analysis
Theory of type systems

Focus
Role of types in compilationRole of types in compilation
Imperative and object-oriented languages

What is a type?yp
Def:

A type is a collection of values and
a set of operations on those values

3131

a set of operations on those values

Purpose of typesPurpose of types
Identify and prevent errors

Avoid meaningless or harmful computations
Meaningless: (x < 6) + 1 – “bathtub”
Harmful?

Program organization and documentation
Separate types for separate concepts
Type indicates programmer intentType indicates programmer intent

Support implementation
Allocate right amount of space for variablesg p
Select right machine operations
Optimization: e.g., use fewer bits when possible

K id t b h k d
3232

Key idea: types can be checked

Type errorsType errors
Problem:

Underlying memory has no concept of type
Everything is just a string of bits:

0100 0000 0101 1000 0000 0000 0000 00000100 0000 0101 1000 0000 0000 0000 0000

The floating point number 3.375
The 32-bit integer 1 079 508 992The 32-bit integer 1,079,508,992
Two 16-bit integers 16472 and 0
Four ASCII characters: @ X NUL NUL

Without type checking:
Machine will let you store 3.375 and later load 1,079,508,992

3333

Violates the intended semantics of the program

Type systemType system
Idea:

Provide clear interpretation for bits in memory
Imposes constraints on use of variables, data
Expressed as a set of rulesExpressed as a set of rules
Automatically check the rules
Report errors to programmer

Key questions:
What types are built into the language?
Can the programmer build new types?Can the programmer build new types?
What are the typing rules?
When does type checking occur?
H t i tl th l f d?

3434

How strictly are the rules enforced?

When are checks performed?When are checks performed?
What do you think the choices are?

Static and dynamic
Statically typed languages

Types of all variables are determined ahead of timeTypes of all variables are determined ahead of time
Examples?

Dynamically typed languages
Type of a variable can vary at run timeType of a variable can vary at run-time
Examples?

O f ?Our focus?
Static typing – corresponds to compilation

3535

ExpressivenessExpressiveness
Consider this Scheme function:

(define myfunc (lambda (x)
(if (list? x) (myfunc(first x))

(+ x 1))

What is the type of x?
S ti li t ti t

(+ x 1))

Sometimes a list, sometimes an atom
Downside?

What would happen in static typing?What would happen in static typing?
Cannot assign a type to x at compile time
Cannot write this function

3636

Static typing is conservative

Types and compilersTypes and compilers
What is the role of the compiler?
Example: we want to generate code for

a = b + c * d; arr[i] = *p + 2;

What does the compiler need to know?

Duties:
Enforce type rules of the language
Choose operations to be performed
Can we do this in one machine instruction?Can we do this in one machine instruction?
Provide concrete representation – bits
Next time: where is the storage?
Wh t if ’t f th h k t il ti ?

3737

What if can’t perform the check at compile-time?

Type systemsType systems
From language specifications:g g

“The result of a unary & operator is a pointer to the object
referred to by the operand If the type of the operand is “Τ”referred to by the operand. If the type of the operand is Τ ,
the type of the result is “pointer to Τ”.

“If b th d f th ith ti t dditi“If both operands of the arithmetic operators addition,
subtraction and multiplication are integers, then the result
is an integer”

3838

Properties of typesProperties of types
These excerpts imply:y

Types have structure
“P i t t T” d “A f P i t t T”“Pointer to T” and “Array of Pointer to T”

Expressions have typesp yp
Types are derived from operands by rules

Goal: determine types for all parts of a programGoal: determine types for all parts of a program

3939

Type expressionsType expressions
(Not to be confused with types of expressions)

Build a description of a type from:
Basic types – also called “primitive types”

V b t l i t h fl t d blVary between languages: int, char, float, double
Type constructors

Functions over types that build more complex typesyp p yp
Type variables

Unspecified parts of a type – polymorphism, generics
TType names

An “alias” for a type expression – typedef in C

4040

Type constructorsType constructors
Arraysy

If Τ is a type, then array(Τ) is a type denoting an array with
elements of type Τ
May have a size component: array(I,Τ)

Products or recordsProducts or records
If T1 and T2 are types, then T1×T2 is a type denoting pairs
of two types
May have labels for records/structs

(“name”, char *) × (“age”, int)

4141

Type constructorsType constructors
Pointers

If Τ is a type, the pointer(Τ) denotes a pointer to T

Functions or function signatures
If D and R are types then D → R is a type denoting a
function from domain type D to range type Rfunction from domain type D to range type R
For multiple inputs, domain is a product
Notice: primitive operations have signaturesp p g

Mod % operator: int × int → int

4242

ExampleExample
Static type checker for Cy

Defined over the structure of the program

Rules: E i T lRules: Expression Type rule
E1 + E2 if type(E2) is int and

type(E1) is intyp (1)
result type is int

else …other cases…

Question:
How do we get declared types of identifiers, functions?

4343

g yp ,

More examplesMore examples
More interesting casesg

Rules: Expression Type rule
E1 [E2] if type(E2) is int and

type(E1) is array(T)
result type is T

* E

result type is T
else error

if type(E) is pointer(T)yp () p ()
result type is T

else error

4444

ExampleExample
What about function calls?

Consider single argument case

Expression Type rule
E1 (E2) if type(E1) is D → R and

type(E2) is D
result type is R

How do we perform these checks?

result type is R
else error

How do we perform these checks?
What is the core type-checking operation?
How do I determine if “type(E) is D”?

4545

“If two type expressions are equivalent then…”

Type equivalenceType equivalence
Implementation: structural equivalence

S b i tSame basic types
Same set of constructors applied

Recursive test: function equiv(s, t)
if s and t are the same basic type

return true
if s = pointer(s1) and t = pointer(t1)

return equiv(s1,t1)
if s = s1×s2 and t = t1×t2

return equiv(s1,t1) && equiv(s2,t2)
…etc…

4646

RepresentationRepresentation
Represent types as graphsy g

Node for each type
Often a DAG: share the structure when possible

→ →

pointer× pointer×

intchar int char int

4747

Function: (char × int) → int *

Structural equivalenceStructural equivalence
Efficient implementation

Recursively descend DAG until common node

Many subtle variations in practicey p
Special rules for parameter passing

C: array T[] is compatible with T*
P l F l i ff i fPascal, Fortran: leaving off size of array
Is “size” part of the type?

Type qualifiers: const, static, etc.yp q , ,

Expr Type rule

E1 = E2 ; if type(E1) == type(E2)

4848

result type is E1
else error

Notions of equivalenceNotions of equivalence
Different way of handling type namesy g y

Structural equivalence
Ignores type namesIgnores type names
typedef int * numptr means numptr ≡ int *

Not always desirable
Example?

Name equivalence
Types are equivalent if they have the same name
Solves an important problem: recursive types

4949

Recursive typesRecursive types
Why is this a problem?

struct cell {
int info;
struct cell * next;

Cycle in the type graph!

struct cell * next;
}

Cycle in the type graph!
C uses structural equivalence for everything except
structs (and unions)

The name “struct cell” is used instead of checking the
actual fields in the struct
Can we have two compatible struct definitions?

5050

Can we have two compatible struct definitions?

Java typesJava types
Type equivalence for Java

class Foo { class Bar {
int x; int w;
float y; float z;

} }

Can we pass Bar objects to a method taking a type Foo?
No
Java uses name equivalence for classesJava uses name equivalence for classes
What can we do in C that we can’t do in Java?

5151

Type checkingType checking
Consider this case:
What is the type of x+i if x is float and i is int

Is this an error?Is this an error?

Compiler fixes the problem
C t i t tibl tConvert into compatible types
Automatic conversions are called coercions
Rules can be complex

in C, large set of rules for called integral promotions
Goal is to preserve information

5252

Type coercionsType coercions
Rules

Find a common type
Add explicit conversion into the AST

Expression Type rule
E1 + E2 if type(E1) is int and type(E2) is int

result type is int
if type(E1) is int and type(E2) is float

result type is float
if type(E1) is float and type(E2) is int

result type is float
…etc…

5353

Implementing type checkersImplementing type checkers
Expression Type rule
E → E1 [E2] if type(E2) is int and

type(E1) is array(T)
type(E) = Typ ()

else error
E → * E if type(E) is pointer(T)

type(E) is T

Does this form look familiar?

yp ()
else error

Type checking fits into syntax-directed translation

5454

Interesting casesInteresting cases
What about printf?

printf(const char * format, …)
Implemented with varargs
F t ifi hi h t h ld f llFormat specifies which arguments should follow
Who checks?

Array boundsArray bounds
Array sizes rarely provided in declaration
Cannot check statically (in general)Cannot check statically (in general)
There are fancy-dancy systems that try to do this
Java: check at run-time

5555

OverloadingOverloading
“+” operator

Same syntax, same “semantics”, multiple implementations
C: float versus int
C++: arbitrary user implementationC : arbitrary user implementation

Note: cannot change parser – what does that mean?

How to decide which one?
Use types of the operands
Find operator with the right type signature

Complex interaction with coercions
Need a rule to choose between conversion and

5656

overloading

Object oriented typesObject oriented types
class Foo { …. }

What is relationship between Foo and Bar?

class Foo { …. }
class Bar extends Foo { … }

What is relationship between Foo and Bar?
Bar is a subtype of Foo
Any code that accepts a Foo object can also accept a Bar object

’We’ll talk about how to implement this later

Modify type compatibility rules
To check an assignment check

Expr Type rule
To check an assignment, check
subtype relationship <=
Also for formal parameters

E1 = E2 ; if type(E2) <= type(E1)
result type is E1

else error

5757

Java arraysJava arrays
class Foo { …. }
class Bar extends Foo { }class Bar extends Foo { … }
Foo[] foo_array;
Bar[] bar_array;

Question: is bar[] a subtype of foo[]?
Answer: yes
Consequences?

void storeIt(Foo f, Object [] arr)
{

How do we perform this check?

arr[0] = f;
}

5858

How do we perform this check?

