
Top Down Parsing
• Start at the root of the parse tree and

grow toward leaves.

• Pick a production and try to match the
input.

• Repeat until the fringe of the parse tree
matches the input string.

Grammars and Parsers

LL(1) parsers

• Left-to-right input
• Leftmost derivation
• 1 symbol of look-ahead

• Def: a grammar is LL(1) iff

A → α and A → β and
FIRST+(A → α) ∩ FIRST+(A → β) = ∅

LL(1) grammars are:

• not ambiguous and
• not left-recursive

LL(1) Grammars

Example
Production rule

1
2

Tern -> '0'..'9' '?' Tern ':' Tern
 | '0'..'9'

• Problem?
• How do we predict which production to use?

Left factoring
Production rule

1

2
3

Tern -> '0'..'9' TernTail

TernTail -> '?' Tern ':' Tern
 | ε

FIRST and FOLLOW sets

FIRST(#1) = { '0' .. ‘9'}
FIRST(#2) = { ‘?' }
FIRST(#3) = { ‘ε’ }

FOLLOW(Tern) = { ':', EOF }
FOLLOW(TernTail) = FOLLOW(Tern) = { ':', EOF }

Production rule

1

2
3

Tern -> '0'..'9' TernTail

TernTail -> '?' Tern ':' Tern
 | ε

FIRST+(#1) = { '0' .. '9'}

FIRST+(#2) = { ‘?’ }

FIRST+(#3) =  
 FIRST(#3) U FOLLOW(TernTail) =  
 { e, ':', EOF }

FIRST+ sets
Production rule

1

2
3

Tern -> '0'..'9' TernTail

TernTail -> '?' Tern ':' Tern
 | ε

Table-driven approach

'0' .. '9' ':' '?' EOF

Tern '0'..'9' TernTail error error error

TernTail error ε '?' Tern ':' Tern ε

Recursive descent
• Define a function for each nonterminal.

• Have these functions call each other based
on the lookahead token.

• The term descent refers to the direction in which
the parse tree is built.

