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Fractal interpolation functions provide a new means for fitting experimental data
and their graphs can be used to approximate natural scenes. We first determine the
conditions that a vertical scaling factor must obey to model effectively an arbitrary
function. We then introduce polar fractal interpolation functions as one fractal
interpolation method of a non-affine character. Thus, this method may be suitable
for a wider range of applications than that of the affine case. The interpolation
takes place in polar coordinates and then with an inverse non-affine transformation
a simple closed curve arises as an attractor which interpolates the data in the usual
plane coordinates. Finally, we prove that this attractor has the same Hausdorff
dimension as the polar one. � 1999 Academic Press

1. INTRODUCTION

Based on a theorem of J. E. Hutchinson ([12], p. 731) and using
iterated-function-systems (IFS) theory, M. F. Barnsley introduced a class
of functions in [3] which he called fractal interpolation functions or FIF's
for short. He worked basically with affine FIF's, in the sense that they are
obtained using affine transformations. More general transformations than
the affine ones are discussed in [9] and in [10] but there is no evidence
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therein that they may be used as an interpolation model. The affine FIF's
have in common with elementary functions that they are of a geometrical
character and that they can be computed rapidly. The main difference is
their fractal character since their graphs usually have non-integral dimen-
sion. The graphs of these functions can be used to approximate image com-
ponents such as the profiles of mountain ranges, the tops of clouds and
horizons over forests, to name but a few. Recent applications of this theory
include modeling of discrete sequences as in [16], modeling of speech
signals as in [17] and compression of static images as in [1].

M. F. Barnsley claims in [3], p. 308, that his model has an attractor (the
graph G of the FIF) in a bigger compact metric space than Hutchinson's
[12]. Although he defines the fractal interpolation so as to take place in
the compact metric space K=I_[a, b], where I and [a, b] are real closed
intervals, he doesn't mention anything about the conditions that the verti-
cal scaling factors must obey, so that G remains within the rectangle K.
One possible explanation of this is that he takes [a, b] to be ``sufficiently
large,'' for example this interval in [4] and in [6] coincides eventually with
R itself so that G finally fits in K. In this way, one interpolates addressing
the issue independently of any frontiers to the space he is working in.

The first aim of our paper is to fill in this gap and make the affine fractal
interpolation more flexible to handle situations where the original frame is
given and our data must be interpolated within this frame. This becomes
feasible by proving that the vertical scaling factors depend solely on the
data in hand and so can be automatically generated. In this way when the
vertical scaling factors are appropriately chosen, one can fix a priori the
overall approximate shape of the FIF. Thus, we should be able to construct
FIF's whose overall shapes and dimensions can be prescribed. This result
is very useful in the parameter identification problem as far as the calcula-
tion of the contractivity factors of the FIF is concerned. Then we introduce
the Polar FIF's which can handle a wider range of data because of their
non-affine character which is based on the polar transformation. Next, we
present a theorem which shows that if we transfer our polar model to the
plane we get a simple closed (i.e., Jordan) curve which interpolates our
original data. Finally, we prove that the Hausdorff dimension of our inter-
polation function's graph in the plane coordinates is the same as that of
our transformed-in-polar-coordinates function's graph.

2. ITERATED FUNCTION SYSTEMS

Within Fractal Geometry, the method of iterated function systems intro-
duced by J. E. Hutchinson in [12] and popularized by M. F. Barnsley and
S. Demko in [5], is a relatively easy way to generate fractal images.
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A function f : X � Y is called a Ho� lder function of exponent a if

| f (x)& f ( y)|�c |x& y|a

for x, y # X, a�0 and for some constant c. Note that, if a>1, the functions
are constants. Obviously, c�0. The function f is called a Lipschitz function
if a may be taken to be equal to 1. A Lipschitz function is a contraction
with contractivity factor c, if c<1. An iterated function system or IFS for
short, is a collection of a complete metric space (X, \) together with a finite
set of continuous mappings wn : X � X, n=1, 2, ..., N, where \ is a distance
between elements of X. It is often convenient to write an IFS formally as
[X; w1 , w2 , ..., wN] or, somewhat more briefly, as [X; w1&N].

We introduce the associated map of subsets W: H(X ) � H(X ), given by

W(E )= .
N

n=1

wn(E ) for all E # H(X ),

where H(X ) is the metric space of all nonempty compact subsets of X with
respect to the Hausdorff distance. The map W is called the collage map to
alert us to the fact that W(E ) is formed as a union or collage of sets. Some-
times H(X ) is referred to as the ``space of fractals in X '' (but note that not
all members of X are fractals).

If wn are contractions with corresponding contractivity factors sn for n=
1, 2, ..., N, the IFS is termed hyperbolic and the map W itself is then a con-
traction with contractivity factor s=max[s1 , s2 , ..., sN] ([4], Theorem 7.1,
p. 81). In what follows we abbreviate by f k the k-fold composition
f b f b } } } b f.

The attractor of a hyperbolic IFS is the unique set A for which
limk � � Wk(E0)=A for every starting set E0 . The term attractor is chosen
to suggest the movement of E0 towards A under successive applications of
W. A is also the unique set in H(X ) which is not changed by W, so
W(A)=A, and from this important perspective it is often called the
invariant set of the IFS.

A transformation w is affine if it may be represented by a matrix A and
translation t as w(x)=Ax+t, or (if X=R2)

w _x
y&=_a

c
b
s&_

x
y&+_d

e & . (1)

The code of w is the 6-tuple (a, b, c, s, d, e), and the code of an IFS is a
table whose rows are the codes of w1 , w2 , ..., wN . We refer the interested
reader to [4] or [11].
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3. FRACTAL INTERPOLATION FUNCTIONS REVISITED

Let the continuous function f be defined on a real closed interval
I=[x0 , xN] and with range a complete metric space (Y, \Y), where
x0 , x1 , ..., xN be N+1 distinct points with x0<x1< } } } <xN . It is not
assumed that these points are equidistant. The function f is called an inter-
polation function corresponding to the generalized set of data

[(xi , yi) # I_Y : i=0, 1, ..., N],

if f (xi)= yi for all i=0, 1, ..., N. We shall write for brevity f (xi)= f i ,
i=0, 1, ..., N. The points (xi , f i) are called the interpolation points. We say
that the function f interpolates the data and that (the graph of ) f passes
through the interpolation points. In this section we focus on the existence,
construction and properties of such functions whose graphs G=
[(x, f (x)) : x # I] are attractors of IFS. Throughout this section we will
work in the complete metric space K=I_Y with respect to the Euclidean,
or to some other equivalent, metric.

Set In=[xn&1 , xn] and let Ln : I � In for n=1, 2, ..., N, be contractive
homeomorphisms such that

Ln(x0)=xn&1 , Ln(xN)=xn , (2)

|Ln(b1)&Ln(b2)|�l |b1&b2 | (3)

whenever b1 , b2 # I, for some l # [0, 1). Clearly, [x0 , x1 , ..., xN] is a parti-
tion of the compact interval I. Note also that [I; L1&N] is a hyperbolic IFS
whose unique attractor is

I= .
N

n=1

Ln(I )= .
N

n=1

In ,

where

I 0
n & I 0

m=< when n{m, for n, m=1, 2, ..., N.

In other words, Ln satisfy the open set condition for n=1, 2, ..., N and also

In & In+1=xn , for n=1, 2, ..., N&1.

Furthermore, let mappings Mn : K � Y for n=1, 2, ..., N be continuous
such that

Mn(x0 , f0)= fn&1 , Mn(xN , fN)= fn , (4)

\Y (Mn(x, b1), Mn(x, b2))�s\Y (b1 , b2), (5)
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for all x # I, b1 , b2 # Y and for some s # [0, 1). Condition (5) means that Mn

are contractive in the second variable, for n=1, 2, ..., N.
Now define functions wn : K � K by

wn(x, y)=(Ln(x), Mn(x, y)) (6)

for all (x, y) # K and n=1, 2, ..., N. If Y=[a, b], the next theorem has been
proven in [3].

Theorem 1. The IFS [K; w1&N] defined above has a unique attractor
G # H(K ). Furthermore, G is the graph of a continuous function f : I � Y
which obeys

f (xi)= fi , i=0, 1, ..., N.

Definition 1. The function f whose graph is the attractor of an IFS as
described in Theorem 1, is called a fractal interpolation function or FIF for
short.

Notice that, generally, the IFS [K; w1&N] may not be hyperbolic. To
construct a hyperbolic IFS whose attractor is the graph of a function, it is
assumed that the mappings Mn , n=1, 2, ..., N not only satisfy Condition (5)
but also

\Y (Mn(b1 , y), Mn(b2 , y))�c |b1&b2 | (7)

for all y # Y, b1 , b2 # I, n=1, 2, ..., N and for some c>0. This condition
means that Mn are uniformly Lipschitz in the first variable, for
n=1, 2, ..., N.

Since the completeness depends on the choice of metric we have the
following

Theorem 2. There is a metric \, on K, equivalent to the Euclidean
metric, such that the IFS [K; w1&N] is hyperbolic with respect to \, .

The formal proof of the above theorem can be found in [6].

4. AFFINE FRACTAL INTERPOLATION FUNCTIONS AND THE
DETERMINATION OF THEIR VERTICAL SCALING FACTORS

Now, we will restrict our attention to affine transformations. Let N be a
positive integer greater than 1 and Y=R. Define Ln : I � In by

Ln(x)=an x+dn ,
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where the real numbers an , dn , for n=1, 2, ..., N, are chosen to ensure that
Condition (2) holds, i.e. Ln(I)=In . Thus, for n=1, 2, ..., N,

an=
xn&xn&1

xN&x0

,

dn=
xNxn&1&x0xn

xN&x0

.

Since N�2, |an |<1, so Ln are contractive homeomorphisms, for
n=1, 2, ..., N, as they obey Condition (3) with l=max[ |an | : n=1, 2, ..., N].

Now define Mn : K � Y by

Mn(x, y)=cn x+sn y+en

where the real constants cn and en , depending on the adjustable real
parameter sn , are chosen to ensure that Condition (4) holds. That is,
sn # (&1, 1) is chosen and then

cn=
fn& fn&1

xN&x0

&sn
fN& f0

xN&x0

,

en=
xN fn&1&x0 fn

xN&x0

&sn
xN f0&x0 fN

xN&x0

,

for n=1, 2, ..., N. The mappings Mn , n=1, 2, ..., N obey Condition (5) with
s=max[ |sn | : n=1, 2, ..., N] and Condition (7) with c=max[ |cn | : n=
1, 2, ..., N].

Define functions wn as in Eq. (6). Then the IFS is of the form
[K; w1&N], where the maps are affine transformations as in (1) and, in
particular, of the special structure

wn _x
y&=_an

cn

0
sn&_

x
y&+_dn

en &
where an , cn , sn , dn , and en are real numbers for n=1, 2, ..., N. The trans-
formations wn are shear transformations, where sn are their vertical scaling
factors. These transformations, constrained by Conditions (2) and (4), are
giving

wn _x0

f0 &=_xn&1

fn&1 & and wn _xN

fN &=_xn

fn & , for n=1, 2, ..., N.

By choosing sn # (&1, 1) to be the free parameter, we are able to specify the
vertical scaling produced by the transformation.
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Combining Theorems 1 and 2 with the IFS [K; w1&N] defined above,
we have the following

Definition 2. The function f whose graph is the attractor of an IFS as
described above, is called an affine fractal interpolation function or AFIF
for short.

In most of the cases, e.g., image compression, a ``smaller'' space than
Y=R need only be given and we can then interpolate our data within a
given rectangle. Often Y is considered as a real closed interval [a, b] which
is compact and so a complete metric space. To ensure that the graph of the
AFIF is contained in the rectangle K some conditions about the adjustable
parameters sn must be specified. The following theorem which we introduce
here helps us in the determination of the vertical scaling factors needed to
model an arbitrary function.

Theorem 3. The graph of an AFIF remains within a given rectangle
K=I_[a, b] if and only if the vertical scaling factors sn obey

smin
n �sn�smax

n

and |sn |<1, where

smax
n =min { b& fn

b& fN
,

b& fn&1

b& f0

,
a& fn

a& fN
,

a& fn&1

a& f0 = ,

smin
n =max {a& fn&1

b& f0

,
a& fn

b& fN
,

b& fn&1

a& f0

,
b& fn

a& fN= ,

for n=1, 2, ..., N. These bounds are the best possible.

Proof. The maximum and minimum values of

Mn(x, y)=cn x+sn y+en

on the rectangle [x0 , xN]_[a, b] are achieved at the extreme points
(x0 , a), (x0 , b), (xN , a), (xN , b) (see, for example, [13]). While we require
Mn(x, y) # [a, b], we select the parameters sn such that Mn(x0 , a),
Mn(x0 , b), Mn(xN , a), Mn(xN , b) # [a, b]. We can easily deduce that the sn

obey the required inequalities. In case of a zero denominator we avoid the
corresponding term. The demonstration of the converse is obvious. K

Another thing that follows from the theorem is the fact that sn can
be automatically adjusted and defined via the consecutive interpolation
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FIG. 1. The graph of an AFIF.

points fn&1 and fn , the endpoints f0 and fN and the given coordinates
a and b.

Example 1. Let I=[0, 1], Y=[&1, 1] and let

[(0, 0), (1�2, &1�3), (3�4, 1�2), (1, 1�3)]

be a given set of data. Then, the graph of the AFIF remains within the rec-
tangle K=I_Y, if we choose the sn , n=1, 2, 3 such that: &1<s1�1�2,
&3�8�s2�2�3 and &1�2�s3�1�2. Figure 1 displays this graph with
s1=&0.99, s2= &3�8 and s3= &1�2.

FIG. 2. The graph of an AFIF.
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Example 2. Let I=[0, 1], Y=[&1�2, 1�2] and let

[(0, 0), (1�2, &1�3), (3�4, 1�2), (1, 1�3)]

be a given set of data. Then, the graph of the AFIF remains within the rec-
tangle K=I_Y, if we choose the sn , n=1, 2, 3 such that: &1<s1�1�2
and s2=s3=0. Figure 2 displays this graph with s1=&0.99 and
s2=s3=0.

From Theorem 4.3 we have the following useful corollaries.

Corollary 1. The graph of an AFIF remains within a given rectangle
K=I_[a, b] with f0= fN if and only if the vertical scaling factors sn obey

smin
n �sn�smax

n

and |sn |<1, where

smax
n =min {b&max[ fn&1 , fn]

b& f0

,
a&max[ fn&1 , fn]

a& f0 = ,

smin
n =max {a&min[ fn&1 , fn]

b& f0

,
b&min[ fn&1 , fn]

a& f0 = ,

for n=1, 2, ..., N. These bounds are the best possible.

Corollary 2. The graph of an AFIF remains within a given strip
K=I_[a, �) with f0= fN if and only if the vertical scaling factors sn obey

0�sn�smax
n ,

and |sn |<1, where

smax
n =

a&max[ fn&1 , fn]
a& f0

,

for n=1, 2, ..., N. These bounds are the best possible.

5. POLAR FRACTAL INTERPOLATION FUNCTIONS AND THEIR
HAUSDORFF DIMENSION

Certain implicit functional relations can be transformed into another
types of variables or coordinates. One such transformation is into polar
coordinates in which we take

E=[(%, r) : 0�%<2?, r>0]
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and we let g=(g1 , g2) be the coordinate transformation (for its definition
see [2]) which maps each point (%, r) in E onto the point (x, y) # R2"
[(0, 0)] by the familiar formulas

x= g1(%, r)=r cos %, y= g2(%, r)=r sin %.

Theorem 4. Let a set of data [(xi , f i) # R2"[(0, 0)] : i=0, 1, ..., N&1]
be given with at least one pair (xi , fi) in each quadrant and let
[(%i , ri) # [0, 2?)_(0, �) : i=0, 1, ..., N&1] be its corresponding set of
data in the polar coordinates, where 0=%0<%1< } } } <%N&1<%N=2?.
Then there exists a simple closed curve r: [0, 2?] � R2 with r(%i)=(xi , f i)
for all i=0, 1, ..., N&1 which arises as attractor of a certain IFS.

Proof. Let I� =[%0 , %N], where %0 , %1 , ..., %N be N+1 distinct points
and 0=%0<%1< } } } <%N&1<%N=2?. It is not assumed that these points
are equidistant. Select :>0 in such a way that ri # Y� for all
i=0, 1, ..., N&1, where Y� =[:, ;] (resp. Y� =[:, �)). We will work in the
complete metric spaces K=I_Y and K� =I� _Y� with respect to the
Euclidean, or to some other equivalent, metric, where I=[x0 , xN&1] and
Y=[a, b].

Construct a function r: I� � Y� with r(%i)=ri , i=0, 1, ..., N&1 and rN=r0

using the same method as described in Theorems 1 and 2. To ensure that
r(%) # Y� we select the vertical scaling factors of our polar model with the
help of Corollary 1 (resp. Corollary 2); we will show then that a simple
closed curve is formed passing through each interpolation point (xi , fi), for
all i=0, 1, ..., N&1.

The coordinate transformation g and its inverse g&1 set up a one-to-one
correspondence between the compact subsets of E and the compact subsets
of g(E). Since r(%)>0, the curve r(%)=(r(%) cos %, r(%) sin %) is simple for
% # [0, 2?] and closed because r(%0)=r(%N). It follows that the continuous
function r: I� � K, with r(%)=(r(%) cos %, r(%) sin %), is a well defined func-
tion which obeys r(%i)=(xi , fi), for all i=0, 1, ..., N&1 and whose graph
is a simple closed curve. K

Definition 3. The function r whose image is the attractor of an IFS as
described above, is called a polar fractal interpolation function or PFIF for
short.

Note that this function is a non-affine vector-valued FIF, contrary to the
affine ones introduced in [14].

Example 3. Let

[(&3�4, &1�2), (1�2, 3�4), (3�4, &1�2), (&3�4, 3�4)]
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Theorem 5. Let G� and G denote the graph of r and r, respectively. Then
dimH G� =dimH G.

Proof. Let us consider R2 with respect to the box metric

&x& y&1=|x1& y1 |+|x2& y2 |, x, y # R2.

We first prove that g: G� � G is a Lipschitz function. Let (%1 , r1),
(%2 , r2) # G� . Then

&g(%1 , r1)&g(%2 , r2)&1�&g(%1 , r1)&g(%1 , r2)&1+&g(%1 , r2)&g(%2 , r2)&1

=|r1&r2 | |cos %1 |+ |r1&r2 | |sin %1 |

+r2 |cos %1&cos %2 |+r2 |sin %1&sin %2 |

�2 |r1&r2 |+2r2 |%1&%2 |

�2 |r1&r2 |+2b |%1&%2 |

�c &(%1 , r1)&(%2 , r2)&1 ,

where c=max[2, 2b]. Using Proposition 1 one has dimH G=dimH g(G� )�
dimH G� .

Let G( j) be the intersection of G with the j-quadrant so that
G=�4

j=1 G( j). From the construction of G we have that, if (x, y) # G(1),
then x+ y�a, hence the convex hull S=conv(G(1)) is a convex and com-
pact set which does not contain the origin (0, 0). Then, there exists
g&1: S � R2 with g&1=(h1 , h2) and we have that all the partial derivatives
�hi ��x, �hi ��y, i=1, 2 are continuous on S. Thus, they are bounded on S
and let M>0 be a bound of them. Let (x1 , y1), (x2 , y2) # G(1). By the
Mean-Value Theorem we have

&g&1(x1 , y1)&g&1(x2 , y2)&1

=|h1(x1 , y1)&h1(x2 , y2)|+|h2(x1 , y1)&h2(x2 , y2)|

=|dh1(a1 , a2)(x1&x2 , y1& y2)|+|dh2(b1 , b2)(x1&x2 , y1& y2)|

for some (a1 , a2), (b1 , b2) # [(x1 , y1), (x2 , y2)]/S. But

|dhi (x, y)(x1&x2 , y1& y2)|= } �hi (x, y)
�x

(x1&x2)+
�hi (x, y)

�y
( y1& y2) }

�M( |x1&x2 |+| y1& y2 | )

=M &(x1 , x2)&( y1 , y2)&1
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for every (x, y) # S and i=1, 2. Thus,

&g&1(x1 , y1)&g&1(x2 , y2)&1�2M &(x1 , x2)&( y1 , y2)&1 .

In other words, g&1 is a Lipschitz function on S. Therefore, dimH g&1(G(1))
�dimH G(1)�dimH G. Similarly, dimH g&1(G( j))�dimH G, j=2, 3, 4.
Proposition 1 implies that dimH G� =dimH g&1G=dimH g&1(�4

j=1 G( j))�
dimH G. This completes the proof. K

The following theorem, the formal proof of which can be found in [6]
or in [15], helps us to tell more about the fractal dimension of the PFIF.

Theorem 6. With the same notations as above, if �N
n=1 |sn |>1 and the

interpolation points do not all lie on a single straight line (i.e., ri not all
equal ), the fractal dimension of G� (and also of G) is the unique real solution
D of

:
N

n=1

aD&1
n |sn |=1;

otherwise the fractal dimension of G� (and also of G) is 1.
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