
Stochastics and Dynamics, Vol. 2, No. 2 (2002) 161–173
c© World Scientific Publishing Company

A PROBABILISTIC POWER DOMAIN ALGORITHM FOR
FRACTAL IMAGE DECODING

V. DRAKOPOULOS

Department of Informatics and Telecommunications, Theoretical Informatics,
University of Athens, Panepistimioupolis 157 84, Athens, Hellas

vasilios@di.uoa.gr

A. KAKOS and N. NIKOLAOU

Division of Information Systems, Bank of Greece,
341 Mesogeion Ave., 152 32, Cholargos, Hellas

Received 21 January 2002
Revised 11 April 2002

A new algorithm, called herein the random power domain algorithm, is discussed; it
generates the image corresponding to an iterated function system with probabilities, a
technique used in fractal image decoding. A simple complexity analysis for the algorithm
is also derived.

Keywords: Fractals; random algorithm; image comparison; iterated function systems;
power domain.

AMS Subject Classification: 28A80, 94A08, 68Q10, 68Q55

1. Introduction

A number of algorithms have been proposed for rendering the invariant measure
supported by the attractor of an (hyperbolic) iterated function system, or IFS for
short, on the plane. In what follows, however, a competitive alternative will be
described and implemented as a consequence of the introduction of domain theory
in dynamical systems, measures and fractals [2]. It uses the probabilistic power
domain as its computational model and generates the invariant measure of an IFS
with probabilities.

The proposed algorithm, after comparing with the most commonly used proba-
bilistic algorithms for rendering the invariant measure supported by the attractor,
namely the Random Iteration Algorithm (RIA, see [1]) and the Random Adap-
tive Cut Algorithm (RACA, see [4]), shows to be, under all known circumstances,
substantially faster than both the others and much more efficient than the RIA
in terms of memory requirements. Since the RIA chooses the points of the attrac-
tor at random, it will unavoidably redraw some points more than once. Figure 1
shows a demography of the dendrite shown in Fig. 7(e). The dendrite is put on a

161

162 V. Drakopoulos, A. Kakos & N. Nikolaou

(a) (b) (c)

Fig. 1. Distribution of an orbit rendering a dendrite displayed in vertical bars using (a) the RIA,
(b) the RACA and (c) the proposed algorithm.

square lattice on R
2 with small mesh size; the number of points from the dendrite

in each little box of that lattice is measured and represented by a vertical bar, thus
visualizing the distribution. Apparently, the border of the dendrite is visited most
frequently, while the other points seem to be avoided most often. This substantial
waste of time is the main reason why the proposed algorithm, which produces no
more than the necessary points, is that faster. Furthermore, many of the points of
the attractor will never be plotted, due to the randomness of the RIA; to make
matters worse, the attractors produced by two successive runnings of the algorithm
will not be exactly the same.

The RIA theoretically suggests that its corresponding iterated procedure should
be performed for an infinite number of times before the actual attractor is produced.
In the words of Monro and Dudbridge in [5] “There is no definite stopping criterion
for the RIA”. On the contrary, the RACA uses a criterion to terminate the recursive
descent of the tree of transformations and the idea behind it can be served as a
basis for a magnification algorithm. The main advantage of our algorithm is that
it encapsulates an economical and enhanced stopping criterion as opposed to the
RACA; roughly speaking, it terminates (in finite time) automatically and quickly
on any digitized screen without needing to fix a number of iterations in advance.
Moreover, for a given discrimination capability of the computer screen, the proposed
algorithm has a determined upper and lower bound for the number of computations
required before the best possible attractor for the given resolution is constructed.
The exact number of computations, however, cannot be specified analytically in a
closed formula, but can be very easily computed with the aid of a computer.

An analytic description of the algorithm as well as a digest of the theoretical
fundamentals, on which its model is based, follows. However, an extended abstract
for the theory can be found in [3], where power domains are discussed along with
IFS. A general reference oriented toward computational theory is [6].

2. The Probabilistic Power Domain

First of all a link between measure theory and domain theory is needed. The link
is established in [2]; however, for a deep understanding of the algorithm and its
implementation that follows, we shall make an account of the most fundamental
conclusions that appear in that paper.

We are especially interested in Borel measures, which have the significant prop-
erty that the measure of any Borel set is determined by the topologically important

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 163

open sets or, alternatively, the compact sets; such a Borel measure is called regular.
More formally, a Borel measure μ on a locally compact Hausdorff space is called
regular, if, for all Borel subsets B of X , we have

μ(B) = inf{μ(O) | B ⊆ O, O open} = sup{μ(F) | B ⊇ F, F compact}.
It can be proved that, if X is a locally compact, second countable Hausdorff space
as in our case, every open set will be σ-compact (it is a countable union of compact
sets) and every Borel measure is regular.

The computational model of the new algorithm for the construction of the in-
variant measure of an IFS with probabilities is based on the probabilistic power
domain. Hence the following definitions are essential for the understanding of the
proposed algorithm. The lattice of open sets of a topological space X is denoted by
Ω(X).

Definition 1. An (e)valuation on a topological space X is a map ν : Ω(X) → [0,∞)
which satisfies:

(i) ν(U) + ν(V) = ν(U ∪ V) + ν(U ∩ V)
(ii) ν(∅) = 0, and
(iii) U ⊆ V ⇒ ν(U) ≤ ν(V).

A continuous (e)valuation is an (e)valuation such that whenever A ⊆ Ω(X) is a
directed set (with respect to ⊆) of open sets of X , then

ν

(⋃
O∈A

O

)
= sup

O∈A
ν(O).

Definition 2. The Probabilistic Power Domain PX of a topological space X con-
sists of the set of continuous (e)valuations ν on X with ν(X) ≤ 1 and is ordered as
follows:

μ � ν if and only if for all open sets O of X, μ(O) ≤ ν(O).

Definition 3. For any b ∈ X , the point (e)valuation based at b is the (e)valuation
nb : Ω(X) → [0,∞) defined by

nb(O) =
{

1, if b ∈ O,

0, otherwise.

Any directed set (μi)i∈I of (e)valuations has a least upper bound (l.u.b.) given
by
⊔

i μi = μ, where for O ∈ Ω(X) we have μ(O) = supi∈I μi(O); hence (PX,�) is
a directed complete partial order (d.c.p.o.), with bottom element (which is the ⊥ ∈
PX : ⊥(O) = 0, O ∈ Ω(X)) It is easy to prove that any finite linear combination∑n

i=1 rinbi of unit point (e)valuations nbi with constant coefficients ri ∈ [0,∞),
i = 1, 2, . . . , n is also an (e)valuation on X .

What is really interesting about (e)valuations is that, if X is an ω-continuous
d.c.p.o., then PX is an ω-continuous d.c.p.o. as well; moreover any (e)valuation

164 V. Drakopoulos, A. Kakos & N. Nikolaou

on an ω-continuous d.c.p.o. is the directed l.u.b. of linear combinations of point
(e)valuations and it extends uniquely to a measure. Hence (e)valuations and mea-
sures are in fact the same on ω-continuous d.c.p.o’s.

The set of all positive Borel measures μ on a locally compact, second countable
Hausdorff space X with μ(X) ≤ 1, denoted by M(X), can be partially ordered by
putting

μ � ν if and only if for all Borel sets B ⊆ X, μ(B) ≤ ν(B).

With this ordering M(X) becomes a d.c.p.o.

3. A Computational Model

For any Hausdorff metric space X the upper space UX consists of all nonempty
compact subsets of X (see Fig.2), that is

UX = {∅ �= C ⊆ X | C compact}.
This space has a topology, called the upper topology, whose base is the collection

�a = {C ∈ UX | C ⊆ a},
where a ∈ Ω(X) is an open set of X . This means that, for any open subset a of X ,
the collection of all compact nonempty subsets of X that are included in a forms an
element of the base for the upper topology. This topology is T0; the specialisation
ordering �u of UX is the superset inclusion, i.e.

A �u B ⇐⇒ ∀a ∈ Ω(X)[A ⊆ a ⇒ B ⊆ a] ⇐⇒ A ⊇ B.

Under this ordering (�u) the space (UX,⊇) becomes a d.c.p.o., which means that
every directed set has a l.u.b. The l.u.b. of a directed set of compact subsets is their
intersection; the elements of X are maximal elements of UX . The singleton map
s : X → UX with s(x) = {x} can be used for embedding X onto the set of maximal
elements of UX .

If UX is ω-continuous, then we can identify (e)valuations and measures on UX ,
for a continuous (e)valuation μ on UX extends uniquely to a Borel measure on UX

and a measure on UX is a continuous (e)valuation. The support of the invariant
measure of an IFS has the very important property that it contains exactly the

O

x

UX

{ }x

O

X = [0, 1] × [0, 1] X = [0, 1]× [0, 1]

Fig. 2. The upper space for the unit square.

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 165

M1(X) P1UX

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

PUX 1⊥
M(X)

1⊥ : �X → 1
1⊥ : �O → 0

⊥ : β → 0 ⊥ : O → 0

Fig. 3. The probabilistic power domain.

points of the attractor. We will now extend the notion of the support in the case of
(e)valuations.

An (e)valuation μ ∈ PUX is said to be supported in s(X), if μ(UX \ s(X)) = 0;
if μ is supported in s(X), then the support of μ is the set of points y ∈ s(X) such
that μ(N) > 0 for all neighbourhoods N ⊆ UX of y. We denote by S(X) the set
that contains all the supported (e)valuations in s(X) (S(X) ⊆ PUX).

Since the invariant measure of an IFS is a normalized Borel measure, we restrict
our attention to normalized measures and normalized (e)valuations. We denote by
M1(X),P1UX, S1(X) the sets which contain the normalized Borel measures, the
normalized (e)valuations and the normalized supported (e)valuations, respectively
(see Fig. 3). PUX and P1UX have exactly the same maximal elements and the
elements of S1(X) are maximal elements of PUX .

The maps e : M1(X) → S1(X) with e(μ)(O) �→ μ(s−1(O)) for any O ∈ Ω(X)
and j : S1(X) → M1(X) with j(ν)(B) �→ ν(s(B)) for any Borel subset B of X are
well defined and continuous. Since j is the inverse of e, the restrictions of e and j

give an isomorphism between M1(X) and S1(X).
Let us recall that PUX is ω-continuous whenever UX is ω-continuous and in

this case any (e)valuation μ ∈ PUX is the directed l.u.b. of linear combinations of
point (e)valuations. If B ⊆ UX is a countable order basis of UX , then{

n∑
i=1

rinbi | bi ∈ B, ri rational and
n∑

i=1

ri ≤ 1

}

is a countable order basis of PUX . This observation provides us with an effective
way of obtaining measures on X as the directed l.u.b. of linear combinations of
point (e)valuations on UX .

If X is compact, then both UX and P1UX have bottom elements; the bottom
element of UX is the space X itself, whereas the bottom element of P1UX is the
unit point (e)valuation nX based at X ∈ UX with

nX(O) =
{

1, if O ∈ UX,

0, otherwise.

166 V. Drakopoulos, A. Kakos & N. Nikolaou

The above theoretical framework can be used for the construction of the invariant
measure of an IFS with probabilities as follows.

4. The Random Power Domain Algorithm

Let {X ; f1, f2, . . . , fN ; p1, p2, . . . , pN} or, more briefly, {X ; f1−N ; p1−N} be an hy-
perbolic IFS with probabilities; the operator T : P1UX → P1UX given by

T (μ)(O) =
N∑

i=1

piμ(f−1
i (O))

is well defined and continuous, and therefore has a least fixed point; it can be proved
(see [2]) that the least fixed point of T is supported in X and its support is the
unique attractor of the IFS. Since an element of S1(X) is a maximal element of
P1UX , we immediately deduce that an hyperbolic IFS with probabilities has a
unique fixed point. If μ is the unique fixed point of T , then j(μ) ∈ M1(X) is the
unique invariant measure of the IFS.

We correspond the (e)valuation nfi1fi2 ···fin X to node fi1fi2 · · · finX of the non-
probabilistic tree shown in Fig. 4. The nodes of the tree are point (e)valuations
ordered as usual so that the construction of the invariant measure can be obtained
by using the tree shown in Fig. 5. Then, the tree is traversed until the outcome of
any node fi1fi2 · · · finX becomes smaller than a pixel on the computer screen. Then
a pruning occurs and the corresponding branch will produce no more children. This
tree, however, cannot be employed in any efficient implementation. The solution
will be the use of an equivalent tree (see Fig. 6) that can be traversed efficiently.
We prove that this alternative tree is computationally equivalent to the original
one.

The two trees have exactly the same first two levels. From the third level on-
wards, however, the differences start. Even if the second level is identical in both
trees, a different third level is produced. It is our intention to prove that this
does not affect the theoretical basis and that the third level is computationally
equivalent. If at some node of the second level si1si2

√
2 < ε then holds, due to

. . .

..

.

1

1 1 1 1

. ..

1 1 1 1 1 1

X

f X f X

f f X f f X f f X f f X

f f f X f f f X f f f X f f f X f f f X f f f X f f f X

N N N

1 1

N

N N N N N NN N 1 1 N N 1 N N 1 f f f X

N

Fig. 4. The IFS tree.

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 167

.

..p p n1 f f X1 NN

p p n1 1N f f f XN N
. . . p nN f f f X N N N

3. . .p p nN f f f X N N 1

2
1

. ..

nX

p n1 f X1
p nN f XN

p p nN f f XN 1
p nn f f XN N 1

p n1 f f f X
2p p nN f f f X1 N 1

23

p n1 f f X1 1

2 2

1
2p p n1 N f f f X N1 11 1 1

p p n1 N f f f XN 1 1 N 1 f XN

2 p p n 1 f f N
2

Fig. 5. The IFS tree with probabilities.

.

..p p n1 f f X1 NN

p nN f f f X N N N

3. . .p p nN f f f X N N 1

2
1. . .

. ..

nX

p n1 f X1
p nN f XN

p p nN f f XN 1
p nn f f XN N 1

p n1 f f f X
2p p nN

23

p n1 f f X1 1

2 2

1
2p p n1 N f f f X N1 11 1 1 f f f X N1 1

p p n1 N f f f XN N 1
p p n1 N f f f X1 N 1

p p n1 N f f f X1 N N

2 2

Fig. 6. The action tree with probabilities.

the commutative property of the real numbers, si2si1

√
2 < ε also holds. Hence,

in the case of the first tree, si1si2

√
2 < ε means that the children of fi1fi2X

(fi1fi2f1X, fi1fi2f2X, . . . , fi1fi2fNX) will not be produced and the pixel fi1fi2X

will be plotted. For this same tree, si2si1

√
2 < ε means that the children of fi2fi1X

(fi2fi1f1X, fi2fi1f2X, . . . , fi2fi1fNX) will not be produced and the pixel fi2fi1X

will be plotted. On the other hand, for the second tree, the condition si1si2

√
2 <

ε means that the children of fi1fi2X (fi2fi1f1X, fi2fi1f2X, . . . , fi2fi1fNX) will
not be produced and the pixel fi1fi2X will be plotted. Moreover, the condi-
tion si2si1

√
2 < ε, for the second tree, means that the children of fi2fi1X

(fi1fi2f1X, fi1fi2f2X, . . . , fi1fi2fNX) will not be produced and the pixel fi2fi1X

will be plotted. It is now more than obvious that the third level of the two trees are
computationally equivalent. Using induction we can prove that the two trees are
equivalent at all levels. Thus the two trees are, for our purposes, computationally
equivalent.

Our contribution, i.e. the discovery of the equivalent tree, has beneficially ef-
fected the implementation of the algorithm. Not a single redundant computation is
performed. On the other hand, the memory requirements have significantly dropped
due to the introduction of this second tree.

168 V. Drakopoulos, A. Kakos & N. Nikolaou

If a branch is pruned, for example at node fi1fi2 · · · finX , then the corresponding
atomic measure for the pixel of the attractor will be pi1pi2 · · · pin , which is assigned
by the corresponding point (e)valuation pi1pi2 · · · pinnfi1fi2 ···fin X . However, two
pruned branches might correspond to the same pixel. In this case, the “measure”
contribution of all branches that end up at the same pixel should be summed up
before any rendering of the pixel takes places. In this way, a record of which branches
correspond to the same pixel must be kept so that one is able to add up all individual
contributions to determine the actual atomic measure of every screen pixel of the
attractor. In this way a graphic representation of the invariant measure is achieved.

Although the theory suggests that at depth n, T (n)μ0 is an (e)valuation, μ0

being any normalized (e)valuation, the unbalanced pruning of the tree might raise
some objections regarding the soundness of our implementation. However, if dmax

is the level at which the last pruning takes place, then we can safely assume that
our approximation to the invariant measure μ is T (dmax)μ0, μ0 being the uniform
measure on the screen. This means that we can make the equivalent theoretic as-
sumption that all branches of the point (e)valuation tree of Figs. 5 and 6 are pruned
at level dmax. The following argument justifies this assumption.

For any branch of the tree which is pruned at an earlier stage d than dmax we can
“insert” its children and grandchildren – effectively pruned – in the tree diagram
until the complete level dmax is reached. Then our approximation to the invariant
measure is still a sound one for, if at level d we had decided that the parent node
represented less than a pixel on the screen, then its children would still be included
in that pixel (due to the ordering of nodes); then their total measure contribution
to the pixel would be equal to that of their parent at level d. This means that the
sum of the atomic measures that all children have in total would be equal to what
the node at level d had. Thus, this balanced pruning – which we just proved to be
equivalent to the unbalanced one we perform – justifies our argument that what we
actual produce is a measure, in fact T (dmax)μ0.

5. The Algorithm and Its Complexity

Hence the algorithm can be described roughly as follows; we start from the
fixed point which corresponds to the transformation with the greatest probabil-
ity and traverse the action tree until a parallelogram fi1fi2 · · · fiN X becomes small
enough so that it is actually a pixel on the computer screen. This happens when
si1si2 · · · siN

√
2 < ε, ε = 1/M , where M is the resolution of the screen, and in

that case this branch has contributed pi1pi2 · · · piN to the measure of the pixel
fi1fi2 · · · fiN X . After having sum up all measure contributions for each pixel, we
color the attractor pixels accordingly. In that way, a graphic representation of the
invariant measure is produced.

The actual algorithm in a form of pseudo-code, which also provides a definition
for the equivalent tree of Fig. 6, has as follows:

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 169

0. Start.
1. Compute all contractivity factors si.

2a. Assign measure 1 on the whole screen, i.e. μ([0, 1]2) = 1.
2b. All atomic measures μ(x) of pixels x ∈ [0, 1]2 are initially set to zero.
3a. Call procedure measure ([x0, x0, . . . , x0], 0, [

√
2,
√

2, . . . ,
√

2], [1, 1, . . . , 1]), for
x0 ∈ [0, 1]2.

3b. Plot all pixels x ∈ [0, 1]2 with a color proportional to their atomic measure
μ(x).

4. End.

where

procedure measure([x1, x2, . . . , xN], q, [d1, d2, . . . , dN], [m1, m2, . . . , mN]) {
for i = 1, . . . , N do {

x′
i = fi(xq)

d′i = si ∗ dq

m′
i = pi ∗ mq

}
for i = 1, . . . , N do {
if (d′i > 1/M) then do

call measure([x′
1, x

′
2, . . . , x

′
N], i, [d′1, d

′
2, . . . , d′N], [m′

1, m
′
2, . . . , m

′
N])

else do

μ(x′
i) = μ(x′

i) + m′
i

}
}

Having described the algorithm, we shall try to identify the number of compu-
tations needed for the construction of the attractor. Since the contractivity factors
of the affine transformations are known, we can find an estimation for the depth
of the tree. If smax and smin are the largest and the smallest contractivity factors,
respectively, then the depth of the tree will lie between

dmax =
[− lnM

ln smax

]
+ 1 and dmin =

[− lnM

ln smin

]
+ 1

that are the greatest and the smallest depth, respectively. This means that in the
worst case we need 10(N + N2 + · · · + Ndmax) = 10[(Ndmax+1 − 1)/(N − 1) − 1],
thus giving O(Ndmax) while in the best case we need 10(N + N2 + · · · + Ndmin) =
10[(Ndmin+1 − 1)/(N − 1)− 1] computations. This number is explained by the fact
that nine computations are needed for the calculation of the new point and only one
computation is needed for the calculation of the quantity si1(si2 · · · sin

√
2) since at

each step the quantity si2 · · · sin

√
2 has already been computed in previous nodes.

170 V. Drakopoulos, A. Kakos & N. Nikolaou

The exact number of computations performed before the construction of the
attractor is C(

√
2), where

C(x) =

{
1, if x < ε∑N

i=1 C(six) + 10N, otherwise,

where N is the number of affine transformations and ε = 1/M , M being the resolu-
tion of the screen. Although, it is extremely difficult to find a closed formula which
gives the exact number of computations, the above mentioned recursive formula can
be used to obtain this number with the aid of a computer.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. The Sierpiński triangle, a dendrite, a spiral, a meander, a second dendrite, a fern leaf and
a maple leaf.

RPDA

RACA

RIA Sierpinski
Dendrite

Spiral
Meander

Dendrite II
Fern leaf

Maple leaf

0

5

10

15

20

25

Time (sec)

Method
IFS

Sierpinski

Dendrite

Spiral

Meander

Dendrite II

Fern leaf

Maple leaf

Fig. 8. The time results of the systematic comparison.

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 171

6. Comparative Results

The current implementation of our algorithm is written in Microsoft Visual Basic
6.0. It is capable of drawing fractal images using the Random PDA, the RIA and
the RACA, and displaying the depth of the action tree, the number of points used
for rendering and the total runtime. The fractal images (M = 100) used for the
comparisons of the various algorithms are illustrated in Fig. 7. The Random PDA
was finally tested and rated by comparing the various fractal attractors produced
by it versus the attractors produced using the RIA and the RACA. Time results
are given in CPU seconds on a Pentium III PC with a 400 MHz CPU clock running
Windows 98.

As we have already stated, the proposed algorithm is more efficient than the RIA
and the RACA; the systematic comparison we performed gave the results shown in
Fig. 8 and justifies our argument.

7. Conclusions

Our algorithm is extremely efficient for the decoding of pictures which have been
coded using some method based on IFS. This is explained by the fact that natural
images – such as the face of a person – lack self-similarity and hence a lot of affine
transformations are employed for the coding; each of them, however, will have a
very small contractivity factor and hence our tree will have small depth (10 for the
maple leaf, 31 for the fern leaf, 45 for the spiral and 8 for the other figures); so, the
construction of the attractor will terminate very quickly, since only a few number
of points are necessary (see Table 1).

Table 1. The number of pixels used for the system-
atic comparison.

Pixels drawn RPDA RACA RIA

Sierpiński 6561 6561 9900
Dendrite 8617 12349 9900
Spiral 3464 4838 9900
Meander 6561 6561 9900

Dendrite II 5413 6561 9900
Fern leaf 57031 71776 49900
Maple leaf 206080 206080 200000

One should also mention that without the use of the equivalent trees, it is
doubtful if this performance of the Random PDA could have ever been achieved.
Any implementation that avoids their use is bound either to make use of huge
amount of memory or unavoidably to resort to recomputations. In both cases, such
an implementation becomes highly inefficient and the performance of the algorithm
would be substantially decreased.

172 V. Drakopoulos, A. Kakos & N. Nikolaou

Appendix

A transformation f is affine, if it may be represented by a matrix A and translation
t as f(x) = Ax + t, or (if x ∈ R

2)

f

(
x

y

)
=
(

a b

c s

)(
x

y

)
+
(

d

e

)
.

The code of f is the 6-tuple (a, b, c, s, d, e), and the code of an IFS is a table whose
rows are the codes of f1, f2, . . . , fN . If we add one extra column with the corre-
sponding probabilities p1, p2, . . . , pN , then we are talking about the code of an IFS
with probabilities.

We list the IFS codes (see Tables 2–8) for the examples discussed in the main
text.

Table 2. The IFS code for the Sierpiński triangle.

f a b c s d e p

1 0.5 0 0 0.5 0 0 0.33
2 0.5 0 0 0.5 0.5 0 0.34
3 0.5 0 0 0.5 0.25 0.5 0.33

Table 3. The IFS code for a dendrite.

f a b c s d e p

1 0.5 0 0 0.5 0.0625 0.15 0.25
2 0.21 −0.20625 0.528 0.21 0.789 0 0.25
3 0.5 0 0 0.5 0.375 0.375 0.25
4 −0.2 0.1125 −0.288 −0.2 0.609 0.975 0.25

Table 4. The IFS code for a spiral.

f a b c s d e p

1 −0.18 0.126 −0.2571 −0.18 0.815 0.8485 0.05
2 −0.8 0.4 −0.4 0.8 −0.088 0.2514 0.95

Table 5. The IFS code for a second dendrite.

f a b c s d e p

1 0.5 0 0 0.5 0.3125 0 0.33
2 0.5 0 0 0.5 0.496094 0 0.33
3 0.28 −0.25 0.64 0.28 0.523437 0.05 0.34

A Probabilistic Power Domain Algorithm for Fractal Image Decoding 173

Table 6. The IFS code for a meander.

f a b c s d e p

1 0 0.33 −0.768 0 0.4609 0.9375 0.33
2 0.5 0 0 0.22 0.5 0.9375 0.33
3 0.5 0 0 0.24 0.5 0.9375 0.34

Table 7. The IFS code for a fern leaf.

f a b c s d e p

1 0 0 0 0.16 0.5 0.07 0.001
2 0.2 −0.195 0.3066667 0.22 0.41625 0.045 0.070
3 −0.15 0.21 0.3466667 0.24 0.5575 −0.07333 0.070
4 0.85 0.03 −0.5333 0.85 0.07249999 0.1725 0.859

Table 8. The IFS code for a maple leaf.

f a b c s d e p

1 0.6 0 0 0.6 0.18 0.36 0.295
2 0.6 0 0 0.6 0.18 0.12 0.295
3 0.4 0.3 −0.3 0.4 0.27 0.36 0.25
4 0.4 −0.3 0.3 0.4 0.27 0.09 0.16

Acknowledgements

The authors wish to thank the anonymous reviewer for all the helpful suggestions.

References

1. M. F. Barnsley, Fractals everywhere (Academic Press, 1993), 2nd edition.
2. A. Edalat, Dynamical systems, measures and fractals via domain theory, Inform. Com-

put. 120 (1995) 32–48.
3. A. Edalat, Power domains and iterated function systems, Inform. Comput. 124 (1996)

182–197.
4. D. Hepting, P. Prusinkiewicz and D. Saupe, Rendering methods for iterated function

systems, in Fractals in the Fundamental and Applied Sciences, eds. H.–O. Peitgen, J.
M. Henriques and L. F. Penedo (North-Holland, 1991), pp. 183–224.

5. D. M. Monro and F. Dudbridge, Rendering algorithms for deterministic fractals, IEEE
Computer Graphics Appl. 15 (1995) 32–41.

6. G. D. Plotkin, A note on inductive generalization, in Machine Intelligence, eds. B.
Meltzer and D. Michie (North-Holland, 1970), Vol. 5, 153–163.

