
COMPARING RENDERING METHODS FOR

JULIA SETS

ABSTRACT

Sequential rendering methods for the graphical representation of Julia sets are com-

pared. Two groups of methods are presented. In the �rst, the attractor of the Julia

set is rendered and, in the second, the complement of the attractor is rendered.

Examples of images obtained using these methods are also given.

Keywords: Attractor, Julia set, rendering methods

1 INTRODUCTION

One fascinating aspect of fractals is the

beauty of their graphical representation.

This paper is devoted to a discussion

of various fractal aspects involved in the

polynomial pc: C ! C with

pc(z) = z
2 + c; c 2 C : (1)

The dynamics of pc is an enormously rich

fountain of fractal structures. Although

the fractal sets generated from the above-

mentioned transformation have been dis-

cussed extensively in the literature, as far

as we know, no previously published work

exists that comprises the best known se-

quential visualisation methods and whose

scope is the comparison of their perfor-

mances. In order to present these meth-

ods, we must �rst introduce some useful

terminology.

A periodic orbit or cycle is a set of k � 2

distinct points fa1; : : : ; akg such that

pc(a1) = a2; : : : ; pc(ak�1) = ak; pc(ak) = a1;

so, in fact, for each j = 1; 2; : : : ; k, z = aj

is a solution of pk
c
(z) = z, where pk

c
(z) =

pc(p
k�1
c

(z)). Hence, a point a is periodic,

if pk
c
(a) = a for some k > 0; it is re-

pelling, indi�erent or attracting depend-

ing on whether j(pk
c
)0(a)j is greater than,

equal to or less than one, respectively. If

j(pk
c
)0(a)j = 0, a is termed superattract-

ing. If k = 1, z is called a �xed point of pc.

Naturally, attracting means that points z0
near a will generate orbits

z0 7! z1 7! z2 7! z3 : : :

zk+1 = pc(zk), k = 0; 1; : : :, which ap-

proach a. By collecting all such points

one obtains the basin of attraction of an

attracting �xed point a

Ac(a) = fz 2 C : lim
k!1

p
k

c
(z) = ag: (2)

It is obvious that1 is an attracting �xed

point of pc. The boundary of Ac(1) is

denoted by @Ac(1) and is called the Julia

set of pc. We also use the symbol Jc =

@Ac(1). Other than Ac(1) and Jc, also

to be considered is a third object

Kc = C n Ac(1)

= fz 2 C : pk
c
(z) stays bounded for all kg

sometimes called the �lled-in Julia set.

Obviously, we have that

@Kc = Jc = @Ac(1);

i.e., Jc separates competition between or-

bits being attracted to 1 and orbits re-

maining bounded as k!1.

The rest of this paper is organised as fol-

lows. Firstly, after describing briey the

most widely used sequential methods for

constructing Julia sets, we present eÆ-

cient sequential algorithms for rendering

purposes. As examples we give sequen-

tial algorithms in the form of ready-to-use

code to attack the problem of determining

the Julia set by inverse iterating and by

examining the nearest neighbour pixels.

Next, we compare all the implemented se-

quential methods with each other in order

to �nd the best balance between speedup

and accuracy. Finally, some conclusions

are drawn along with a discussion of im-

plementational issues.

2 VISUALISATION METHODS

REVISITED

We consider methods representing Julia

sets as they result from iterating the com-

plex quadratic polynomial (1). The meth-

ods for rendering Julia sets are diagram-

matically represented in Fig. 1. For clar-

quadratic iteration
z->z*z + c

complement of

geometry
only

geometry
and dynamics

distance
estimator

escape time

continuous

potential
function(level sets)

Julia set

escape time

(filled-in)
(filled-in) Julia set

Figure 1: An overview of the meth-

ods for rendering Julia sets

ity, these methods are subdivided into two

groups: those for the (�lled-in) Julia sets

and those for the corresponding comple-

ments. In a particular picture both as-

pects are usually combined. There are

three approaches to the last group, namely

methods representing Euclidean distance

from the �lled-in Julia set; repelling meth-

ods, computing the escape time of a point

fromKc and methods using (electrostatic)

potential functions of theKc. The last two

methods are equivalent, the escape time is

proportional to the logarithm of the po-

tential function. For a more detailed study

of Julia sets and the sequential algorithms

for rendering them an interesting reference

is [Peitgen88].

2.1 Inverse Iteration Method

In general, it is not obvious at all how to

obtain a reasonable picture of Jc, though

there is an immediate algorithm (Inverse

Iteration Method - IIM) obtained from the

following characterisation due to Julia and

Fatou: For any c, the equation pc(z) = z

has two �nite solutions u0 6=1 6= v0 - the

�xed points. If c 6= 1=4 then at least one

of them is a repelling �xed point, say u0.

Then one has

Jc = fz 2 C : pk
c
(z) = u0 for some k 2 Zg:

Note that, in general, pk
c
(z) = u0 has 2k

solutions, i.e. the total number of iter-

ated preimages of u0 obtained by recur-

sively solving the equation z
2 + c = u0 is

n(k) = 2k+1 � 1; k = 0; 1; : : : :

The recursion is nicely represented in a

binary tree as in Fig. 2(a). For the whole

tree one needs all 2k preimages of the level

k in order to compute level k + 1. If one,

however, anticipates thatN iterations suf-

�ce, then there is an obvious way to la-

bel the tree as in Fig. 2(b) (depth-�rst

search), which requires only 2(N � 1) (as

compared to 2N�1) units of storage.

0

1 2

3 4

27 28 29 30

5 6

7 8 9 10 11 12 13 14

18171615 19 20 21 22 23 24 25 26

(a)
0

1 2

3 4

5 6

7 8 9 10

11 12

13 14 15 16

17 18

19 20

21 22 23 24

25 26

27 28 29 30

(b)

Figure 2: Binary tree structures

Another approach is obtained by choosing

one of the two roots at random at each

stage of the recursion for preimages. This

amounts to a random walk on the tree in

Fig. 2(a). Usually the method will work

for almost all initial u0 2 C . The �rst few

preimages will have to be excluded from

the plot. Iterated preimages will approxi-

mate Jc. Formally, this is a typical exam-

ple for an iterated function system (IFS)

with maps

w1(u) = +
p
u� c and w2(u) = �

p
u� c;

where any set A of points so far computed

yields a larger set w1(A) [w2(A). Barns-

ley in [Barnsley93] and Hepting et al. in

[Hepting91] explore this viewpoint in de-

tail.

The IIM is rather fast in providing a �rst

impression of the shape of the Julia set,

although for some parameter choices it

takes a very long time to obtain all the de-

tails (Fig. 3(a)). This is why variations of

(a) (b)

(c) (d)

Figure 3: A Julia set obtained by

(a) the IIM, (b) the MIIM, (c) the

BSM and (d) the MBSM

IIM or totally di�erent methods are nec-

essary. Note that this method belongs to

the second method set of the �rst group

(see Fig. 1).

2.2 Modi�ed Inverse Iteration

Method

A detailed mathematical motivation is

given in [Peitgen86], pp. 37{38. The idea

of the algorithm is to make up for the

nonuniform distribution of the complete

tree of iterated preimages by selecting an

appropriate subtree, which advances to a

much larger level of iteration k and forces

preimages to hit sparse areas more often.

Put Jc on a square lattice with small mesh

size �. Then for any box B of that mesh,

stop using points from B for the preim-

age recursion, provided a certain num-

ber Nmax of such points in B have been

used. Optimal choices of B and Nmax de-

pend very much on Jc and other comput-

ergraphical parameters, such as the pixel

resolution of the given system.

Another variant attempts to estimate the

contractiveness of w1 and w2 (see IIM).

Given any point umk
6= u0 on the k-th

level of the binary tree in Fig. 2(a) there

is a unique path on the tree from umk
to

u0 which is determined by the forward it-

eration of umk
(k times):

p
k

c
(umk

) = u0:

Now, the idea is to stop using umk
in the

preimage recursion (i.e. to cut o� the sub-

tree starting at umk
), provided that the

derivative

j(pk
c
)0(umk

)j = j
kY
i=1

p
0

c
(umi

)j

exceeds some bound D, which is the pa-

rameter of the algorithm. Here we have

written umi
= p

k�i

c
(umk

); i = 0; : : : ; k:

Of course, the above derivatives can be

cheaply accumulated in the course of the

recursion:

NewDerivative = 2�OldDerivative�jumi
j:

In the case of the MIIM the algorithm is:

void Julia::MIIMethod(CDC *pDC)

{

int x, y;

long iter = 0;

Stack<MIIMRec> CStack;

MIIMRec Data, root;

Data.label = 0;

Data.Deriv = 1;

if (C.Re()==0 && C.Im()==0)

Data.Z = Complex(1,0);

CStack.push(Data);

while (!CStack.isEmpty()

&& ++iter<SENTINEL){

CStack.pop(Data);

x = round((Data.Z.Re() - Xmin)/dx);

y = round((Data.Z.Im() - Ymin)/dy);

pDC->SetPixel(x,y,RGB(0,0,100));

if (Data.label<MAXDEPTH

&& Data.Deriv<Dbound){

root.Z = sqrtC(Data.Z-C);

root.label = Data.label + 1;

root.Deriv = 2*Data.Deriv*root.Z.abs();

CStack.push(root);

root.Z = (-1)*root.Z;

CStack.push(root);}}

}

2.3 Boundary Scanning Method

The Boundary Scanning Method, or BSM

for short, is even more elementary than

IIM. It uses the de�nition of Kc, Eq. (3),

and Ac(1), Eq. (2), in a straightforward

manner.

Similar to MIIM, this method is based on

a lattice - let's assume a square lattice of

mesh size �, which could be just the pixel

lattice. Choose Nmax - a large integer -

and R - a large number. Now let q be

a typical pixel in the lattice with vertices

vi; i = 1; 2; 3; 4. The algorithm consists in

a labeling procedure for the vi's:

vi is labeled 0; provided vi 2 Ac(1); and

vi is labeled 1; provided vi 2 Kc:

Then q is called completely labelled, pro-

vided the vertices of q have labels which

are not all the same. A good approxi-

mation of Jc is obtained by coloring all

completely labelled pixels in the lattice

(Fig. 3(c)). Thus it remains to decide

whether vi 2 Ac(1). The answer is

yes, provided that jpk
c
(vi)j > R for some

k � Nmax. Otherwise, it is assumed that

vi 2 Kc. Note that BSM belongs to the

�rst method set of the �rst group (see

Fig. 1). In the case of the BSM the al-

gorithm is:

int Julia::SetLevel(double x, double y)

{

double SQRx, SQRy, temp;

int iter = 0;

SQRx = x*x;

SQRy = y*y;

for(;(iter<Nmax)

&& (SQRx+SQRy<Rmax);iter++){

temp = SQRx-SQRy+C.Re();

y = 2*x*y+C.Im();

x = temp;

SQRx = x*x;

SQRy = y*y;}

return iter ;

}

int Julia::CompletelyLabelled(double x,

double y)

{

int labelledpixels=0;

if (SetLevel(x,y+dy)==Nmax)

labelledpixels++;

if (SetLevel(x,y-dy)==Nmax)

labelledpixels++;

if (SetLevel(x+dx,y)==Nmax)

labelledpixels++;

if (SetLevel(x-dx,y)==Nmax)

labelledpixels++;

return (labelledpixels<4

&& labelledpixels>0);

}

Rec Julia::PointInSet(int i, int j)

{

int OnBoundary=0;

double x, y;

Rec R;

Complex Z0 = RFP(C);

R.i = round((Z0.Re()-Xmin)/dx);

R.j = round((Z0.Im()-Ymin)/dy);

if (!CompletelyLabelled(R.i, R.j)){

i = 2*MAXROW/3;

y = Ymin;

x = Xmin + i*dx;

for (j=1; j<MAXCOL

&& !OnBoundary; j++){

y += dy;

OnBoundary = CompletelyLabelled(x,y);}

R.i = i; R.j = j-1;}

return R;

}

void Julia::BSMethod(CDC *pDC)

{

double x, y;

x = Xmin;

for(int i=1;i<=MAXCOL;i++){

x+=dx; y=Ymin;

for(int j=1;j<=MAXROW;j++){

y+=dy;

if (CompletelyLabelled(x,y))

pDC->SetPixel(i,j,RGB(0,0,100));}}

}

2.4 Modi�ed Boundary Scanning

Method

It is obvious that scanning all pixels of

a lattice will be very time consuming, in

particular for pixels inside Kc. If Jc is

connected, a much more economical algo-

rithm is obtained in the following way. As-

sume that q0 is a pixel in the lattice which

is completely labelled. Pixel q0 is used as

a seed for a neighbourhood search process:

Move all (immediately) neighbouring pix-

els of q0 onto a stack. Then test each pixel

in the stack in three steps:

1. compute labels of vertices of a pixel

from the stack;

2. index whether pixel is completely la-

belled as in BSM;

3. if last pixel is completely labelled,

push all those (immediate) neighbours

that have not been tested before onto the

stack (Fig. 3(d)).

In the case of the MBSM the algorithm is:

void Julia::MBSMethod(CDC *pDC)

{

Image JSet(MAXCOL, MAXROW);

Stack<Rec> stack;

double X, Y;

Rec Z = PointInSet();

Rec adjZ;

stack.push(Z);

while (!stack.isEmpty()) {

stack.pop(Z);

X = Xmin + Z.i*dx;

Y = Ymin + Z.j*dy;

if (CompletelyLabelled(X,Y)){

pDC->SetPixel(Z.i,Z.j,RGB(0,0,100));

JSet(Z.i, Z.j)=1;

adjZ.i = Z.i; adjZ.j = Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i=Z.i+1; adjZ.j=Z.j;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i-1; adjZ.j = Z.j;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i+1; adjZ.j = Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i+1; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i = Z.i-1; adjZ.j = Z.j-1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);

adjZ.i=Z.i-1; adjZ.j=Z.j+1;

X = Xmin + adjZ.i*dx;

Y = Ymin + adjZ.j*dy;

if (JSet(adjZ.i,adjZ.j) == 0)

stack.push(adjZ);}}

}

(a) (b)

(c) (d)

Figure 4: A Julia set obtained by

(a) the LSM, (b) the LSM but show-

ing the border of the encirclements,

(c) the CPM and (d) the DEM

2.5 Level Set Method

The Level Set Method, or LSM for short,

also called the Escape Time Method, is

just a very powerful variant of BSM that

causes Jc to stand out against a spec-

trum of colour bands approaching from

without or within (see [Hoggar92]). We

�x a square lattice of pixels, choose a

large integer Nmax (iteration resolution)

and an arbitrary set T (target set) con-

taining1, so that Kc � C nT . For exam-

ple, T = fz 2 C : jzj � 1="g, " small, is

a disk around 1. Now we assign for each

pixel q from the lattice an integer label

lc(q;T) in the following way:

lc(q;T) =

8>><
>>:

k; provided p
i

c
(q) =2 T and

p
k

c
(q) 2 T for 0 � i < k and

k � Nmax

0; otherwise.

The interpretation of a nonzero lc(q;T) is

obvious: q escapes to1 and lc(q;T) is the

\escape time", measured in the number of

iterations, needed to hit the target set T

around 1. The collection of points of a

�xed label, say k, constitutes a level set

(Fig. 4(a),(b)).

2.6 Continuous Potential Method

The Continuous Potential Method, or

CPM for short, allows to represent the po-

tential of Kc as a smooth parameterised

surface potc: C n Kc ! C � R, which

is approximately given by potc(z0) =

(z0; log jznj=2n) ; where zk = z
2
k�1

+ c, k =

1; 2; : : : ; n, n = lc(z0;T) and T = fz 2 C :

jzj � 1="g for small " (Fig. 4(c)).

2.7 Distance Estimator Method

The Distance Estimator Method, or DEM

for short, usually applies for z near Kc

(connected); see Fig. 4(d). Let c be �xed.

Choose Nmax and R = 1=", where T =

fz 2 C : jzj � 1="g for small " is the

target set around 1. For each z0 we will

determine a label l(z0) from f0;�1; 2g (0
for z0 2 Kc, f+1;�1g for z0 close to

Kc, 2 for z0 not close to Kc): Compute

zk+1 = z
2
k
+ c; k = 0; 1; 2; : : : until either

jzk+1j � R or k = Nmax. In the second

case we set l(z0) = 0. In the other case we

have jznj � R with n = k + 1 = lc(z0;T)

and z0 is still candidate for a point close to

Kc. Thus we try to estimate its distance

having saved the orbit fz0; z1; : : : ; zng:

z
0

k+1 = 2zkz
0

k
; z

0

0 = 1; k = 0; 1; : : : ; n� 1:

(3)

If in the course of the iteration of Eq.

(3) we get an overow, i.e. if jz0
k+1j �

OVERFLOW for some k, then z0 should

be very close to Kc, thus we label z0 by

�1. If no overow occured, then we esti-

MethodnRes 320� 200 640� 480 1024� 768

IIM 2 6 10

MIIM 1 6 12

BSM 3 18 44

MBSM 3 10 18

LSM 1 7 16

CPM 1 7 15

DEM 4 20 52

Table 1: Total runtime of some

methods used for constructing the

Julia set

mate the distance of z0 from Kc by

d(z0; Kc) = 2
jznj
jz0
n
j log jznj

and set

l(c) =

�
1; if d(z0; Kc) < DELTA

2; otherwise.

3 COMPARATIVE RESULTS

We compared the above mentioned algo-

rithms by evaluating two of their basic

characteristics: the speed with which they

compute the corresponding Julia set and

the eÆciency with which they display it to

the computer screen. The complex num-

ber used in all cases was the \diÆcult"

value c = �0:48176� 0:53165{.

Table 1 presents the sequential runtime

measured for each of the seven methods

(IIM, MIIM, BSM, MBSM, LSM, CPM,

DEM) for the computation of the Julia

set. A �rst observation from these re-

sults concerns the increase of the run-

times, while increasing the resolution (Res

row) of the images. A second observation

concerns the low runtime obtained for the

BSM and MBSM methods; the latter is

obviously an improvement of the former.

The IIM and the MIIM are the fastest

methods, but, of course, it depends upon

Algorithm EÆciency

IIM ??

MIIM ? ? ? ? ??

BSM ? ? ??

MBSM ? ? ? ? ?

LSM ? ? ?

CPM ? ? ?

DEM ? ? ? ? ? ? ?

Table 2: EÆciency of some methods

used for constructing the Julia set

the number of points that lie on the at-

tractor. If we want a very accurate picture

of the attractor, we are obliged to give

a large number of points and the MIIM

can become extremely slow. The DEM

is the slowest method with a slight di�er-

ence from the BSM. Of course the result

is worth such a delay!

Table 2 presents the eÆciency measured

for each of the seven methods (IIM, MIIM,

BSM, MBSM, LSM, CPM, DEM) for the

computation of the Julia set. When we

speak about eÆciency we mean the qual-

ity of the resultant picture, i.e. how ac-

curate the graphical representation of the

fractal set is. The more eÆcient method

is the DEM; for that, it is the slowest.

Nevertheless, in some cases the MIIM is

better than the DEM. SuÆciently satis-

factory results are obtained also with the

LSM or the CPM.

4 CONCLUSIONS

The current implementation of the algo-

rithms mentioned before is written in Mi-

crosoft Visual C++ 6.0. Time results are

given in CPU seconds on a Pentium MMX

PC with a 200 MHz CPU clock running

Windows 98.

As can be easily extracted from the com-

parison analysis of the preceding section,

the MIIM is the best method (over all

measures) for rendering Julia sets. It is

well known that DEM is one of the more

accurate methods to obtain the best qual-

ity pictures of these fractal sets. The sec-

ond best method is the MBSM and then

following, in order, the CPM, IIM, LSM

and BSM. If one wants to render only the

Julia set Jc (and not the �lled-in Kc), the

MBSM must be chosen. Hence, depending

on the sought-after fractal set, a compro-

mise between runtime and accuracy must

be made.

REFERENCES

[Barnsley93] Barnsley, M. F.: Fractals ev-

erywhere, 2nd ed., Academic Press

Professional, 1993.

[Hepting91] Hepting, D., Prusinkiewicz,

P. and Saupe, D.: Rendering meth-

ods for iterated function systems, in

Peitgen, H.{O., Henriques, J. M.

and Penedo, L. F. (eds), Fractals

in the fundamental and applied sci-

ences, North-Holland, pp. 183{224,

1991.

[Hoggar92] Hoggar, S. G.: Mathematics

for computer graphics, Cambridge

Univ. Press, 1992.

[Peitgen86] Peitgen, H.{O. and Richter,

P. H.: The beauty of fractals,

Springer-Verlag, 1986.

[Peitgen88] Peitgen, H.{O. and Saupe, D.

(eds): The science of fractal images,

Springer-Verlag, 1988.

