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Abstract

Local search and its variants simulated annealing and tabu search are widely used heuristics
to approximately solve NP-hard optimization problems. To use local search one “simply” has to
specify a neighborhood structure and a cost function which has to be optimized. However, from
a theoretical point of view, many questions remain unanswered, and one of the most important
is: which neighborhood structure will provide the best quality solutions? The aim of this paper
is to theoretically justify some results previously reported by Johnson et al. (1989, 1991) in their
extended empirical study concerning simulated annealing and the graph bipartitioning problem,
and to sharply tune the best landscape among the two reported in that study. Experimental results
perfectly agree with the theoretical predictions.

Keywords: Local search; Simulated annealing; Autocorrelation length;
Graph bipartitioning problem

1. Introduction

The graph bipartitioning problem is a well-known NP-complete combinatorial opti-
mization problem [2]. Given an edge-weighted graph, the task is to find a partition of
its vertices into two equal-sized subsets, such that the total weight of edges connecting
the two subsets is minimum.

In [3] and the companion paper [4], Johnson et al. report an extensive empirical study
for simulated annealing applied to this problem. They describe two neighborhoods. In
the simpler one, only equal-sized partitions of the vertex set are considered, and two
partitions are neighboring if one can be obtained from the other by performing an
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exchange of two vertices. In the other, any partition of the vertex set is a solution,
and two partitions are neighboring if one can be obtained from the other by moving a
single vertex from one of its sets to the other. To penalize non-equal-sized partitions,
a penalty term is added to the cost function, which is function of a coefficient  called
the imbalance factor.

We retain the three following aspects of their work: First, they have concluded a
good behavior of simulated annealing when it is applied to random graphs, relatively to
the far more elaborate standard Kernighan—Lin benchmark algorithm [5], even when the
running time is taken into account. Second, they argued that the second neighborhood
gives better results than the first one. And third, they have dressed the problem of
choosing a value for the imbalance factor. They noticed that there was a safe range
for it, and that either too small or too big values of this parameter lead to poor results.

The autocorrelation coefficient is a theoretical parameter, first introduced by
Weinberger in [8}, used to determine the degree of ruggedness of a landscape which
is the neighborhood structure union of the cost function. In this paper, we study the
autocorrelation coefficient for the two previous landscapes for the bipartitioning prob-
lem. Our study is a first step towards a theoretical justification of the previous observa-
tions by using the autocorrelation coefficient, and allows us to calculate the “optimum”
value of the imbalance factor. Several experiments totally confirm our results. This
research axis for evaluating different neighborhood structures is important, and in our
knowledge, it is the first time that one has a theoretical justification of the behavior of
local search with various landscapes.

The next of this paper is organized as follows: in Section 2 we define the autocor-
relation coefficient of a landscape. In Section 3 we calculate its values for landscapes
used in the graph bipartitioning problem. This enables us to say that one landscape
is better than the other, and to sharply tune the best one. Section 4 is devoted to
experimental evaluations. Finally, the conclusion appears in Section 5, where we also
report some related studies concerning other optimization problems, and raise some
open questions.

2. The autocorrelation coefficient of a landscape

Consider the problem of minimizing a real-valued function C, over a finite and
discrete search space S. By definition, the cost of a solution s€ 8 is C(s). To use
local search one simply has to specify a neighborhood structure which associates for
each solution s € §, a neighborhood N(s) CS. The association of a function C with a
neighborhood structure forms what is called a landscape. Then, a local search algorithm
consists in iterating the following instruction, which has to take a polynomial time in
order to be useful in practice: substitute the current solution s for a best one in N(s).
The search will end to a local optimum, i.c., a solution for which none of its neighbors
has a lower cost. Simulated annealing is a local search based heuristic, designed to
avoid being trapped in poor local optima.



E. Angel, V. Zissimopoulos | Theoretical Computer Science 191 (1998) 229-243 231

One of the most important characteristic of a landscape is its ruggedness. There
is a strong link between this concept and the hardness of an optimization problem
relatively to a local search-based algorithm. Intuitively, it is clear that the number of
local minima depends on the link between the cost of a solution and the cost of its
neighbors. If the cost difference between any two neighboring solutions is on average
small (respectively important), then the landscape will be well (respectively bad) suited
for a local search algorithm.

Let the distance between any two distinct solutions s and ¢, noted d(s,t), be the
smallest integer k > 1 such that there exists a sequence of solutions sy, ...,s; with s =s,
Vie{0,....k—1}, 5s;1) € N(s;) and s; = ¢. In the sequel, we always have d(s,t) =d(t,s).
By definition, the landscape autocorrelation function [8] is

(C)C()) as.n=a — (C)?
(C?) —{C)?

with {C) (respectively (C?)) the average value of C(s) (respectively C%(s)) over S,
and (C(s)YC(t))acs.i—¢ the average value of the product C(s)C(¢) over all solutions
pairs {s,¢} which are at distance d.

Function p(d) shows the level of correlation between any two solutions which are at
a distance d from each other. The most important value to know is p(1), because the
link between two adjacent solutions is of first importance for any local search based
heuristic. A value close to | indicates that costs of any two neighboring solutions are
(in average) very close. In contrary, a value close to 0 indicates that the cost of any
two neighboring solutions are almost independent.

We define the autocorrelation coeflicient 4 by A =1/(1 — p(1)). The larger A is, the
more suited the landscape is for any based local search heuristic.

The following proposition is easy to obtain.

pld)=

Proposition. Let Var(C)=(C*) — (C)? be the variance of the cost function C, then
the autocorrelation function can be rewritten as

{(C(s) = CUNds.ir=d
2Var(C) ’

pd)=1-

Proof. We have for the numerator

(C(s) = CONasir-a = (CX(s) + C2(1) = 2C()C() ) atsun1=a
=2(C%) — 2{C(s)C(1))ais.11=d-
So, one obtains
g 2(<C2> —{CSYC( ds.t)=d )
=1 2 - (0))

_ A{CS)C))as,ty=d — () 0
= (= (cp '
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3. The graph bipartitioning problem

Given a graph and an associated matrix X = (x;;) of edge weights, the graph biparti-
tioning problem asks to find a partition of its vertices V into two sets of same cardinal-
ity (more or less one) A and F\4, such that the total edge weights C(4)=>_
is minimized.

We will consider the special case where the x;; are random variables. Moreover, we
suppose that either all the x;; with i # j are mutually independent with the same distri-
bution, or only the x;; with i <j are mutually independent with the same distribution,
with x; =x; Vi#J.

We consider the following two neighborhoods: In the first one, which we call SWAP,
only equal-sized partitions of the vertex set are solutions. Two partitions will be neigh-
boring if one can be obtained from the other by performing an exchange of two vertices.
The union of this neighborhood structure with the above cost function forms what we
call the SWAP-RGBP-landscape.

In the second one, which we call FLIP, any partition of the vertex set is a solution.
Two partitions will be neighboring if one can be obtained from the other by moving a
single vertex from one of its sets to the other. To penalize non-equal-sized partitions,
we add a penalty term, function of a coefficient 2, called the imbalance factor, to the
cost function. For this neighborhood, the cost function which has to be minimized
is therefore C(A):ZieA’ng x;; + a(]4] — |V \4])*. The union of this neighborhood
structure with this cost function forms what we call the x-FLIP-RGBP-landscape.

The first landscape has been previously studied in [6] where it was proved that
for the SWAP-RGBP-landscape, the autocorrelation coefficient is Z=n/8 + O(1/n),
independently of the distribution of independent random variables x;; (admitting finite
expectation and non-null variance).

Let x be a random variable with the same distribution as the x;;. We suppose that x
has a non-null variance. The average (expectation) of x (respectively x?) is noted (x}
(respectively {(x?)). We shall also use the notation X7, X>,... for a sequence of mutually
independent and identically distributed random variables, each X; distributed as x.

Recall that (X.X;) = (X;) (X;) for i#j. We are going to study the second neighbor-
hood.

The following lemma will be extensively used.

i€d,jgA Xij

Lemma 1. Let S denotes the sum 3 ,_, k'(})/2", then we have the following recur-

sion: Vl,nz1, S} =n(S]_| — %S,"_”ll Y. The four first values of S} are given by

n
St==,
72
n_ M
52“4+4’
3nt  n
S”I— —,
358 T3
SZ—:__n 3]12 E+£
8 16 8§ 16
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Proof. We have

S;IZ Zkl—l k(n)/zn
k=1 k
" —1
=Sk " 2,
Een(l)/

By using the recursion (}) = (Z:'l) + (";l), we obtain

n n—1 —
(e (-5 ()
k=1 k k=1 k

n 1 n—I1
=n S]_] - Esl*l . D

Lemma 2. We have the following combinatorial identities:

n n n_n(n—l)
ki;ok(n—k)(k>/2 ==

k}ijok(n—k)(k(n k) - 1)(2)/2”:%(# _on? —n42),

S (2k - n) (Z)/z =30 — 2n,
k=0

fj k(n — k)(2k — n)? (”)/2" = l(n3 —3n% +2n).

Proof. For the first equality we have k(n — k)=k> — nk, therefore

ék(n#k)(z>/2”25§' — ns"

_na(n—1)
==

For the second equality, we have k(n —kY}k(n—k)—1)= k* — 20k + (n® + DK — nk,
and so it yields
kz k(n — k)(k(n — k) — 1)(2)/2" =87 — 2185 + (n* + 1)S5 — nS}
=0

- 1"—6(;13 — 22— n+2).

For the third equality, we have (2k —n)* = 16k* —32nk> +24n%k?> — 8n*k+n*. Therefore,

S (2K — n)’ (Z) / 27— 168! — 32nSY + 24nSt — 80>} + #
k=0

=3n* —2n.
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For the fourth equality, we have k(n — k)(2k — n)> =—4k* + 8nk® — 5n2k? + n3k. Thus,

> k(n — k)(2k — n)? (Z) / 2" = —4S} + 8nSy — Sn*Sy + n>Sy
k=0
=1’ -327 +r2n). O
Lemma 3. The expectation of C is given by (C) =n(n — 1)/4{x) + an.

Proof. Using the equality |4|+|V\4| =n, the cost of a solution 4 can be equivalently
written

CA)= Y xy+a(2d —n)
icd e

= 5 x;+a(4dA]* —4nd| + n*).
i€4,j¢4

Therefore, we have

{C

—~

= 3 (C) kP A =)
k=0

= Xn: (k(n — k)<x> + 96(4]{2 — dbkn + nz))P(|A| =k)
k=0

— Z (k(n — k) {x) + a(4k? — 4kn + nz))<z>/2"
k=0

-1 .
= n_(nz_)<x> + (4Sy — 4nST + n*) (using Lemma 2)

_n(n—1)
N 4

(x) + an. O

Lemma 4. The expectation of C* is given by

n(n—1)

p (x*) +
+ 22(3n% — 2n).

116(’13 —2n? —n 4+ 2){x) + ;(1’13 —3n? +2n)(x)

(€)=
Proof. The average cost of C? over all solutions of size k is given by

(COY gt = (X7 + 4+ Xiguory + 02k — n)?)?)
={(X1 + -+ Xty + 2ak(n — K)2k — )2 {x) + 222k — n)*.

Therefore,

(C2) = 37 (k(n — k)2) + k(n — k) (k(n — k) — 1)(x)>
k=0

+ 2ak(n — k)(2k — n)*{x) + o2 (2k — n)‘*)(Z)/z".
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Finally, using Lemma 2 we obtain

nn—1), ,
() =2 +

20 =207~ 2)(x)?

+ —;—(n3 Sty +22GrE —2n). O

Lemma 5. The variance of C is given by, n(n — 1)/4(x*) — n(n — 1)/8(x)?> — an(n —
D{x) 4 24%n(n — 1).

Proof. By definition, Var(C)=(C?) — (C)?, and use Lemmas 3 and 4. [J

Lemma 6. The average squared cost of a sum composed with m additions and n —m
subtractions over the random variables X,,...,X, is given by

X+ Xy = Xy — - = X)) =0l + (4m? — dmn +n* — n){x)2

Proof. Just expand the expression. Recall that the X; are mutually independent and
identically distributed random variables, each X; distributed as x. We have

(X Xy — Xy — - = X)) = n{XD) + (m(m — D) +(n — m)(n ~m — 1)
X<X]X2> - 2m(n - m)(Xng)

=n{x?) + (4m* — 4mn + n* — n){x)%. O

Lemma 7. We have the following combinatorial identity > ;_((n — 2k — 1)* +
(4kin)(n — 26))(})/2"=n— 1.

Proof. We have ((n—2k — 1)> + (4k/n)(n —2k)) = (4~ 2 )k + (8 —4n)k +n* —2n+ 1.
Therefore,

> ((n EPYSEPIC I L 2k)> (")/2
k=0 R k

8
= (4—;>S§'+(8—4n)Sf+n2~2n+l
=n- L O

Given a solution 4, we note 4’ a neighboring solution, that is to say a solution of
the form AU {a} with a ¢ 4, or A\{a} with acA4.

Lemma 8. The average squared cost difference between two neighboring solutions is
given by ((C(4) — C(4))?) =(n — 1){x*) + 160*(n — 1) — 8a(n — 1){x).

Proof. We distinguish two cases, and calculate the average cost for each of them.
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For the first case, given a solution 4 and a ¢ 4, we make the move 4 — A’ =4 U {a}.
We make the assumption 4| =k, with 0<k<n — 1. We have

CA) = CA)= Y X — 3 xig + 2((2)4"| — n)? — 2|4| — n)?)

igA i€d
=3 Xai — Y Xia + (24| + 2 — n)? — (24| — m)?)
i¢A i€A
= me' — ina +4(X(2|A| —+ 1 — I’l).
i¢A4 icA
So,
(CA) = CAY Yk = (X + -+ Xt — Xyg — - = K1)
+ 1602 (n—2k —1)2 +2(n —k — 1 — k)da(k +1 —n){x)
={(Xi 4 F Xpept = Xyp = — X))

+ 1602 (n — 2k — 1)* — 8an — 2k — 1)* {x),
and using Lemma 6 we obtain
{CU) = CY ) a=p = (1 = D)+ (@6 —4k(n — D+ (1= 1) = (n = 1){x)?
+ 1622(n — 2k — 1)* — 8a(n — 2k — 1)*{x)
= (n— D{x?) + (4k* — 4k(n — 1) +n* = 3n + 2)(x)?
+ 16a%(n — 2k — 1)* — 8a(n — 2k — 1)*(x).

For the second case, given a solution 4 and a € 4, we make the move 4 — 4’ = 4\{a}.
We make the assumption [4] =4, with 1 <k <n. We have

CA') = C(A) =3 xia = 3 Xai + (24"} = n)? = 2J4] = n)?)

i€A i¢A

=3 Xia = 2 Xa + U2l =2 —n)? = 2/4] = n)?)

ic4 igA
=Xy~ O Xg T 4oln — 2|4 + 1)
ied i¢4

So,
(C(A') = CLAN) oy =
=X+ F XK = X— = X )D) + 1603 (n — 2k + 1)?
20k — 1 = (n — k))da(n — 2k + 1){x)
=X+ X =X = — n_1)2>

+160%(n — 2k + 1)? — 8a(n — 2k 4+ 1) {x)
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and using Lemma 6 we obtain
{(CA") = CA))) =
=n— D&+ @k - 1) 4k —D(n—1)+(n—1)°
— (n— 1)) 2 F 1603 (n — 2k + 1) —8o(n — 2k + 1) (x)
=(n - DED+ @k — 1) =4k —D)(n—1)+n*=3n+2){x)?

+160%(n — 2k + 1) — 8a(n — 2k + 1)*(x).
Therefore, we have for 1<k<n—1
(C(A) — CUAN ) =4

- k
= TR ctua)) — Cm+ SUCU D) - CPian

n

=n- 1%+ <k2 <4— S) + k(8 —4n)+ n* — 3n+2) (x)?
+ 1602 ((n —2k - 1)*+ %(n —k))

4k
— 8u ((n —2k—1)*+ —n— k)) {x).
When k& =0 or k =n this expression is still valid, therefore

{(C(A) - CA )Y

= 3 (€)= C)Phpaes PAT=H)

_ il—k‘j‘o (Z) ((n — D+ (kz (4 - S) + k(8 — 4n) +n? — 3n + 2) (x)?
—8a ((n ~2k—1)*+ f‘n—k(n - k)) {x)
+1602((n — 2k — 1)> + %(n - k)))

= (n—1)<x2>+<<4~§> SI + (8 — 4n)ST +n* — 3n +2>(x)2
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—8a(n — 1){x) + 16a*(n — 1) (using Lemma 7)
=(n— D) —8un— D) +16a*(n—1). O

Theorem 1. For the x-FLIP-RGBP-landscape, the autocorrelation coefficient is
given by

2(x%) — (x)? — 8a(x) + 16a*

Mox)= 4(x2) — 32a(x) + 6402

Proof. We have

2 Var(C)
{(Ca)-cCcny)’

Ao, x)=

Using Lemmas 5 and 8 it yields,

n(n — 1)/2{(x*) — n(n — 1)/4{x)? — 2an(n — 1){x) + 4o’n(n — 1)

(n— 1){x2) — 8a(n — 1){x) + 16x%(n — 1) =

Ala,x)=

Theorem 2. For all u, the autocorrelation coefficient of the x-FLIP-RGBP-landscape,
is bounded below by n/4, and this bound is sharp. Moreover, the maximum auto-
correlation coefficient is obtained for o= {x)/4, and its value is n/2 for all x with a
non-null variance.

Proof. We have the following equivalences:
}t(oc,x)>:l—1 & Z(xz) - (x>2 — Bafx) + 16oc2><x2) — 8a(x) + 16>
s xH - {x)?=o0.
Notice that the bound is attained when {x?) — 0. Moreover,

() — () — 4)
(1602 — 8a{x) + (x2))? °

a—iﬂb(ac,x)

The derivative becomes equal to zero for a=(x)/4, and some calculus show that
Mx)/4,x)=n/2. O

As it was pointed out by Stadler [7], in order to compare various landscapes one has
to take into account not only the autocorrelation coefficient, but also the diameter of the
landscape (the maximum distance between two solutions). The size of the neighborhood
is also important. Indeed, if two landscapes have the same autocorrelation coefficient,
the one which has the smallest diameter will be “more flat” than the other, and therefore
more suited for local search heuristics.
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The «-FLIP-RGBP-landscape has an autocorrelation coefficient located between n/4
and n/2, whereas for the SWAP-RGBP-landscape it is only (asymptotically) n/8, and
since the diameter of the x-FLIP-RGBP-landscape is s, and the diameter of the SWAP-
RGBP-landscape is n/2, the overall winner is the 2-FLIP-RGBP-landscape. It should
also be noticed that for small values of the imbalance factor, local search stops with
a partition that is far out-of-balance, and the greedy heuristic used to obtain a feasible
solution (see the next section) is not sufficient to obtain good results. For large values
of %, all non-balanced partitions are forbidden, and so the a-FLIP-RGBP-landscape has
no more utility compared to the SWAP-RGBP-landscape. From the above considera-
tions, we can now state the following two claims:

Claim 1. There exists an interval of values for the parameter o, such that the
a-FLIP-RGBP-landscape is more suited than the SWAP-RGBP-landscape, for a local
search algorithm.

Claim 2. The “optimum value” of u is (x)/4.

The next section is devoted to an experimental evaluation of them.

4. Experimental results

In order to test the previous claims, a distribution has to be chosen for the random
variable x. We have chosen the most widely used random graphs model. In the G, ,
model, random graphs have n vertices, and each x;; is a boolean independent random
variable, which takes the value 1 with probability p, and the value 0 with probability
1 —p.

Under these statements (x) = (x*) = p. The autocorrelation coefficient is given by:
160> — 8pa +2p — p?

6402 —32pa +4p

Ma, p)=

Fig. 1 shows the ratio R(a, p)= A(a, p)/n for 0<u<04 and O0< p<]1. For larger
values of « the ratio is almost a constant. We can see that the maximum is attained
for o= p/4.

We use the simulated annealing implementation of [3], to test our claims. Since
all the procedure is based on the use of percentages, it allows us to concentrate on
the quality of obtained solutions, and so the suitness of the landscape, rather than
time-spent considerations.

Recall that in simulated annealing, a new solution is chosen randomly among the
neighbors of the current solution, and improving moves are always accepted, whereas
other moves are accepted with probability e %7, where § is the change in cost function,
and T is a parameter, called temperature, which decreases every a fixed number (called
the temperature length) of steps (usually in a geometric way, i.e. T+ r7T, with r the
geometric cooling ratio).
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alpha ’ 0

Fig. 1. The ratio R(a, p) = A(x, p)/n in relation to the imbalance factor % and the probability p.

The initial temperature is experimentally fixed in such a way that the fraction of
accepted moves is approximately 40%. The temperature length is set to be 50 x instance
size, and the geometric cooling ratio is 0.95. When at the end of a temperature the
percentage of accepted moves is less than 2%, it means that the search is going to stop
soon, because none moves will be accepted. If a such observation occurs five times,
then we consider the search process as being “frozen”, and the simulated annealing
stops. There is an exception if a solution better than the previous best one is found, in
that case we wait again for five new low-acceptance temperature completions, to stop
the algorithm.

In order to obtain a feasible solution from the final one which is possibly unfeasible,
the following heuristic is used at the end of the search: repeat until the partition is
equal sized: find a vertex in the larger set that when it is moved to the opposite set it
increases the less the cost function, and move it to the other set.

The final cost comes from the best feasible solution found, which can be the last en-
countered solution (possibly modified) or an ecarlier feasible one (non-
modified).

In order to confirm experimentally the two claims of the previous section, we have
applied the simulated annealing algorithm on six types of random graphs, Gigo.0.1,
G100.0.8» G300,01, G300,08, and Gsao 0.1, Gso0,08, With imbalance factor varying between
0 and 1.

Fig. 2 resume the results we have obtained, averaged on 10 graphs for each type
of random graphs. Plain lines are for the various 2-FLIP-RGBP-landscapes, whereas
dotted lines are for the SWAP-RGBP-landscape. One notices that they perfectly agree
with the previously reported theoretical predictions. One observes, on all figures, for
the cost obtained, an abrupt variation around the value « = p/4. Moreover, the o-FLIP-
RGBP-landscape, when o> p/4, always gives better results than the SWAP-RGBP-
landscape.
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Fig. 2. The behavior of the simulated annealing with the SWAP-RGBP-landscape (dotted lines) and the
a-FLIP-RGBP-landscape for different values of «.

5. Conclusions

We have studied the autocorrelation coefficient for two landscapes used in local
search-based heuristics to approximatively solve the graph bipartitioning problem. This
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enabled us to say that one landscape was better than the other, and to sharply tune
the best one. The experiments we have conducted, totally confirm these conclusions.
We also think that the large value of the autocorrelation coefficient for the second
studied neighborhood could explain the good behavior of simulated annealing relatively
to the far more complex Kernighan—Lin heuristic.

Stadler in [7] has studied the traveling salesman problem. Two versions have been
considered. Either the distance matrix is a random symmetric matrix, or it comes
from euclidean distances for cities randomly distributed in a d-dimensional hyper-
cube (d>=2). For the 2-SWAP-RSTSP-landscape (respectively k-opt-RSTSP-landscape
(k=2)) we have lim,_, ., A =n/4 (respectively n/k). For asymmetric TSP the situation
is more involved. Stadler deduced that the 2-opt-RSTSP-landscape was better than the
2-SWAP-RSTSP-landscape. He also noticed that one cannot conclude, from the above
result, that the 2-opt-RSTSP-landscape is better than 3-opt-RSTSP-landscape (which is
experimentally wrong), because the landscapes have not the same diameter.

Weinberger [8] also suggested to use random walks to investigate the correlation
structure of a landscape. Consider the sequence of costs generated by a random walk
(¢;), which at each step moves to a new solution chosen randomly among the neighbors
of the current solution. A landscape is said to be statistically isotropic if the statistics
of this sequence of costs are the same, regardless of the starting point chosen for the
random walk. Under this assumption, we can define an another autocorrelation function
by putting

(C(t)C(s)) — (C)*
(C%) - (C)?
Notice the equality p(1)=r(1).
If the landscape is Gaussian, then r(s) can easily be computed from r(1). A landscape
is said to be Gaussian if the cost function C has a normal distribution N(g,d?), i.e.

1 exp (ﬁ(c - u)2>
o'\/z—‘[t 20’2

2

r(s)=

Pr(C<c)=

(u is the expectation of C, o* is the variance of C).

A random walk which is isotropic and Gaussian inevitably leads [1] to an autocor-
relation function of the form r(s)=r(1)° (but the reciprocal is not always true).

In that case, one defines the autocorrelation length [8] A by r(s)=p(1) =¢e”
Hence, 2= —1/(Inp(1)), and it means that the larger is 4 the closer to one is p(1),
and therefore, the more suited for a local search is the landscape. Intuitively, the
autocorrelation length A, indicates the minimum distance between any two solutions for
them to have a non-correlated cost. Therefore, when one compares various landscapes
it is more rigorous to compare the ratios 4/D, where D denotes the diameter of the
landscape, than the values 4. But the size of the neighbor should also be taken into
account.

Our autocorrelation coefficient is asymptotically equal with the autocorrelation length
(when p(1) — 1), hence the same notation. But, we have employed two terms because

s/7
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we cannot interpretate our autocorrelation coefficient as being an autocorrelation length,
as we conjecture that the %-FLIP-RGBP-landscape is not (asymptotically) Gaussian.
This is an open question, especially when a =0 (under this case, the maximization
version of the problem we consider is the well known MAX CUT problem). For this

case one has to study asymptotically the behavior when # — oo of a random sum of

random variables: Z?’;é”‘N”)X,-, with Pr(N, =k)= (})/2".

In contrary, notice that the k-opt-RSTSP-landscape (4 >2) and the SWAP-RGBP-
landscape are (asymptotically) Gaussian, due to a direct application of the central limit
theorem.
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